Annals of Forest Science (2017) 74: 43
DOI 10.1007/s13595-017-0641-2

@ CrossMark

REVIEW PAPER

Adopting robust decision-making to forest management

under climate change

Naomi Radke’
Marc Hanewinkel!

- Rasoul Yousefpour' - Roderich von Detten’ - Stefan Reifenberg’ -

Received: 13 September 2016 / Accepted: 28 April 2017 /Published online: 16 May 2017

© INRA and Springer-Verlag France 2017

Abstract

+ Key message Multi-objective robust decision making is a
promising decision-making method in forest management
under climate change as it adequately considers deep un-
certainties and handles the long-term, inflexible, and
multi-objective character of decisions. This paper provides
guidance for application and recommendation on the
design.

« Context Recent studies have promoted the application of
robust decision-making approaches to adequately consider
deep uncertainties in natural resource management. Yet, ap-
plications have until now hardly addressed the forest manage-
ment context.

+ Aims This paper seeks to (i) assemble different definitions of
uncertainty and draw recommendation to deal with the different
levels in decision making, (ii) outline those applications that
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adequately deal with deep uncertainty, and (iii) systematically
review the applications to natural resources management in
order to (iv) propose adoption in forest management.

« Methods We conducted a systematic literature review of
robust decision-making approaches and their applications in
natural resource management. Different levels of uncertainty
were categorized depending on available knowledge in order
to provide recommendations on dealing with deep uncertainty.
Robust decision-making approaches and their applications to
natural resources management were evaluated based on dif-
ferent analysis steps. A simplified application to a hypotheti-
cal tree species selection problem illustrates that distinct ro-
bustness formulations may lead to different conclusions.
Finally, robust decision-making applications to forest manage-
ment under climate change uncertainty were evaluated and
recommendations drawn.

+ Results Deep uncertainty is not adequately considered in
the forest management literature. Yet, the comparison of ro-
bust decision-making approaches and their applications to nat-
ural resource management provide guidance on applying ro-
bust decision making in forest management regarding deci-
sion contexts, decision variables, robustness metrics, and how
uncertainty is depicted.

+ Conclusion As forest management is characterized by long
decision horizons, inflexible systems, and multiple objectives,
and is subject to deeply uncertain climate change, the appli-
cation of a robust decision-making framework using a global,
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so-called satisficing robustness metric is recommended.
Further recommendations are distinguished depending on
the decision context.

Keywords Deep uncertainty - Robustness metrics -
Uncertainty levels - Climate change - Forest management -
Multi-objective robust decision making

1 Introduction

The idea of robust, instead of optimal decision making, has
recently entered the field of forest management (e.g.,
Yousefpour and Hanewinkel 2016; McDaniels et al. 2012),
and has already established itself as a promising method for
dealing with deeply uncertain future conditions, especially in
water management. Forest management is characterized by
very long-term decision outcomes due to its long production
time (Pasalodos-Tato et al. 2013; Schou et al. 2015). For de-
cisions, this implies that they must be suitable not only for
present but also for future growth conditions (Schou et al.
2015). Regeneration decisions, for example, are close to irre-
versible or at least highly inflexible. Yet, future conditions are
characterized by various uncertainties (Pasalodos-Tato et al.
2013) that make sound management decisions difficult.

One uncertainty that plays an increasing role in the scien-
tific literature on forest management is climate change uncer-
tainty (e.g., Colloff et al. 2016; Yousefpour and Hanewinkel
2015; Seidl and Lexer 2013). It pertains both to the degree of
change and to the environmental response to the changes
(Lindner et al. 2014). Future changes in climate might be of
such magnitude that are beyond the natural adaptive capacity
of forest species or ecosystems, which can lead to local ex-
tinctions and the loss of important functions and services
(Keenan 2015). Hazards may include drought, pests, and wind
damage (Petr et al. 2014) as well as flooding, snow breakage,
and fire (Yousefpour et al. 2012). This is why we would like to
focus on decision making under climate change uncertainty in
particular in this paper.

Most commonly, optimizing methods are used as a decision-
support in forest management, which either consider only one
future climate scenario or assign a single probability density
function (PDF) to future scenarios. Yet climate change uncertain-
ty poses a special challenge because it is classified by many
authors (see Sect. 3) as deeply uncertain. Deep uncertainty is
characterized by a lack of knowledge or of agreement on a single
probability distribution of an uncertain parameter (further
explained in Sect. 3). Probabilistic approaches are thus likely to
be inadequate for dealing with climate change uncertainty.

In recent years, non-probabilistic, so-called robust approaches
and their application in natural resource management (NRM)
under climate change uncertainty have attracted research (e.g.,
Knoke et al. 2016; Daron 2015; Hadka et al. 2015), especially in
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the field of water management. Robust approaches and their
applications are thoroughly discussed in Sects. 4, 5, and 6.
Generally, they set themselves apart from optimization ap-
proaches by seeking solutions that “satisfice’” (adapted from “sat-
isfying” and “‘sufficing”) performance requirements over a wide
range of future scenarios instead of finding a single solution that
performs best for a single PDF. Robust approaches are often
applied through analytic and highly computational frameworks
that have the advantage of exhaustively exploring the decision
space. Until now, these frameworks have very sparsely, and not
thoroughly, been applied to climate change uncertainty in forest
management (e.g., Knoke et al. 2016; McDaniels et al. 2012).
Yet, we see a great potential as these frameworks have been
successfully applied to handle climate change uncertainty in oth-
er fields of NRM.

The aim of this research is thus to assess the potential
transferability of robust decision-making frameworks from
NRM to forest management decision problems that are affect-
ed by deeply uncertain climate change. To achieve this goal,
we (i) highlight different levels of uncertainty and existing
approaches to deal with each level, (ii) review robust
decision-making approaches that particularly deal with deep
uncertainties and outline their different frameworks applied to
NRM under deep climate change uncertainty, (iii) provide a
simple hypothetical forest management decision problem
demonstrating the logic behind different robustness metrics
and their diverging recommendations, and consecutively (iv)
compare approaches to finding robust decisions in forest man-
agement with the robust decision-making frameworks applied
in NRM. Finally, we conclude and draw recommendations for
an application to forest management as well as pointing out
how the selection of RDM metrics depends on the attitudes
towards risk of decision makers, i.e., degree of the risk aver-
sion and availability of statistical information about uncertain
parameters, i.e., their PDFs.

2 Methods

To achieve the aims of this study and the steps outlined above,
we compiled an overview of robust decision-making ap-
proaches and their application in NRM, including forest man-
agement, based on an extensive systematic assessment in the
Web of Science database. Different combinations of three key-
words (Fig. 1) were used and 122 related studies were found
(see Online Resource Table 1). To make sure of capturing all
applications of robust decision-making approaches that have
possibly already been applied to forest management, we explic-
itly included forest* as a search term that was used interchange-
ably with environment* for some search combinations. While
some previously known approaches were included in the search
by name (Info-Gap Decision Theory (Info-Gap) and robust
decision making), this review might have neglected robust
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Forest* (forestry, ...)

Environment* (nature, AND

natural resources, ...)

Uncertain* (climate,
deep, severe, ...)

Risk* (climate,
hazard, damage, ...)

Climate* (change,
adaptation, ...)

Robust* (Info-Gap,
robust decision
making, ...)

AND
Decision*

Management*

Fig. 1 System of keyword combinations for literature research

decision-making approaches that were not referred to as robust
in the title or abstract.

Based on our review results, we categorized uncertainty into
different levels and determined adequate methods of integrating
each level into decision making. This helped us to pin down deep
uncertainty as compared to other levels of uncertainty and to
outline adequate approaches on dealing with it in decision mak-
ing. Out of the approaches we encountered during our research,
we picked three frameworks that have been used for dealing
specifically with deep uncertainty. We compared them based
on the typology introduced by Herman et al. (2015). These three
frameworks are robust decision making (RDM), multi-objective
robust decision making (MORDM), and Information Gap
Decision Theory (Info-Gap). Even though Robust Optimization
is frequently applied in NRM under uncertainty, criticism regard-
ing its robustness under deep uncertainty has been raised, as its
uncertain values may be based on some form of likelihood or
probability distribution (Herman et al. 2015). Therefore, it was
not considered for application in forest management, even
though it is explained in Sects. 4 and 5 and included in the
quantitative literature overview. To demonstrate the impact of
robustness metric choice on robustness recommendations, we
chose a typical forest management decision problem under cli-
mate change uncertainty. The decision problem is hypothetical
and numbers were based on experience. Since the aim of this
decision problem was to demonstrate the logics and effects of
different robustness metrics and not to identify robust solutions to
the problem, we chose a limited number of climate scenarios and
predefined options. In practice, considering portfolios of tree
species instead of single tree species is recommended as diversi-
fication is a highly recognized strategy to deal with climate
change uncertainty (Knoke et al. 2005). The forest decision prob-
lem is defined by a situation in which a forest manager can
choose among four tree species for regeneration while being
uncertain about the degree of climate change, which is represent-
ed by a single climate factor x; instead of typical factors for
precipitation and temperature. The higher the climate factor, the
higher the one-directional change compared to today’s climate.
One species benefits from climate change by an increase in wood
production (Swinner1), tWo are compromised by a decrease in

wood production (St oser1> Stoserz) and one species is unaffected
(Stndifferent) bY climate change. The performance of each species
alternative is measured by the land expectation value (LEV)
(Faustmann 1849) in Euro per hectare. Climate change is repre-
sented by 10 future scenarios of x; representing a plausible range
of climate development. Even though a global sampling of the
uncertain parameter(s) is recommended, we use a small amount
of scenarios here for computational ease. The LEV of a species
depends on the climate indicator x; and two fixed parameters (p,
7). The linear equation is given by LEV; = p;+r,"x;. LEV;; for
each species under each climate scenario is given in Online
Resource, Table 2. Four robust metrics were applied which cor-
respond to those outlined in Table 1 and will be defined in Sect.
5.4. For metrics M1 and M2, we set a performance requirement
of LEV >470 €/ha. For metrics M2 and M3, we defined the best
estimate of climate change as ¥ = 2.5. M2 applies intervals on
each side of ¥ in a range [0.5, 5.0] in 0.5 steps (Online Resource,
Table 2). The uncertainty horizon (concept explained in Sect. 4)
is given by & When using M2, the decision-making process
resembles the Info-Gap; for the other three metrics, it resembles
the robust decision-making framework.

Finally, methods for finding robust decisions under climate
change uncertainty in forest management have been compared
to applications of the three analyzed RDM frameworks in
NRM under climate change uncertainty based on (i) what
decisions are made and how decision alternatives are identi-
fied, (i1) which uncertainties are considered, and (iii) how
robustness is measured.

For each of these steps, findings are discussed within each
paragraph. From all this information, we draw conclusions on
adequate robust decision-making methods for dealing with
deep uncertainty and the potential of applying these methods
to forest management under deep climate change uncertainty,
and give recommendations on the design.

3 Levels of uncertainty

In order to understand for which type of uncertainties robust
decision-making approaches are designed, this section
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Table 1  Robustness criteria used in the reviewed robust decision-making frameworks and related concepts
Regret-based Satisficing-based Satisficing-optimizing
Relative performance criteria Absolute performance criteria
Goal Minimizing the maximum deviation of an Maximize the fraction of scenarios in which an  Minimize the worst-case
alternative’s performance from estimated/best alternative meets performance criteria performance
performance across scenarios
Metrics Regret to best estimate scenario: candidate Global satisficing: fraction of scenarios of All constraints to the objective
alternative’s maximum performance deviation candidate alternative in which performance function have to be fulfilled
between best-estimate scenario and each other requirements are met over the uncertainty set
scenario (scenarios)
Regret to best performing alternative: maximum  Local satisficing: number of uncertainty intervals
performance deviation of best-performing from a best estimate outwards until candidate
alternative and candidate alternative for each alternative fails performance requirements
scenario
Related Savage’s minimax regret Radius of stability Wald’s maximin
concepts

Both regret-based and satisficing-based robustness criteria have two metrics each to quantify robustness. For explanations of Savage’s minimax regret,

Wald’s maximin and the radius of stability please refer to the text, Sect. 4

reviews different levels of uncertainty and adequate ways for
dealing with these.

Generally, uncertainty is a situation in which there is no
unique and complete understanding of the system to be man-
aged (Petr et al. 2014), due to a lack of knowledge.
Uncertainty can be quantified in various ways, depending on
the level of available knowledge.

Figure 2 distinguishes three levels of uncertainty and
shows different terms used in the literature for each level.
The levels are defined by decreasing knowledge or
consequently increasing ignorance and are based on findings
from Walker et al. (2003) and Walker et al. (2010). While
determinism, i.e., complete knowledge is unattainable, fotal
ignorance/unknown unknowns correspond to situations in
which we do not even know what we do not know and which
thus are probably impossible to deal with. For descriptions of
levels 1-3 uncertainties, refer to Walker et al. (2003) and
Walker et al. (2010).

While level 2 implies that probabilities can be assigned to
different possible future scenarios, under level 3, there is little
scientific basis for placing believable probabilities on scenar-
ios (Walker et al. 2010; Styczynski et al. 2014) and thus non-
probabilistic approaches are adequate. Level 3 can also take
on an even higher level of ignorance, where scenarios are not
known, i.e., we only know that we do not know (Walker et al.
2010) as these are events that lie outside of our expectations
due to a lack of experience. They are also referred to as Black
Swans (Taleb 2010). From now on, level 3 is referred to as
deep uncertainty, as that term is broadly used for this level of
uncertainty (Lempert et al. 2003b). Even though levels 1-3
uncertainties are unknowable at present, they may be reduced
over time when more and more information and evidence
become available. Whether that is possible depends on the
nature of an uncertainty. Two important distinctions in
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environmental system modeling are epistemic and aleatory
(Pasalodos-Tato et al. 2013). Epistemic uncertainty arises
through the imperfection of our knowledge and can be re-
duced through additional observations. Aleatory uncertainties
represent the randomness of nature but also the unpredictabil-
ity of social, economic, and cultural dynamics and cannot be
reduced through additional observations but can be represent-
ed through a frequency distribution (Walker et al. 2003) or
stationary statistical variability (Beven 2016) that has an as-
sumed level of certainty. In order to deal and possibly reduce
uncertainty, it is important to identify the sources of the un-
certainty (Beven 2016). Major sources of uncertainty in
model-based decision support are (1) the model structure,
(2) the input data, (3) the parameters, and (4) the outcomes
of the model, which equals the accumulated uncertainty of 1
to 3 (Maier et al. 2016; Walker et al. 2003). When identifying
the sources of uncertainty, reducing the epistemic uncertainty
through additional observations can help to move more to-
wards aleatory residual errors.

Climate change uncertainty is characterized as deep for a
few reasons. Firstly, many factors influence the magnitude of
climatic change, such as future increases in atmospheric
greenhouse gases (Keenan 2015), which again largely depend
on policies, market, and social factors. Secondly, despite ad-
vances in climate modeling, the accuracy of these models to
predict future climate change is limited (Mortazavi-Naeini
etal. 2015) due to our imperfect knowledge of the functioning
of the climate system (epistemic uncertainty), possible occur-
rence of regime shifts due to positive feedback mechanisms in
the climate system (Bonan 2008), natural variability (aleatory
uncertainty), and the resulting diverging expert views. Also,
climate change uncertainty cannot be observed historically as
“future climatic conditions may result in system states that
have never previously existed” (Keenan 2015, p. 157) and
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Range of plausible
scenarios

1 Total ignorance/ |
I “unknown unknowns“ |
e - - - o - o . -

Level 3: Severe/ Knightian/
global/ deep/ strong
uncertainty/ recognized
ignorance/ “known
unknowns”

Non-probabilistic

Several predefined
scenarios

uncertainty

Type of Scenario

Level 2: Well-defined/
local/ weak/ scenario

Probabilistic

Level 1: Statistical

Single scenario uncertainty

I Determinism

b o e -

E Single point estimate with
confidence interval

Auren@oun jo uonesyuUEND

|
Complete knowledge

Fig. 2 Selection of terms to describe different degrees of uncertainty and
concepts to deal with the respective degree of uncertainty regarding its
depiction in scenarios and its quantification. The degrees of uncertainties
are ordered according to the availability of knowledge. This framework is
adapted from Walker et al. (2003) and Walker et al. (2010). The
classification of climate change uncertainty is highlighted in green.

thus drawing probabilities based on historic data is critical
(Schou et al. 2015). These factors inhibit an accurate predic-
tion of the future climate.

Considering all of the above, it can be concluded that deep
uncertainty of climate change should be considered in deci-
sion-making using a range of plausible scenarios without
assigning probabilities or a single probability density function
to them. The approaches to deal with level 1 and level 2 are
thus inadequate for dealing with level 3 uncertainty. Besides
climate change uncertainty, it is important to take into account
or at least be aware of all other possible uncertainties and their
sources, i.e., where in the model they are located (model struc-
ture, input data, or model parameters chosen).

4 Concepts of robust decision-making

Having defined deep uncertainty and identified non-
probabilistic approaches as being adequate to deal with i, this
section introduces robust decision-making concepts. The def-
initions of robustness we are exploring capture the idea that a
decision alternative performs satisfactorily over many plausi-
ble future scenarios (e.g., Hall et al. 2012; Mortazavi-Naeini

Degree of uncertainty

>,
“1

Complete ignorance

Terms: statistical uncertainty/scenario uncertainty (Walker et al. 2010);
well-defined (Herman et al. 2014); local (Beh et al. 2015); weak
(Styczynski et al. 2014); Knightian (Matrosov et al. 2013; Knight 1921;
Hallegatte 2009; Herman et al. 2014); and severe/deep (Hall et al. 2012;
Mortazavi-Naeini et al. 2015)

et al. 2015) instead of being optimal under one expected sce-
nario. Robustness requires that no probabilities are attached to
these future scenarios. Yet, there are different nuances of this
main idea, which are summarized in Table 1. First of all,
robustness can either be based on a satisficing or regret mea-
sure. A decision maker that looks at robustness from
satisficing point of view seeks a decision alternative that meets
his or her performance requirements over the range of plausi-
ble future scenarios. With a regret view, a decision maker
wants to minimize the regret of choosing incorrectly, where
regret is the loss in performance. This regret could be the cost
of assuming the wrong future scenario or the cost of choosing
the wrong alternative. In the first case, maximum regret of an
alternative is the difference between its performances in the
best estimate future scenario and in the scenario where it
shows the worst performance, for example, as applied by
Kasprzyk et al. (2013). In the second case, the regret of an
alternative in a certain future scenario is the difference be-
tween its performance and the best-performing alternative,
as proposed by Savage (1951). Maximum regret of an alter-
native is its highest regret achieved over all future scenarios.
In both regret cases, the alternative with the smallest maxi-
mum regret is the most robust.
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A striking difference in the satisficing and regret way to
robustness is that satisficing relates robustness to the fulfill-
ment of performance requirements over the range of plausible
scenarios, while regret relates an alternative’s performance to
either the expected performance or the best alternative.
Lempert and Groves (2010) therefore distinguish these two
approaches as using absolute performance criteria (satisficing)
and relative performance criteria (regret) for identifying ro-
bustness. Similar to satisficing, a satisficing-optimizing ap-
proach optimizes a constrained objective function. An alter-
native is robust, if for a set of uncertain parameter values
(future scenarios), the constraints (performance requirements)
are fulfilled. The alternative that performs best in the worst-
case scenario is chosen (based on Wald’s maximin rule, which
seeks to minimize the maximum loss; Wald 1939). The set of
uncertain parameter values can have different shapes (e.g.,
box, ellipsoid) (Ben-Tal et al. 2009), which thus also has an
effect on what the worst-case scenario is and thus how robust-
ness is defined.

Satisficing-based robustness can further be subdivided into
the concepts of global and local satisficing (Hall et al. 2012)
(illustrated in Fig. 4). Global satisficing uses a measure similar
to the domain criterion (Starr 1963). While the domain crite-
rion quantifies the volume of the uncertainty space in which
the decision maker’s performance requirements are met, the
global satisficing metric measures the fraction of all plausible
future scenarios (result of sampling the plausible ranges of
each uncertain factor) that meet the requirements. The higher
the fraction, the more robust an alternative is. Yet, a truly
robust solution has to fulfill the performance requirements
over all plausible future scenarios. In contrast, local satisficing
does not take into account the whole uncertainty space but
uses the concept of an uncertainty horizon to quantify robust-
ness, an approach developed by Ben-Haim (2006). This ap-
proach is embedded in the Info-Gap which is further analyzed
in the following section. The uncertainty horizon is the num-
ber of deviations from an uncertain parameter’s best estimate
that are allowed before the performance requirements are no
longer fulfilled (Fig. 4). Local satisficing thus samples out-
ward from a best estimate instead of sampling the whole un-
certainty space which is basically the well-established concept
of radius of stability (Sniedovich 2012). Local satisficing has
been criticized as inadequate under deep uncertainty as under
deep uncertainty, a best estimate cannot be made and is likely
to prove very wrong (Sniedovich 2012).

Other robustness criteria are Safety First and Limited
Degree of Confidence (Mclnerney et al. 2012). Both balance
the goal of maximizing expected utility with minimizing
worst-case performance. Limited Degree of Confidence
works according to Wald’s maximin principle (Wald 1939)
whereas Safety First maximizes expected utility after
guaranteeing that utility in the worst-case scenario exceeds a
performance requirement. Yet, both criteria partly rely on an
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expected value and thus include probabilities. They will there-
fore not be considered further for application under deep un-
certainty in this paper.

5 Robust decision-making frameworks

In order to support exploring the robustness of decision alter-
natives, different robust decision-making frameworks have
been developed. RDM, MORDM, and Info-Gap are the most
recognized of them. RDM was developed by Lempert et al.
(2003a) as a generic method specifically for conditions of
decision-making under deep uncertainty. MORDM combines
RDM with many objective evolutionary optimizations and
visual analytics, developed by Kasprzyk et al. (2013) for en-
vironmental decision-making under deep uncertainty and has
been advanced by Hadka et al. (2015) as an open source
framework. Info-Gap was developed by Ben-Haim (1985)
first for the application to mechanical engineering for un-
known spatial distribution and later on put forward as a gener-
ic method (Ben-Haim 2006). In the meanwhile, Info-Gap has
found a few applications also in environmental management
under climate change uncertainty (e.g., Hall et al. 2012;
Matrosov et al. 2013).

Robust Optimization (RO) was originally developed by
Ben-Tal et al. (2009) as a framework that seeks robust solu-
tions which both remain nearly optimal and satisfy perfor-
mance constraints across uncertain future scenarios. It has
been successfully used for multi-objective decision-making
problems under uncertainty in natural resources management
(e.g., Gabrel et al. 2014; Knoke et al. 2016; Palma and Nelson
2009). Today, a diversity of RO techniques is applied that
differ in approaches to robustness and the quantification of
uncertainty. Deb and Gupta (2006), for example, advanced
multi-objective RO, which optimizes with multivariate con-
straints on the deviation of an alternative from an expected
performance, which is a probabilistic approach. Due to this
diversity, RO’s suitability for deep uncertainty cannot be gen-
eralized and we therefore decided to not include it in the fol-
lowing framework comparison.

Criticism has been raised that Info-Gap, similar to RO, is
not adequate for use under deep uncertainty as it uses local
robustness (as described in Sect. 4) and therefore makes a best
estimate of uncertain parameters (Sniedovich 2012). We still
integrate it in our framework comparison to highlight the
differences and as its robustness metric is often applied
within the RDM and MORDM framework in order to
compare different views on robustness.

These three frameworks have been extensively described
and compared by Herman et al. (2015) based on the basic
properties of these frameworks, namely (1) generating deci-
sion alternatives, (2) developing states of the world, i.e., future
scenarios, (3) measuring robustness of decision alternatives,
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and (4) identifying which uncertain parameters control perfor-
mance and how strongly. All three frameworks start with a
problem formulation. The sequential analysis steps that the
three frameworks follow and which they may approach in
different ways are summarized in Fig. 3 and explained in
detail below.

5.1 Problem formulation

Before starting any analysis, all relevant information should
be assembled in the decision problem definition. A recom-
mendation is the so-called XLRM-framework (Lempert
et al. 2003a), which requires defining (1) the exogenous un-
certainties (“X”), i.e., factors that are outside of the control of
the decision-maker such as climatic change or its effects on
the environment; (2) levers (“L”), i.e., decision variables such
as thinning frequency and intensity that together make up a
decision alternative; and (3) relationships (“R”), i.e., equations
or models that link the decision variables with (4) measures

Problem formulation

RDM

Predefined
Result of

Generating alternatives

(optimization,
sampling, etc.) and
possibly further

States of the world

Robustness measures Satisficing criteria:

Regret-based criteria:

T

(“M”), i.e., variables that measure the performance of an al-
ternative and are a basis of comparing the desirability of each
alternative, e.g., revenue or carbon storage.

5.2 Generating decision alternatives

The next step of the decision analysis is identifying alterna-
tives among which the decision makers have to choose and
which will be analyzed for robustness. Decision alternatives
are combinations of different levels or options of each lever L.
They can either be predefined or newly created. RDM and
Info-Gap often use predefined alternatives (Herman et al.
2015), while MORDM always creates alternatives through a
multi-objective optimization process. Using predefined alter-
natives may be interesting if the current strategy, or modifica-
tions to it, should be evaluated for robustness, which can also
be created as a result of an unrobust current strategy (Lempert
and Groves 2010). Yet, using a set of alternatives that are
state-of-the-art or that have been identified by stakeholders

Uncertainties (well-characterized/deep)

Decision alternatives

Quantitative relationship of actions to outcomes/simulation model
Performance measures

computational search

selection criteria (e.g.
lowest median regret

MORDM Info-Gap
Selection from Pareto- - Predefined
approximate set of multi- - Result of

attributive optimization

Plausible ranges of uncertain factors + Latin hypercube
sampling to create a set of scenarios

Percentage of scenarios in which (a) certain
performance requirement(s) are met

- Difference in performance between candidate
alternative and expected performance in a scenario
- Difference in performance between candidate

alternative and best performance in a scenario

Robustness controls/
sensitivity analysis

Identify key uncertainties and trade-offs between
objectives using scenario discovery algorithm

computational search
(optimization,
sampling, etc.) and
possibly further
selection criteria

Fixedintervals of deviation
from best estimate of
uncertain factors

Satisficing criteria:
Number of uncertainty
intervals until alternative
fails

Not necessary as
“uncertainty horizon”
already gives information
on impact of uncertain
factors

Fig. 3 General steps of the three robust decision-making frameworks and comparison of these frameworks on the basis of these steps. Steps adapted

from the typology of Herman et al. (2015)
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in a previous analysis (Matrosov et al. 2013) may fail in find-
ing robust solutions. Instead, taking into account the whole
decision space by generating new alternatives via computa-
tional search or strategy tables (McDaniels et al. 2012) in-
creases the chance of finding robust alternatives that may also
be a surprise. Computational search may include Latin
Hypercube Sampling, a total enumeration of the decision
space (all possible combinations of the decision levers (L))
or (multi-objective) optimization (Herman et al. 2015).
MORDM performs multi-objective optimization using
multi-objective evolutionary algorithms to find a set of solu-
tions that are Pareto-optimal under an expected future scenario
(best estimates of the uncertain parameters). Within our
reviewed literature, we did not find an application of Info-
Gap using multi-objective optimization for generating deci-
sion alternatives. Theoretically, such an application would be
possible; indirectly, it has already been applied within
MORDM by using a robustness metric, which is similar to
the Info-Gap approach, on a set of Pareto-optimal alternatives
(Hadka et al. 2015).

5.3 Generating states of the world

In order to evaluate the performance and robustness of one strat-
egy or several alternatives under uncertain future conditions, the
frameworks generate plausible future scenarios from the deeply
uncertain parameters, often called states of the world (SOWs). It
is important to identify and sample as many uncertain parameters
as possible in order to later on proof which of them are influential
and which can be neglected. The frameworks use two distinct
approaches to generating SOWs: While RDM and MORDM
perform a “global” sampling of the uncertain factors over their
plausible ranges, Info-Gap samples radially outward from an
expected SOW until the predefined performance requirements
are not met anymore. Figure 4 demonstrates the difference,
where « is the parameter of the deviation step from the expected

Fig. 4 Difference between local
and global satisficing metrics.
The local satisficing metric
measures the uncertainty horizon
(number of o) outward from the
best estimates (bullet point) of the
(in this example) two
uncertainties until a certain
alternative fails performance
criteria (blue interval). The global a
satisficing metric measures the
percentage of scenarios (result of
global sampling of the plausible
uncertainty ranges) in which an
alternative satisfies performance
criteria (black dots)

Uncertainty 2

Local satisficing metric

SOW, and the total number of samples until performance fails is
called the uncertainty horizon. All uncertain parameters are sam-
pled outwards simultaneously. RDM and MORDM usually use
Latin Hypercube Sampling to create a predefined number of
SOWs, generally 1000—10,000.

5.4 Measuring robustness

Having defined the decision alternatives and depicted uncer-
tainty as described above, the robustness of the alternatives to
the uncertainties can now be measured. The analyzed frame-
works offer four different robustness metrics which mirror the
four concepts of robustness: global and local satisficing as
well as two regret measures. These metrics have been de-
scribed in Sect. 4 and in Table 1. The difference between
global and local satisficing is in addition illustrated in Fig. 4.

Info-Gap exclusively uses the local satisficing metric. In
RDM, the decision makers can decide between using the glob-
al satisficing metric and either of the two regret metrics, de-
pending which robustness concept they prefer for a certain
context. Lempert and Groves (2010), for example, only apply
the global satisficing metric, Hall et al. (2012) exclusively
regret to the expected performance. The open-source tool
OpenMORDM, which provides all analytical steps and visu-
alizations of MORDM, allows the application of all four ro-
bustness metrics, also including Info-Gap’s local satisficing
metric. Hadka et al. (2015) demonstrate that comparing all
four metrics provides more insights and a more informed
way of robust decision making.

5.5 Robustness controls

As a final step, RDM and MORDM identify ranges of the un-
certain values (i.e., scenarios) in which the candidate alterna-
tive(s) do not meet performance criteria, defined by the decision
makers. The uncertain parameters most responsible for failure,

Global satisficing metric
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and thus those that most control robustness, are identified. This
process helps to create new alternatives that are more robust than
those initially considered (Matrosov et al. 2013). Usually, the
Patient Rule Induction Method (PRIM) algorithm (e.g., in
Lempert and Groves 2010) is applied in RDM to identify vul-
nerable parameter ranges, i.c., that do not fulfill a predefined
performance requirement, but Lempert et al. (2008) have also
compared its performance to Classification and Regression
Trees (CART), another sensitivity analysis, and found neither
approach superior. PRIM visualizes these vulnerable ranges for
each parameter, i.c., where an above average number of SOWs
are vulnerable. CART, on the other hand, divides the uncertainty
space into less and more frequent vulnerabilities but is visually
less interpretable than PRIM. While the developers of MORDM
(Kasprzyk et al. 2013) only use PRIM, OpenMORDM also of-
fers the option to use CART as they find it complementary. In
addition, they include sensitivity analyses that do not identify
vulnerable ranges like PRIM and CART, but rank the uncertain
factors by their influence on performance metrics (Hadka et al.
2015). These include among others ANOVA and Sobol sensitiv-
ity indices. Info-Gap does not apply a sensitivity analysis to the
uncertain parameters, because the uncertainty horizon already
indicates the magnitude of impact each uncertain parameter has
on the failure of an alternative.

5.6 A simple application to forest management

Depending on the degree of climate change x;, i.e., the climate
change scenario, different tree species have a higher LEV and
are thus preferred (Online Resource, Fig. 4). The example
shown (see Table 2) illustrates that the different robustness
metrics do not necessarily lead to the same robust species
decisions. M1 represents RDM’s satisficing-based approach
for which only with a performance requirement of LEV >4.7
can a robust alternative be found (Si,gifferent)- M2 represents
Info-Gap’s local robustness metric and M3 and M4 RDM’s
regret metrics with regard to the worst-case and the best alter-
native, respectively. Robustness does not only depend on the
robustness metric, but it can also depend on the choice of
performance requirement (metric M1 and M2), expected cli-
mate scenario (M2 and M3), plausible range of the climate
parameter (M1, M3 and M4), and the set of alternatives (M4).
In this example, a slight change in the performance require-
ment turns S, gifrerent from the most robust to the least robust
choice for the two satisficing metrics M1 or M2 (see Table 2).
It is also clear that the optimal species under the expected
climate scenario rarely coincide with any robustness recom-
mendation. Overall, it has to be taken into account that this is a
very simplistic forest management decision example that does

Table 2 Comparison of the performance (LEV in 100€/ha) of the four tree species under the four robustness measures M1-M4 and expected
performance under different assumptions regarding the performance requirement (minimum LEV) and an expected climate change of X = 2.5 (% is

predefined, x is a factor without units)

Performance
M1 M2 M3 M4 under X
performance require- % scenarios a worst case % worst-case % LEV (100
ment LEV24.7 that meet deviation deviation €/ha)
x=2.5 performance from esti- from best
requirements mated per- performance
formance
Swinner1 80% 2 47% 5.90
Sloser1 40% 5.00
Stoser2 60% 15% 56% 4.85
Sindifferent 100% oo 0% 47%
performance
requirement LEV24.9
x=2.5
Swinner1 70% 1 47% 5.90
Stoser1 50% 40% 5.00
Stoser2 60% 15% 56% 4.85
Sindifferent 0% 47%

M1 measures the percentage of climate scenarios (out of 10 scenarios) that meet the performance requirement, while M2 measures the maximum
departure from the expected climate change (= uncertainty horizon &, which is the number of 0.5 steps from %) that is allowed before a species fails the
performance requirement. M3 calculates the percentage deviation of the performance in the worst-performing climate scenario from performance under %
and M4 the maximum percentage deviation of performance of the best performing species compared to the examined species throughout the climate
scenarios. The most robust species are written in bold, the least robust in italic and gray. Formulas for performance are given in Sect. 2; parameter values

are in Online Resources, Table 2
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not consider different stakeholder preferences, further
objectives, and other uncertain parameters besides climate
change that might have an impact on wood production.
Also, the option of regenerating a mix of species, as Crowe
and Parker (2008) or Knoke et al. (2008), who use a portfolio
approach, is not considered.

6 Results

This section first gives a quantitative overview over the ap-
proaches used in NRM for making a robust decision. Next, a
selection of case studies is compared that apply one of the
above outlined robust decision-making frameworks under
deep climate change uncertainty. From these, conclusions
are drawn for the application of these frameworks to forest
management under climate change uncertainty.

6.1 Quantitative overview

Scenario analysis was the most applied method to find so-called
robust solutions under deep uncertainty (Online Resource,
Fig. 1). Scenario analysis is not a robust approach by itself. It
uses a small number of prespecified scenarios, which often rep-
resent a low, high, and no change scenario, instead of creating
scenarios over the uncertain parameter ranges like (MO)RDM
and Info-Gap. Some papers simply analyzed the variance in per-
formance of an alternative solution between some predefined
scenarios (e.g., Robinson et al. 2016) or applied metrics such
as minimax (regret) (e.g., Perry 2013 and Prato 2015) or mini-
mum performance requirement, e.g., Ogden and Innes (2007),
which resemble the robustness metrics discussed above. Despite
the simplicity of scenario analysis compared to RDM, MORDM,
and Info-Gap, the limited amount of scenarios cannot adequately
cover all interactions between a number of different parameters
(Kasprzyk et al. 2013). More case studies explicitly applied at
least one of the robust decision-making frameworks RDM,
MORDM, and Info-Gap or RO (also in combination with
Modern Portfolio Theory). Resilience thinking was also often
mentioned as a robust approach to decision making. Yet, it is
rather a concept than a framework and has a number of different
definitions (Seidl 2014). Out of the robust decision-making
frameworks, Info-Gap was applied by far the most within the
selection of case studies (Online Resource, Fig. 1), followed by
RDM and RO. MORDM and RO, combined with Modern
Portfolio Theory, have been barely applied. Yet, a look at the
distribution over the years (Online Resource, Fig. 1) shows that
Info-Gap has not been applied to NRM so much in recent years,
but RDM and even more recently MORDM have experienced
an increase.

Most case studies as well as most robust decision-making
frameworks dealt with decision problems in water manage-
ment (see Online Resource, Fig. 2). Forest management was
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also strongly represented, because we explicitly searched for
robust applications in this area alongside natural resource
management in general. Yet, applications of robust decision-
making frameworks were limited to Info-Gap and a simplified
RDM which was applied specifically for decisions on climate
change adaptation measures (McDaniels et al. 2012).

Only slightly more than half of the forest management case
studies considered climate change uncertainty. Out of these
most looked exclusively at climate change as an uncertainty
while fewer also took into account other uncertainties (Online
Resource, Fig. 3).

6.2 Framework applications to climate change uncertainty

This section presents case studies in forest management that
analyzed the robustness of decisions under climate change
uncertainty (overview in Table 3) in order to identify aspects
that should be considered for a potential application of
(MO)RDM. Also, lessons that can be learned from the appli-
cation of (MO)RDM to other contexts in NRM under climate
change uncertainty are drawn from a selected number of case
studies (listed in Online Resource, Table 3). Even though
RDM and MORDM as outlined above have not been applied
to forest management decisions yet, some studies have applied
what could be called a simplified RDM (McDaniels et al.
2012; Ogden and Innes 2007) or a similar approach (Seidl
and Lexer 2013; Seidl et al. 2011) to adaptive forest manage-
ment under climate uncertainty. McCarthy and Lindenmayer
(2007) applied Info-Gap to species selection and Crowe and
Parker (2008) used Modern Portfolio Theory to find robust
species portfolios. The two simplified RDM mainly set them-
selves apart from a full RDM approach by (1) using expert
judgment instead of simulation models to predict outcomes
for each alternative; (2) considering a low, high, and no
change scenario of the uncertain climate change parameters
instead of a total enumeration of plausible parameter ranges;
and (3) not identifying key uncertainties unlike the scenario
discovery in (MO)RDM. This makes them less computation-
ally complex and also does not require an extensive amount of
data and simulation models which makes them more practica-
ble but possibly less reliable. Nevertheless, using predefined
scenarios does not allow identification of threshold values for
the deeply uncertain parameters that lead to performance fail-
ure of an alternative (Herman et al. 2015). Also, the degree of
robustness cannot be determined as precisely as in RDM.

6.2.1 Decision problems

Out of the considered forest management studies, most aimed
at finding an entire climate adaptive strategy composed of
different decision levers (species composition, harvest, silvi-
cultural measures) which were always discrete variables
(prespecified levels or binary (yes/no)). McCarthy and
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Lindenmayer (2007) and Crowe and Parker (2008), on the
other hand, exclusively looked at species choice, the first
study as a binary choice between an exotic and a native
species and the second as a portfolio of different seed
sources. Decision alternatives were either prespecified or
newly generated. Similar to Lempert and Groves (2010)
who applied RDM in water management, Seidl and Lexer
(2013) first analyzed the current strategy for vulnerabilities
in order to then deduct adaptive measures to specifically re-
duce them. Lempert and Groves (2010) additionally allowed
for a change in alternatives after the occurrence of a specific
signpost. Yet, unlike Lempert and Groves (2010) and the usual
RDM process, the adaptive strategies were not tested for ro-
bustness. McDaniels et al. (2012), on the other hand, created a
set of forest management strategies with a strategy table com-
bining different levels of different silvicultural measures.
While a strategy table may be interesting when the decision
levers each only have a small amount of discrete levels(e.g.,
the harvest volume has only three levels) and the number of all
possible combinations is small, using multi-objective optimi-
zation makes sense especially when continuous levers are
used (e.g., a range of possible harvest volumes). Hadka and
Reed (2015), for example, have 100 decision levers: the al-
lowable pollution into a lake for every one of the next
100 years, which could be within a certain range and may
differ every year. In forest management, this could
correspond to deciding on, for example, basal area after
thinning every 5 years over the entire rotation period.
Similar to Crowe and Parker (2008) who use Modern
Portfolio Theory to create portfolios of seed sources that can
adapt to climate change by minimizing expected variance and
covariance over different climate scenario, species portfolios
could also be created using multi-objective optimization and
then tested for robustness. This was done by Kasprzyk et al.
(2012) who applied MORDM to water management portfoli-
os. For each lever within their portfolio, they indicated a plau-
sible range of values that the lever could have.
Correspondingly, species portfolios could contain a set of tree
species, the range indicating the proportion of each tree
species.

6.2.2 Uncertainties

Most of the forest management studies exclusively considered
climate change uncertainty, which was represented by the two
metrics temperature and precipitation, with the exception of
Mclnerney et al. (2012) who used the mean interval between
wildfires as a metric for climate change uncertainty. The un-
certain effect, instead of climate change itself, has been con-
sidered in robust decision frameworks for example through
perturbation of natural hydrology (Matrosov et al. 2015) or
water inflow multipliers (Herman et al. 2015). Yet, the results
of Seidl and Lexer (2013), who also looked at the effects of

@ Springer :i
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social uncertainty (relative importance of sustainable forest
management objectives), illustrate the importance of consid-
ering other uncertainties that might have an effect on the per-
formance of a strategy. Herman et al. (2015) even found that a
socio-economic parameter controlled robustness more than
climate change in a water management problem. Socio-
economic parameters like demand, prices, and capacity (e.g.,
Kasprzyk et al. 2013; Herman et al. 2015) might also be im-
portant to consider in forest management. Climate change
uncertainty was, with exception of Info-Gap, considered
through three to five predefined scenarios. Yet, creating sce-
narios through combining values within the uncertain ranges
of each factor has the advantage of a more thorough vulnera-
bility assessment and robustness measure as outlined above.

6.2.3 Measuring robustness

Measuring the robustness of an alternative first requires mea-
suring its performance under the uncertain scenarios, i.e., how
well it fulfills the objectives. Since forest management serves
multiple purposes, taking into account different economic,
ecological, and social performance metrics should at least be
evaluated. The case studies that considered a multi-faceted
climate adaptation strategy took into account ecological and
socio-economic factors (see Table 3). Seidl and Lexer (2013)
and Seidl et al. (2011) subdivided these metrics into those that
measure sensitivity to climate change or adaptive capacity.
The species choice case studies only had a single performance
metric: the net present value of timber yield (McCarthy and
Lindenmayer 2007) or the adaptive growth variation between
two seed sources (Crowe and Parker 2008). The performance
was either measured through ecosystem models or expert
judgment (McDaniels et al. 2012; Ogden and Innes 2007).
The simulation models need to capture the performance met-
rics, yet social factors especially may be hard to depict in a
model. In which situations expert judgments may be more
beneficial than simulation models, especially regarding com-
putational ease and integration of social factors, needs to be
explored.

Seidl and Lexer (2013) and Seidl et al. (2011) measure
robustness by the variance in performance between three cli-
mate change scenarios. Yet, they measure overall performance
by weighing the performance metrics which prohibit looking
at the trade-offs among them—an important benefit of
(MO)RDM. McDaniels et al. (2012), in turn, also look at the
performance for each objective in each scenario. Ogden and
Innes (2007) come the closest to RDM’s global satisficing
metric, since an alternative has to fulfill minimum perfor-
mance requirements in every scenario in order to be called
robust. Yet, in all cases, robustness is measured over three
scenarios instead of the typical 10,000. Even though these
three scenarios include the low and high end of plausible
climate change, they do not measure robustness and
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vulnerability as precisely as indicated previously. The global
satisficing robustness metric was applied in most NRM case
studies under climate change uncertainty and is also highly
recommended for forest management, since in this way, min-
imum performance requirements are assured. For example, in
forest management, a minimum annual cut in younger forest
stands is set to safeguard necessary thinning activities in forest
management plans. In particular, in contexts in which failing
these requirements may lead to catastrophic situations, e.g., an
irreversible lake eutrophication (Lempert and Collins 2007),
setting thresholds is crucial.

7 Conclusions and recommendations

Robust decision-making processes appear to be highly recom-
mendable for forest management decision problems under
climate change uncertainty as these are mostly characterized
by long decision horizons as well as inflexible systems.
Climate change uncertainty has been identified by many stud-
ies as a deep uncertainty which should not be treated with a
single probability density function but with robust approaches
as defined in this study.

We first draw general conclusions on the suitability of the
reviewed frameworks and robustness metrics for dealing with
deep uncertainty before giving recommendations for an appli-
cation to forest management.

Fig. 5 Matrix for the allocation
of robustness metrics according to
the required knowledge about the
probability density function of the
uncertain parameter(s) and the
risk aversion of the decision
maker(s). For definitions of the
metrics, refer to Table 1. PDF
probability density function

HIGH

The review of RDM, MORDM, and Info-Gap has raised
the question as to which approaches truly deal with deep un-
certainty in an appropriate way and how robustness is cap-
tured. In particular, the use of best estimates of the uncertain
parameter values seems to be in contradiction to the concept of
robustness. Best estimates are used in robust decision-making
frameworks in three ways. In MORDM, they are used to find a
set of Pareto-approximate solutions. They are also used to
measure the regret to the best estimate scenario, and Info-
Gap measures robustness outward of a best estimate.
Applying best estimates to find a set of candidate alternatives
does not directly infringe the concept of robustness, as its
purpose is to narrow down the entire decision space to a
high-performance and manageable set of alternatives. In case
none of the optimal solutions are robust, non-optimal solu-
tions can still be considered for robustness analysis. The ap-
plication of best estimates for the robustness metrics is more
questionable since it directly influences the robustness judg-
ment. Its application under deep uncertainty, especially in
Info-Gap, has therefore been criticized in the literature
(Singh et al. 2015; Sniedovich 2012; Matrosov et al. 2013;
Maier et al. 2016). Thus, using a robustness metric that does
not require making best estimates within (MO)RDM may be
most suitable under deep uncertainty, as pointed out below.

Based on the insights of this review, Fig. 5 summarizes
recommendations for the use of robustness metrics depending
on availability of knowledge about probability density func-
tions of uncertain parameters and the risk aversion of decision
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makers. In situations of little knowledge, i.e. deep uncertainty,
only the satisficing and alternative-based regret (MO)RDM
are recommendable. A high risk aversion is here equated with
basing the decision on the performance in the worst-case sce-
nario or maximizing the number of scenarios in which perfor-
mance is sufficient. All metrics that are partly based on best
estimates suggest that decision makers are less risk-averse
than when entirely basing the decision on the worst-case sce-
nario. Info-Gap is only recommendable for decision makers
for which lack of knowledge and risk-aversion are both me-
dium, e.g., for timber price uncertainty in forest management.

Decision problems in forest management under climate
change uncertainty which could benefit from using
(MO)RDM are not only (i) multi-faceted adaptive strategies
that comprise a portfolio of measures such as species compo-
sition, harvest intensity and rotation length, and fire and pest
management but also (ii) only single adaptive measures. RDM
is especially suitable if predefined strategies or measures are
evaluated. For example, the current management strategy
could be evaluated for vulnerabilities. This strategy can then
be adjusted to specifically target at reducing these vulnerabil-
ities and thereby increasing robustness. Also, if the decision
variables are discrete (e.g., harvest volume: increase, decrease,
or no change), alternatives should rather be created through a
total enumeration of the decision space rather than using
multi-objective optimization. MORDM, on the other hand,
is especially suitable if the decision levers are continuous,
e.g., harvest volume could take any value within a certain
range so that a high-performance selection of alternatives
can be generated using the ranges of each decision lever.
This does not have to be a strategy composed of different
measures but could also be a measure that has to be taken at
certain intervals over time, e.g., how much volume is thinned
every 10 years over a whole rotation period.

Climate change uncertainties that are relevant to forestry
are as follows: the change in annual means and yearly distri-
bution of light, temperature, precipitation, and CO,-content in
the atmosphere. This is also an uncertainty in the effects of
climate change, e.g., CO,-content on growth (Jacobsen and
Thorsen 2003) or the impact on wildfire and pest occurrence.
As forest management decisions are also subject to other un-
certainties such as timber prices and demand, as well as polit-
ical decisions, it is crucial to also consider those uncertainties
that might have an impact on the performance of a decision
and analyze their individual impact on the performance failure
of alternatives. Assumptions may be wrong and the impact of
some uncertainties under- or overestimated. Next to the uncer-
tainties, the choice of performance and robustness metrics
may impact the verdict on how robust an alternative is. Due
to the multi-objective nature of forest management, perfor-
mance should not be measured by only a single metric, but
ideally consider both ecological and socio-economical met-
rics. Examples are given in Table 3. Forest management often
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sets minimum performance requirements in order to stay sus-
tainable, such as a minimum timber yields or basal area after
thinning. In this case, and building on the discussion above on
robustness metric choice, a global satisficing robustness met-
ric is an adequate choice as at least a minimum performance is
guaranteed over the defined uncertainty space. The current
study suggests a potential application of MORDM and
RDM to the field of forest management under climate change
uncertainty and provides general recommendations for its de-
sign. Hence, it offers a basis to further explore an application
of these two frameworks in order to test the benefits compared
to more traditional decision support methods such as optimi-
zation approaches or less computational methods based on
expert judgment. Specifically, the characteristics of forest
management decision problems have to be further explored,
and MORDM or RDM has to be adapted accordingly.
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