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Abstract
& Key message Pith-to-bark wood density profiling is inter-
esting in forestry science. By comparing it with the X-ray
method, this study proved that a fiber optic NIR spectrom-
eter with a high-precision displacement system could ac-
curately measure intra-ring wood density with a spatial
resolution of 0.5 mm.
& Context Most near-infrared spectroscopy (NIRS) studies for
wood density determination use samples that have been pul-
verized beforehand. Attenuation of ionizing radiation is still
the standard method to determine wood density with high
spatial resolution. However, there is evidence that NIRS could
be an accurate and affordable method for determining intra-
ring density in solid wood strips.
&Aims In this study, we researchwhether the results published
for intra-ring density predictions in wood can be improved
when calibrated with X-ray microdensitometry.

& Methods The measurements were made using a fiber optic
probe with a separation between measurement points of
0.508 mm in a range between 1200 and 2200 nm. A total of
4520 density points were used to create partial least squares
regression (PLSR). X-ray densitometry data were used as ref-
erence values. Twenty PLSR calibrations were randomly ex-
ecuted on 31 samples collected from 28 Pinus radiataD. Don
trees.
& Results Upon selecting 20 latent variables, the R2 value was
0.873 for the training group and 0.895 for the validation group,
while RMSEP values are 43.1 × 10−3 and 47.1 × 10−3 g cm−3

for the training and validation groups, respectively. The range
error ratio (RER) was 13.7.
& Conclusion The RER was high and almost in the range
suggested for quantification purposes. Results are superior to
wood density studies in the literature which do not employ
spatial resolution and to those found in studies using
hyperspectral imaging.

Keywords Wood rings . X-ray densitometry . Partial least
squares regression . Diffuse reflectance spectroscopy

1 Introduction

Near-infrared spectroscopy (NIRS) is an effective method for
predicting many properties of wood such as density, not only
in the laboratory but also in the field (Li et al. 2012).
Multivariate statistical methods such as principal component
analysis (PCA), principal component regression (PCR), and
partial least squares regression (PLSR) are generally used to
obtain prediction models (Tsuchikawa 2007). Neural net-
works are used to a lesser extent to obtain these models (Li
et al. 2012). The NIR/PLSR combination is the most widely
used to estimate wood density quickly, simply, and at low
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cost. To improve the prediction models, diverse data process-
ing techniques are used, including derivatives, multiplicative
scatter correction (MSC), and standard normal variate (SNV).
The most common quality criteria for measuring prediction
models are high coefficients of determination (R2) and mini-
mum values of root-mean-square error of prediction (RMSEP)
in a validation group consisting of an independent sample
group.

Most of the time, diffuse reflectance spectra are recorded in
samples that have been pulverized beforehand; fewwood den-
sity studies have been conducted at high spatial resolution or
at the intra-ring level (microdensity). In density estimations of
pulverized samples or wood chips, coefficients of determina-
tion of 0.80 have been achieved in the validation group for
Eucalyptus globulus Labill (Schimleck et al. 1999), 0.91 for
Eucalyptus delegatensis R.T. Baker (Schimleck et al. 2001),
0.84 for Pinus taeda L. (Mora et al. 2008), 0.85 for
Pseudotsuga menziesii (Mirb.) Franco (Acuna and Murphy
2007), and 0.84 for Eucalyptus spp. (Downes et al. (2011).
In non-pulverized samples of Eucalyptus grandis W. Hill ex
Maiden, Rosso et al. (2013) obtained a coefficient of determi-
nation of 0.74 with radial scanning of samples. Haddadi et al.
(2015) scanned a total of 107 cubic samples of 4 cm size in
Abies lasiocarpa Hook in a spectral range from 947 to
1637 nm (spectral resolution of 3.3 nm). The relationship with
gravimetric density showed a R2 and RMSEP of 0.81 and
39.5 × 10−3 g cm−3, respectively. Calibration of NIR to build
microdensity profiles was first carried out by Schimleck and
Evans (2003), who studied two increment cores to calibrate an
NIR/PLS model with a spatial resolution of 10 mm, using as
reference data those provided by the SilviScan-2. The NIR
range used was between 1100 and 2500 nm and they recorded
the diffuse reflectance spectra with a separation of 2 mm be-
tween consecutive points, in a moving window of 5 × 10 mm.
The authors obtained R2 values of 0.95 and 0.92 and RMSEP
values of 34.8 × 10−3 and 62.3 × 10−3 g cm−3 for each incre-
ment core. Jones et al. (2007) studied 15 radial wooden strips
cut from increment cores with five NIR devices from different
manufacturers. The spectral range varied from 350 to
2500 nm, depending on the equipment model. They studied
two different spatial resolutions: 2 and 5 mm. The best results
were obtained for a spatial resolution of 5 mm with R2 values
from 0.76 to 0.53 and RMSEP values from 61.5 × 10−3 to
97.1 × 10−3 g cm−3. In E. globulus, Wentzel-Vietheer et al.
(2013) studied 175 pit-to-bark cores at 1 mm interval in a
wave number range from 10,000 cm−1 (1000 nm) to
4000 cm−1 (2500 nm). Using data from the SilviScan-3 as
reference, the R2 and RMSECV obtained were 0.64 and
96.3 × 10−3 g cm−3, respectively. Downes et al. (2014) remade
the previous study using 266 pith-to-bark radial strips at 1 mm
interval and averaged at 5 mm in the radial direction.
Similarly, and using SilviScan-3 as reference, the R2 and
RMSEE obtained were 0.78 and 47.6 × 10−3 g cm−3,

respectively. Likewise, Rodrigues et al. (2013) used an FT-
NIR analyzer to measure a single pith-to-bark density, in a
range between 12,500 and 4000 cm−1 (800 to 2500 nm), with
a spatial resolution close to 1 mm. The authors obtained a
coefficient of determination value between the NIR/PLS
method and the X-ray method of 0.98 with a root-mean-
squared error of 22.7 × 10−3 g cm−3. However, they had to
remove 31 of the 83 points contained in the validation group.
On the other hand, detailed measurement of the intra-ring
density profile using the NIR/PLS method can be performed
with hyper spectral imaging system technology. Fernandes
et al. (2013a) used this technology at a spatial resolution of
0.6 mm in a spectral range from 380 to 1028 nm and obtained
a coefficient of determination value between the NIR/PLS
method and the X-ray method of 0.810 (for close to 17,000
points) with an RMSEP value of 65.4 × 10−3 g cm−3. Using
neural networks, these values improved to 0.821 and
62.5 × 10−3 g cm−3 for R2 and RMSEP, respectively
(Fernandes et al. 2013b). Kitamura and Tsuchikawa (2015)
proposed measuring density profiles using attenuation in
transmission of an infrared laser at 830 nm, using an ava-
lanche diode as a detector. The best results were achieved with
a sample thickness of 0.5 mm and an RMSEP of
46.0 × 10−3 g cm−3 (R2 = 0.921) for a validation group com-
posed of 30 measurement points.

The purpose of this study was to investigate whether the
results published for NIR/PLS intra-ring density predictions in
wood can be improved when calibrated with X-ray microden-
sitometry. The study considered 31 digital X-ray images with
their respective wood samples, which had been in storage for
14 years and were recently scanned using a latest generation
fiber optic NIR device.

2 Material and methods

2.1 The experimental setup

The experimental setup for NIRS was comprised of a near-
infrared spectrometer, a source of light, a bifurcated fiber optic
probe, and a Spectralon® reference. The work was performed
with 31 tangential/radial samples from pith to cambial zone
with a thickness of 2 mm, collected from 28 Pinus radiata D.
Don trees. The wood samples were in storage from 2001,
when X-ray densitometry was performed, to 2015 when they
were measured with NIRS. The wood strips remained stored
in a cabinet within airtight plastic bags. The possibility of loss
of wood density in these storage conditions can be considered
void. The equilibrium moisture content of the wood during
NIRS measurement was around 10%. The spectrometer mod-
el used was the Ocean Optics NIR Quest with 512 pixels
ranging from 900 to 2500 nm (resolution: 3.18 nm). An
Instron 3369 mechanical testing machine was used to perform
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the precise linear movements of the wood samples. NIRS
measurements were taken every 5.2 s using a velocity of dis-
placement of 5.862 mm min−1, resulting in a distance of
0.508 mm between points, equivalent to 50 dots per inch
(dpi). In a separate experiment, it was estimated that each
reading with the fiber optic probe covered a circular area with
a spot diameter of approximately 1.4 mm on the transverse
plane (tangential/radial surface) of the wood sample. For typ-
ical Chilean P. radiata growth conditions, each tree ring is
represented by an average of 14measurement points, allowing
for a detailed analysis within each tree ring. Full spectrumwas
composed of 346 points, exploiting the range between 1200
and 2200 nm at a resolution of 3.18 nm. Five scans were
collected for a single spectrum with 100 ms of integration
time. The only preprocessing method implemented was
SNV, in which the spectrum average is subtracted from each
data point and the result is divided by the standard deviation.

2.2 X-ray densitometry

The reference values were X-ray images digitized using an
Agfa Duos can scanner with 8-bit gray resolution and spatial
resolution of 300 dpi equivalent to 0.0847mm (Zamudio et al.
2002; Zamudio et al. 2005). Prior to radiation, resins in the
wood samples were extracted with alcohol. The density was
obtained from the correlation of the gray scale in a
polyoxymethylene-copolymer (Kemetal®) sample with a
known thickness scale to the grayscale in each X-ray image.
The predicted mean density for each sample was matched to
its density measured using gravimetry, at a moisture content of
10%. To address the different NIR and X-ray resolutions, one
of every six pixels in the digital image was used as a reference
value, ranging from 300 to 50 dpi. The positions for the

measurement of NIR spectra and X-ray microdensity were
matched as closely as possible. Curvature of the the tree rings
in the pathway measured by X-ray and NIR is assumed neg-
ligible. A moving average was applied to the X-ray densitom-
etry data with intervals of 1.4 mm. This smoothing could be
slightly more intense than the weighting effect produced by
the use of a circular fiber optic probe.

2.3 Partial least squares regression

A total of 4520 density points from 31 wood samples were
used to create partial least squares training and validation
groups. The training group was made up of 20 randomly se-
lected samples and the validation contained the remaining 11
samples. Twenty PLSR calibrations were executed randomly
with the 31 samples, resulting in 20 samples in the training
group and 11 in the validation group. Averaging the results of
the 20 calibrations generated a reliable characterization of the
quality of the PLSR calibrations (Fernandes et al. 2013a). The
data were processed using the PLS package of R (Mevik and
Werens 2007). The number of PLSR components was varied
from 1 to 20 using the SIMPLS algorithm and leave-one-out
(LOO) cross-validation. No outlier detection was used.
Method performance was measured using four indicators:
the coefficient of determination (R2), the root-mean-squared
error of prediction (RMSEP), the ratio between the RMSEP
value of the validation group and the RMSEP value of the
training group, and the range error ratio (RER) which is the
ratio of the range in validation reference data to the RMSEP.
The ratio between the RMSEP obtained from the validation
and training groups and the RER calculated from the valida-
tion group were used to compare the quality of PLSR results
(Alves et al. 2012).
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Fig. 1 Mean and standard
deviation of RMSEP calculated
by 20 PLSR calibrations and as a
function of the number of latent
variables included
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3 Results

3.1 Results varying the number of latent variables

Figures 1, 2, and 3 plot the mean RMSEP, R2, and RER as a
function of the number of latent variables. The error bar shows
one standard deviation around the mean of the 20 PLSR cal-
ibrations generated. This variability around the mean value is
limited for the 20 models created. The curves show that using
five latent variables produces an RMSEP value below
60 × 10−3 g cm−3 (R2 > 0.8) while using 12 latent variables
produces an RMSEP value under 50 × 10−3 g cm−3

(R2 > 0.86). Beyond 14 latent variables, the improvement in
calibration performance is practically imperceptible; with con-
vergence to an RMSEP value around 42 × 10−3 g cm−3 and
RER value of approximately 13.7. For 20 latent variables, the

RER mean and standard deviation were 13.7 ± 0.5, with raw
data ranging from 12.7 to 14.5.

3.2 A typical run scatter plots

Figures 4 and 5 are scatter plots of the reference and predicted
values for one “typical run” from 20 PLSR calibrations gen-
erated. It should be noted that possible outlier points were not
eliminated from any of the 20 PLSR calibrations. These scat-
ter plots indicate that there is systematic underestimation bias
of the highest density values (latewood). Figure 6 plots the
root-mean-squared error as a percentage (RMSEP%) for the
same data in Figs. 4 and 5. For low-density values (early-
wood), the RMSEP% value is between 20 and 30%, whereas
for high-density values (latewood), the RMSEP% is less than
10%. Although the RMSEP% is lower in the density
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predictions for latewood, it is important to take into account
the systematic underestimation bias in these predictions.

3.3 Intra-ring density profiles

Figure 7 plots good (a) and poor (b) results for the comparison
between X-ray and NIR-predicted microdensity profiles for
six wood samples selected from validation groups for two
quality extremes of 20 PLSR calibrations. The R2 and
RMSEP values presented in Fig. 7 are calculated at the indi-
vidual sample level. Good results are R2 values between 0.91
and 0.93 and RMSEP values around 37 × 10−3 g cm−3. The
worst samples achieve an R2 value of 0.797 and an RMSEP
value of 62.2 × 10−3 g cm−3. Other poor results are R2 values
between 0.87 and 0.89 and RMSEP values around
45 × 10−3 g cm−3. Figure 8 plots the residuals from the pre-
dictions for the same six pith-to-bark strips from Fig. 7. The
best result was a mean residual value of −1.8 × 10−3 g cm−3

and a mean residual (relative to the reference value) of −0.5%.

The worst result showed a mean residual value of
−90.1 × 10−3 g cm−3 and a mean residual% of −22.7%.

4 Discussion

For typical Chilean Pinus radiata growth conditions,
0.508mmof distance betweenmeasurement points mean each
tree ring was represented by an average of 14 points, which
allows for detailed analysis within each tree ring. The intra-
ring density profiles for Pinus radiata growing in Chile are
often very complex due to alterations in the profile shape
(false tree rings). The NIR/PLSR method implemented pur-
sues precisely these anomalies in the predicted profiles of tree
rings. However, in “poor cases” shown, the high extremes of
tree ring density (latewood) are overestimated, while the low
extremes (earlywood) may be over- or underestimated.

The mean R2 and RMSEP values for NIR/PLSR models
relative to X-ray densitometry values are 0.873 and
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43.1 × 10−3 g cm−3 for the training group. For the validation
group, the values are 0.895 and 47.1 × 10−3 g cm−3, respec-
tively. The RMSEP obtained are better than those found in
studies using hyperspectral imaging (Fernandes et al. 2013a;
Fernandes et al. 2013b).

According to Alves et al. (2012) the RER should be ≥4 for
screening calibration, ≥10 to be acceptable for calibration for
quality control, and ≥15 for calibration for quantification. The
curve here shows that four or more latent variables generate an
RER value greater than 10, which is acceptable for calibration
for quality control. This means that the RER values obtained
using more of 14 latent variables are closer to the frontier
between calibration used for quality control and calibration
used for quantification. These results are superior to those

found in the literature summarized by Alves et al. (2012) for
different wood density studies, with a range from 4.1 to 13.7.
The ratio between the RMSEP values obtained from the val-
idation and training groups ranges from 1.03 with 5 latent
variables to 1.09 with 20 latent variables (calculated from
Fig. 1). These results are also better than those presented by
Alves et al. (2012).

Analysis of the residuals showed that a minimal displace-
ment error between X-ray and NIRS measures can change
considerably the density values obtained. The method robust-
ness should be assessed considering the objective of the den-
sitometry analysis. Future studies may address robustness
analysis at ring level considering variables such as widths,
mean densities, and earlywood/latewood proportions.

Fig. 8 Residual and residual% for the same six pith-to-bark strips from previous figure. Good (a) and poor (b) comparisons

Annals of Forest Science (2017) 74: 13 Page 7 of 8 13



5 Conclusion

We demonstrate that a fiber optic NIR spectrometer with a
high-precision displacement system is capable of producing
accurate measurements of intra-ring P. radiata density values
with a spatial resolution of 0.5 mm approximately. Typical
intra-ring density profiles for P. radiata growing in Chile
show alterations in the profile shape such as false tree rings.
Nevertheless, the NIR/PLSR method implemented addresses
these anomalies in predicting tree ring profiles. It might be
possible to apply this methodology successfully in other soft-
woods and hardwoods species.

The mean R2 and RMSEP values for NIR/PLSR models
relative to X-ray densitometry values are 0.873 and
43.1 × 10−3 g cm−3 for the training group. For the validation
group, the values are 0.895 and 47.1 × 10−3 g cm−3, respec-
tively. The RMSEP obtained are better than those found in
studies using hyperspectral imaging.

The ratio between the RMSEP values obtained from the
validation and training groups was 1.09, which is better than
that reported in the literature. The ratio of the range (RER)
value of 13.7 in this study is closer to the frontier between
calibration used for quality control and calibration used for
quantification. These results are even higher than some studies
of wood density that do not employ spatial resolution.
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