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Abstract
Herbicide resistance is a major weed control issue that threatens the sustainability of rice cropping systems. Its epidemiology at large
scale is largely unknown. Several rice weed species have evolved resistant populations in Italy, including multiple resistant ones. The
study objectiveswere to analyze the impact in Italian rice fields ofmajor agronomic factors on the epidemiology of herbicide resistance
and to generate a large-scale resistance risk map. The Italian Herbicide Resistance Working Group database was used to generate
herbicide resistance maps. The distribution of resistant weed populations resulted as not homogeneous in the area studied, with two
pockets where resistance had not been detected. To verify the situation, random samplingwas done in the pockets where resistance had
never been reported. Based on data from 230 Italian municipalities, three different statistics, stepwise discriminant analysis, stepwise
logistic regression, and neural network, were used to correlate resistance distribution in the main Italian rice growing area with seeding
type, rotation rate, and soil texture. Through the integration of complaint monitoring, mapping, and neural network analyses, we prove
that a high risk of resistance evolution is associated with traditional rice cropping systems with intense monoculture rates and where
water-seeding is widespread. This is the first study that determines the degree of association between herbicide resistance and a few
important predictors at large scale. It also demonstrates that resistance is present in areas where it had never been reported through
extensive complaint monitoring. However, these resistant populations cause medium-low density infestations, likely not alarming rice
farmers. This highlights the importance of integrated agronomic techniques at cropping system level to prevent the diffusion and
impact of herbicide resistance or limit it to an acceptable level. The identification of concise, yet informative, agronomic predictors of
herbicide resistance diffusion can significantly facilitate effective management and improve sustainability.
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1 Introduction

Weeds’ resistance to herbicides has been spreading quickly and
is threatening the sustainability of crop production and therefore

food security worldwide while increasing management costs
(Mortensen et al. 2012; Hicks et al. 2018). In order to fulfill this
challenge, large-scale data are needed to properly understand
what occurs in the field (Editorial 2018). In several cropping
systems, where diversity in space and time is low, resistance
has reached epidemic level, destabilizing weed management in
many agricultural areas (Orson 1999; Heap 2014; Busi et al.
2013; Evans et al. 2016). Efforts to prevent or slow down the
selection of herbicide-resistant populations converge on reducing
monoculture, diversifying herbicide strategies, promoting a judi-
cious and correct use of herbicides, deepening the knowledge of
weed biology and using a variety of agronomic techniques
(Norsworthy et al. 2012; Evans et al. 2016). However, Hicks
et al. (2018) found no evidence that using herbicides with differ-
ent sites of action (SoA) reduces the evolution of resistance.

Italy is the largest rice producer in Europe with about
230,000 ha (2017 growing season). The main rice cultivation
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area is concentrated in the north-western regions of Piedmont
and Lombardy where continuous paddy rice system is wide-
spread. Weed management is one of the key aspects of rice
cultivation because pedo-climatic conditions are favorable to
weeds that are generally competitive, generate a persistent
seed bank, and the weed flora is often dominated by
difficult-to-control species, such as red rice and Echinochloa
spp. Herbicide use is intense, with an average treatment fre-
quency index higher than 2.5 (Ferrero and Vidotto 2010;
Scarabel et al. 2013). In the last 15–20 years, the no. of avail-
able herbicide SoA has significantly decreased due to strict
EU legislation, which led to several effective substances being
withdrawn from the registration, and no new SoA is expected
in the near future. Acetolactate synthase (ALS) inhibitors are
by far the most used herbicides with more than 90% of rice
fields treated at least once per year (Scarabel et al. 2012;
Loddo et al. 2018).

Since the mid-1990s, several rice weed species have
evolved resistant populations in Italy, including multiple resis-
tant ones: Alisma plantago-aquatica, Schoenoplectus
mucronatus, Cyperus difformis, Echinochloa spp. (Fig. 1),
Oryza sativa f. spontanea (weedy red rice), and recently

Cyperus esculentus L. (GIRE 2018; Loddo et al. 2018; Heap
2018; Sattin 2005; Scarabel et al. 2011, 2012, 2013; Panozzo
et al. 2013). The Italian Herbicide Resistance Working Group
(GIRE 2018) estimates that at least 40% of the rice cultivated
area is affected by resistant populations.

The genus Echinochloa spp. includes the most troublesome
species (Tabacchi et al. 2006) with some populations that have
evolved multiple resistance (Panozzo et al. 2013). Difficulties
in controlling Echinochloa spp. are not only related to their
resistance status, but also their biological characteristics: very
high seed production, long seed dormancy (Norris 1992;
Holm et al. 1997), adaptation to water environment, C4 pho-
tosynthetic cycle, and high morphological variability
(Tabacchi et al. 2006). This is why Echinochloa spp. is used
as case study in this work.

Many publications describe the economic and agronomic
impact of resistance, and many others suggest ways to pre-
vent, slow down, or manage it (e.g., Norsworthy et al. 2012;
Délye et al. 2013; Juraimi et al. 2013; Orson 1999). However,
very few contribute to elucidating the impact of interactions
between major agronomic and environmental factors on resis-
tance epidemiology at a scale as large as the main rice

Fig. 1 Rice fields infested with
ALS-resistant Echinochloa spp. a
Early stage patchy infestation of a
resistant population. b Later stage
of infestation where the whole
field is affected by the resistant
population
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production area in Italy (Evans et al. 2016). Epidemiology is
concerned with the distribution and determinants of evolution
in defined populations. It can provide relevant evidence-based
information for preventing or reducing the spread of resistant
populations by identifying the major risk factors.

Weed infestations and herbicide selection pressure in rice
crops vary widely in relation to many agronomic and pedo-
climatic conditions, so herbicide resistance evolves in a con-
text of a series of interacting factors. However, detailed field-
by-field data on these factors are rarely available at a large
scale and therefore the identification of concise, yet informa-
tive, agronomic predictors of herbicide resistance distribution/
diffusion would significantly facilitate effective management.
The use of different statistical approaches, namely discrimi-
nant analysis, logistic regression, and artificial neural network,
enables the quantification of the effect of pedo-climatic and
management drivers on agro-ecological systems at large scale.
For example, discriminant analysis was used to investigate the
effect of rainfall-related variables on the occurrence of drought
stress in maize (Zhang et al. 2013) and the effect of fertilizer
regimes on the structure of the soil microbial community and
its functions (Lazcano et al. 2013). Recently, a comparison of
artificial neural networks and logistic regression was used to
predict weed populations in chickpea and winter wheat
(Mansourian et al. 2017) and to investigate the contribution
of topographic and soil-related traits, as well as land use and
maximum rainfall intensity as landslide drivers in landslide
susceptibility mapping (Gong et al. 2018). The use of different
approaches ensures a reliable depiction of the examined sys-
tem as each approach relies on different assumptions and an-
alytical solutions.

The objective of this study is to analyze the impact in
Italian rice fields of two major agronomic techniques, seeding
type (water- or dry-seeded), and crop rotation rate, as well as
soil texture, on the diffusion of herbicide resistance. These
factors are known to have a strong influence on rice weed
infestations and crop cultivation more in general (Ferrero
and Vidotto 2006). Data collected in 230 Italian municipalities
distributed in the main rice growing area were processed with
different statistical tests in order to detect the main drivers for
the diffusion of resistance. We also aimed to estimate the risk
of resistance evolution in the various municipalities and gen-
erate a resistance risk map.

2 Materials and methods

2.1 Data collection and mapping

Since 1997, the Italian Herbicide Resistance Working Group
(GIRE, www.resistenzaerbicidi.it) has been monitoring,
collecting, and testing putative herbicide-resistant populations
nationwide, based on farmers and farmers’ advisor complaints

of poor herbicide efficacy. All other available data on herbicide
resistance in Italy were also collected, and all populations that
were confirmed resistant to at least one herbicide through a
standardized testing procedure (Panozzo et al. 2015a) were in-
cluded in a national herbicide resistance database. The part of
the database relative to the populations collected in the main
rice producing area in Italy (approximately 200,000 ha, i.e.,
about 85% of the total rice growing area) was used as input to
produce maps of herbicide resistance diffusion using iMAR
application (Panozzo et al. 2015b; GIRE 2018). The maps were
obtained by changing the color of the territory of the munici-
palities where at least one confirmed resistant population had
been recorded. Therefore, municipalities with different num-
bers of resistant populations appear with the same color
(Panozzo et al. 2015b). This, together with the nature of the
monitoring done by GIRE, which is based on (a) end users
complaints about herbicide failure and (b) priority given to
samples collected in municipalities where herbicide resistance
had not previously been reported, makes the output maps “qual-
itative” because they do not provide reliable information on the
spread of resistance within each municipality. That is to say
they indicate the areas at higher risk of resistance evolution.

Two descriptive resistance maps were generated, one
pooling all cases of resistance recorded since 1997 for the five
rice weeds affected by herbicide resistance (A. plantago-
aquatica, 66 cases; C. difformis, 29 cases; S. mucronatus, 81
cases; O. sativa f. spontanea—weedy red rice, 57 cases; and
Echinochloa spp., 192 cases; Fig. 2a) and another for
Echinochloa spp. only (Fig. 2b), which is the most diffused
weed genus in Italian rice crops. A total of 584 populations
were tested with three herbicides and 425 proved to be resis-
tant to at least one of them. Most populations are resistant to
ALS inhibitors, with a few Echinochloa spp. resistant to
ACCase inhibitors or to both ALS and ACCase inhibitors.

A database including all municipalities in the study area
where rice fields represent more than 10% of the utilized ag-
ricultural area was created. An Italian municipality is a terri-
tory with autonomous administration that generally ranges in
size from 15 to 40 km2. A single value for resistance presence/
absence (regardless of weed species) was associated to each
municipality: 0 where no resistance had been recorded and 1
where at least one case was confirmed. The percentage of rice
cropping area under crop rotation (RR), percentage of water-
seeded (WS) area, average percentage of sand (PS), and clay
in soil (PC) were also added for each municipality. Given the
very high correlation between the percentage of sand and silt
(r = − 0.96), the latter was not considered in the analyses. A
similar second database was created including only
Echinochloa spp. Data were not available for four municipal-
ities, which were therefore excluded from the analyses.
Herbicide strategy at municipality level was not considered
among the predictors because data are scant, not homoge-
neous, and generally too complex. Data on rotation and soil
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texture were obtained from regions’ environmental agencies:
Regional Agency of Services for Agriculture and Forestry
(Ente Regionale per i Servizi all’Agricoltura e alle Foreste,
ERSAF) for Lombardy and Agriculture Registry Office
(Anagrafe Agricola del Piemonte) for Piedmont, while records
on water-seeding were supplied by the Ente Nazionale Risi.
Raw data were provided in different formats and were there-
fore processed to fit our database, i.e., to obtain single data of
WS, RR, PC, and PS for each municipality. Both WS and RR
data were available for the period 2013–2015. The 3-year
period was considered adequate because the diffusion of
water-seeding and crop rotation had been relatively constant
for several years before 2015.

WS data were received already aggregated at municipality
level and expressed as a percentage of hectares of water-
seeded rice in relation to the total area of each municipality.
The percentage was then averaged over the 3 years. RR was
instead calculated starting from the “land use database” of
Lombardy and Piedmont Regions: data were expressed as
hectares of land use type per cadastral plot. A cadastral plot
is a physically continuous piece of territory located in a mu-
nicipality with a single owner, quality, and culture class. A
plot was considered “rotated” when not cropped with rice
for at least one of the 3 years. Hectares of rotated plots were
then summed and expressed as a percentage of the total area of
each municipality.

Fig. 2 Map of all resistant cases
(a) and Echinochloa spp. only
resistant cases (b) Recorded in the
rice area: two “resistance-free”
areas are evident: one (L) in Pavia
province and a second (S) along
the Sesia river. A municipality
changes color when at least one
population has been confirmed
resistant in its territory. Different
colors refer to resistance to
herbicides with different site of
action. Available online: www.
resistenzaerbicidi.it (accessed on:
15 May 2018)
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PC and PS were calculated starting from data of texture of
different soil types present in each municipality. A prevalent
soil texture per municipality was then calculated by doing a
weighted average of clay, sand, and silt content based on the
no. of hectares of each soil type. Descriptive maps were then
produced using QGIS software 2.14.9 to graphically display
the variation in WS, PC, and RR in the study area. Herbicide
strategy at municipality level was not considered among the
predictors because data are scant, not homogeneous, and gen-
erally too complex.

2.2 Statistical analyses

Three different methods were selected: stepwise discriminant
analysis, stepwise logistic regression, and artificial neural net-
work. The stepwise discriminant analysis separates objects or
observations in classes, or allocates new observations in already
defined ones; the aim of the analysis was to define the probability
of correctly classifying a resistant (1) or non-resistant (0) munic-
ipality on the basis of selected predictors. Logistic regression is a
model that estimates the probability of a binary response on the
basis of one or more independent variables; stepwise backward
selection of the predictors was adopted for both analyses. The
cut-off threshold of the probability was set according to the re-
sults of the receiver operating characteristic (ROC) curve analysis
(Maiorano et al. 2009).

Neural network allows finding non-linear behavior of the
system under analysis that cannot be discovered with tradi-
tional regression-based methods as logistic regression and dis-
criminant analysis. Neural network has minimal requirement
on model structure and assumptions because the form of the
relationships is determined during the learning process
(Haykin 2009). We used a multilayer perceptron network,
using RR, WS, PS, and PC as variables to predict resistance
(binary, 0/1). We used a 7/3 ratio to split the entire dataset in
training and testing sets. The creation of the two sets was
carried out by random choice and repeated 10 times. One
hidden layer was used, with 2 to 4 neurons, using the hyper-
bolic tangent activation function (Vogl et al. 1988) and the
softmax function for the output layer to assign decimal prob-
abilities to the two output classes (Priddy and Keller 2005).

Resistance presence/absence was the dependent variable,
while WS, RR, PC, and PS were the predictors. The analyses
were done twice, first considering all five “resistant” weed
species pooled together and then Echinochloa spp. only. All
statistical analyses were performed with IBM SPSS 24 soft-
ware. The alpha of the statistical tests was set at 0.05.

Previously created resistance maps were descriptive and
gave important information but limited to the known diffusion
of resistance in the municipalities. The next step was to gen-
erate stochastic maps of herbicide resistance risk evolution on
the basis of the pseudoprobability of resistance calculated via
the three statistical analyses. Specifically, we used the

pseudoprobability obtained from the analysis with the highest
prediction quality, namely the neural network which provided
the most correct classification. QGIS software was then used
to generate the maps based on the output of the analysis.

2.3 Echinochloa spp. case study

To verify whether the lack of herbicide-resistant weed popu-
lations observed in two areas (Fig. 2 areas L and S) was an
artifact due to the nature of resistance monitoring done by
GIRE, a random survey was done in these two areas.
Echinochloa spp., the most troublesome weeds evolving her-
bicide resistance in rice crops, were chosen as case study. In
September 2016, 20 populations of Echinochloa spp. were
sampled following a grid of 5 × 5 km2. Seed samples were
collected from plants of Echinochloa spp. present in the rice
field closest to each node of the grid. The average size of the
fields was about 2 ha, and each sample included seeds har-
vested from at least 5 plants. Samples from #300-L to #310-L
were collected in area L while those from #311-S to #319-S
came from area S. Sampling followed a density structured
approach visually assessing the density of Echinochloa spp.
in the sampled field. Infestation density was divided into four
categories (very low: < 1 plant × 500m−2, low: about 1 plant ×
100 m−2, medium: about 1 plant × 10 m−2, high: about or
more than 1 plant m−2). All seed samples were cleaned and
dry stored at room temperature. Two whole-plant herbicide
sensitivity experiments were then performed in greenhouse
conditions following a standardized testing procedure
(Panozzo et al. 2015a), in autumn 2016 (A) and a repetition
in spring 2017 (S).

Seeds were chemically scarified for 20 min in sulfuric acid
(96%) and then carefully rinsed with cold water. They were
then placed in plastic boxes containing Pot Grown H peat
(Klasmann Deilmann GmbH) and stored in a germination
cabinet at 26/16 °C (day/night) under neon tubes providing a
photosynthetic photon flux density (PFFD) of 15–
30 μmol m−2 s−1 with a 12-h photoperiod.

At one leaf stage, seedlings were transplanted into pots
with standard potting mix (60% silty loam soil, 15% sand,
15% perlite, 10% peat) and placed in a greenhouse, with the
temperature ranging between 15 and 19 °C at night and 26–
33 °C during the day. Light was supplemented using 400 W
metal-halide lamps, which supplied about 450 μmol m−2 s−1

with a 16-h photoperiod.
All populations were tested for resistance to both ALS and

acetyl coenzyme-A carboxylase (ACCase) inhibiting herbi-
cides: penoxsulam (Viper, 40 g L−1, Dow Agrosciences,
Bologna, Italy, recommended field dose 2 L ha−1), imazamox
(Beyond, 40 g L−1, BASF Italia, recommended field dose
0.875 L ha−1), cyhalofop-butyl (Clincher One, 200 g L−1,
Dow Agrosciences, recommended field dose 1.5 L ha−1),
and profoxydim (Aura, 200 g L−1, BASF Italia, recommended

Agron. Sustain. Dev. (2018) 38: 68 Page 5 of 10 68



field dose 0.5 L ha−1). Both imazamox and profoxydim were
used along with the recommended surfactant Dash HC (meth-
yl-palmitate and methyl-oleate 349 g L−1, BASF Italia) at
0.5% concentration and 0.9 L ha−1, respectively. Two known
susceptible checks were included in the experiments. ALS
herbicides were applied at two doses; the recommended field
dose (1×) and three times that (3×), while ACCase herbicides
were sprayed only at dose 1×. Plants were sprayed when they
had reached 2–3 leaf stage (BBCH 12–13, Hess et al. 1997)
using a precision bench sprayer delivering 300 L ha−1, at a
pressure of 215 kPa, and a speed of 0.75 m s−1, with a boom
equipped with three flat-fan (extended range) hydraulic noz-
zles (TeeJet, 11002). For each population, a non-treated con-
trol was included.

The experimental layout was a completely randomized de-
sign with three replicates of six plants each. Plant survival and
shoot fresh weight were recorded 4 weeks after treatment and
expressed as a percentage of the non-treated control. Plants
were considered dead when they did not show any active
growth, regardless of their color.

Populations were then divided into four categories: S when
less than 5% of plants survived the 1× dose, SR when survival
at 1× dose ranged between 5 and 20%, R when survival at 1×
was > 20%, and RR when > 10% of plants survived the 3×
dose and > 20% the recommended field dose (Panozzo et al.
2015a). To test whether the two experiments could be pooled,
Levene’s test was performed: as both survival and fresh
weight variances proved to be homogeneous (p = 0.22 and
p = 0.74), data from the two experiments were pooled and
analyzed together.

3 Results and discussion

3.1 Mapping and analyses of predictors

The dataset included a total of 232 municipalities, and in 115
(49.6%) of them, at least one resistant population had been
found (GIRE 2018). Considering only Echinochloa spp., there
were 78 municipalities (33.6%) where resistance had previ-
ously been confirmed.

By using the dynamicmapping system available on the Italian
Herbicide Resistance Working Group website (GIRE 2018), it
appeared that herbicide resistance in rice did not evolve evenly
within the study area as it had not been reported in two relatively
large pockets (Fig. 2 areas S and L) regardless of weed species or
type of resistance. A non-homogeneous distribution of resistant
populations was detected when all weeds (Fig. 2a), as well as
when only Echinochloa spp., were considered.

Stepwise discriminant analysis including all weeds eliminated
PS at the third step of the analysis, while for Echinochloa spp.,
only WS was retained after the first step. Discriminant analysis
was able to correctly group 65.2% of “resistant” municipalities

and 70.9% of “non-resistant” ones for all weeds, 64.1 and 65.6%
for Echinochloa spp., respectively.

With the aim of setting the optimal cut-off value of probability
in the logistic regression, we ran anROC curve analysis using the
predicted values of the logistic regression, which was first exe-
cuted with a default cut-off probability value equal to 0.5, for
both the datasets, i.e., the five weeds pooled together and the
Echinochloa spp. one. Stepwise backward logistic regression
performed on all weeds pooled together showed that WS, RR,
and PC are highly correlated with resistance presence (p < 0.001,
p = 0.003, and p = 0.009 respectively), whereas the correlation
with PS resulted as not significant. For Echinochloa spp. alone,
only WS resulted as significant (p < 0.001). RR and PC were
negatively correlated with resistance while WS was positively
correlated with it (see also Fig. 3a–c).

Both statistical analyses highlighted the strict relation be-
tween the presence of resistance and the more traditional sys-
tem of seeding rice in flooded paddies. This is reinforced by
the observation that the five weed species that evolved
herbicide-resistant populations are well adapted to humid
and flooded conditions (Tabacchi and Viggiani 2017; Osuna
et al. 2002). When all weeds were analyzed together, RR and
PC were also significant and this is likely a consequence of
using a larger dataset. It is clear that the three predictors are
somehow inter-dependent, i.e., WS is less frequent in areas
where PC is lower and RR is higher. The two virtually
resistant-free areas S, and especially L (Fig. 2), display this
pattern (Fig. 3a–c).WhereWS is practiced, weed control strat-
egies are generally based on fewer herbicide SoA and rely
more on ALS inhibitors (Ferrero and Tinarelli 2008), thus
increasing the herbicide selection pressure.

To our knowledge, this is the first study that determines the
degree of correlation between herbicide resistance and a few
important predictors at such a large scale (about 230,000 ha).

The maps generated by the GIRE website simply give a
snapshot of diffusion of resistance based on complaint moni-
toring. Instead, we aimed to estimate the risk of resistance
evolution in the various municipalities through an innovative
approach such as neural network and generate a resistance risk
map. With the aim of generating a resistance risk map, we
used the pseudoprobability calculated through the neural net-
work analysis, as the prediction model for resistance was bet-
ter than that obtained with logistic regression and discriminant
analysis. Using neural network, the effect of random choice of
the cases was negligible for the training/testing sets and for the
number of layers (10 attempts for each number of neurons);
results of the simplest network are displayed in Table 1.

The prediction of the two cases was made using the per-
centage of rice cropping area under crop rotation (RR), the
percentage of water-seeded (WS) area, the average percentage
of sand (PS), and clay in soil (PC) as covariate predictors.

The neural network analysis confirmed that WS, PC,
and RR are good predictors of resistance, with a
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normalized importance higher than 75%. In 48% of munic-
ipalities, the probability of resistance evolution is higher
than 50%. Resistance risk is higher (risk > 60% in 64% of
municipalities) in the central-western part of the study area
(Piedmont region) than in the central-eastern area
(Lombardy region, risk > 60% in 21% of municipalities)
(Fig. 3d). It is worth mentioning that in the 60 municipal-
ities where the risk is higher than 70%, the average WS and
RR are about 88 and 16%, respectively. Comparison

between the maps of WS, RR, and PC and the resistance
risk map (Fig. 3) highlights again that the traditional rice
cropping systems based on water-seeding and lack of rota-
tion (Ferrero and Tinarelli 2008) are at higher risk.
Therefore, contrary to what was presented in a recent arti-
cle on a different cropping system (Hicks et al. 2018), we
demonstrate that in areas where a combination of manage-
ment strategies that increase system diversity are used, the
evolution of resistance is slower.

Fig. 3 Descriptive maps of the
three most important predictors
(a–c) and resistance risk (d) maps
of the area studied. a Percentage
of rotation rate. b Percentage of
clay in soil. c Percentage of water-
seeding. d Map of resistance risk
evolution created with neural
network pseudoprobability
considering all “resistant” weeds
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Table 1 Percentage of correct prediction of resistant (1) and non-
resistant (0) cases obtained with the neural network analysis applied to
the two datasets: all five weeds pooled (i.e., Alisma plantago-aquatica,

Cyperus difformis, Schoenoplectus mucronatus, Oryza sativa f.
spontanea and Echinochloa spp.) and Echinochloa spp. alone

Neural network classification

Weeds pooled together

Observed Predicted Percentage correct Covariate Normalized importance

0 1

Training 0 51 29 64% WS 100%

1 25 54 68% PC 95%

Overall percentage 48% 52% 66% RR 75%

Testing 0 32 5 87% PS 28%

1 14 22 61%

Overall percentage 63% 37% 74%

Echinocloa spp.

Observed Predicted Percentage correct Covariate Normalized importance

0 1

Training 0 92 13 88% PC 100%

1 40 19 32% WS 90%

Overall percentage 80% 20% 68% PS 33%

Testing 0 40 9 82% RR 17%

1 13 6 32%

Overall percentage 78% 22% 68%

Table 2 Plant survival and fresh
weight calculated as percentage of
the untreated control for the
recommended field dose (1×) of
the most used ALS inhibitor in
rice imazamox and ACCase
inhibitor cyhalofop-butyl. L and S
after population numbers indicate
the area where each population
was collected. The data are mean
values of the two experiments;
standard error (S.E.) is given in
brackets. Infestation density was
visually assessed during sampling
and divided into four categories:
very low: < 1 plant × 500 m−2,
low: about 1 plant × 100 m−2,
medium: about 1 plant × 10 m−2,
high: about or more than 1 plant
m−2

Pop.
code

Infestation
density

Cyhalofop-butyl Imazamox

% plant survival
(S.E.)

% fresh weight
(S.E.)

% plant survival
(S.E.)

% fresh weight
(S.E.)

07-16L – 2.4 (2.38) 1.9 (0.74) 0 (0) 2.2 (0.54)

300-L Low 0 (0) 1.4 (0.64) 9.0 (6.62) 4.9 (1.99)

301-L Low 0 (0) 3.7 (1.08) 100 (0) 95 (4.7)

302-L Low 0 (0) 4.0 (0.94) 98 (2.4) 88 (7.1)

303-L High 7.9 (3.56) 8.9 (3.44) 19 (10.2) 5.9 (3.16)

304-L Medium 5.2 (3.27) 3.9 (2.11) 97 (2.8) 100 (0)

305-L High 2.8 (2.78) 6.1 (1.88) 82 (9.6) 78 (7.3)

306-L High 2.8 (2.78) 2.2 (0.83) 100 (0) 94 (2.9)

307-L Medium 12 (11.9) 5.2 (1.24) 15 (6.1) 7.3 (1.27)

308-L Medium 11 (5.3) 14 (3.1) 33 (10.3) 12 (3.9)

309-L Medium 0 (0) 1.4 (0.49) 100 (0) 75 (12.7)

310-L Low 5.6 (3.51) 3.4 (1.16) 9.9 (7.13) 6.3 (1.51)

311-S Low 9.4 (4.25) 2.8 (1.35) 53 (2.6) 28 (5.8)

312-S Low 3.3 (3.33) 3.6 (3.08) 100 (0) 68 (13.1)

313-S Low 35 (15.8) 34 (15.6) 100 (0) 86 (10.0)

314-S Medium 6.1 (3.89) 9.9 (1.69) 100 (0) 100 (0)

315-S Low 44 (9.5) 54 (14.0) 75 (5.7) 82 (8.1)

316-S Low 3.3 (3.33) 3.9 (3.21) 71 (9.5) 72 (9.5)

317-S Low 5.6 (5.56) 4.2 (3.67) 36 (10.0) 28 (10.3)

318-S Very Low 0 (0) 1.6 (0.32) 100 (0) 81 (6.1)

319-S Low 0 (0) 3.6 (0.78) 97 (3.3) 72 (11.8)
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3.2 Echinochloa spp. case study

The results of the screenings done on Echinochloa spp. pop-
ulations sampled randomly in areas L and S (Fig. 2) disprove
the initial hypothesis of lack of resistance in those areas. Only
four accessions (300-L, 303-L, 307-L, and 310-L) resulted as
still being susceptible to all four herbicides (Table 2), all of
them coming from area L.

Sixteen populations proved to be resistant to at least one
herbicide, whereas two accessions (313-S and 315-S) were
multiple resistant to both ALS and ACCase inhibitors. The
efficacy of penoxsulam was similar to that recorded for
imazamox, while the efficacy of profoxydim was higher than
cyhalofop (data not shown). ACCase herbicide resistance was
weaker than ALS, and only two populations were resistant to
this SoA. The dose effect for ALS herbicides was low (data
not shown), indicating that a target-site-related resistance
mechanism may be involved (Powles and Yu 2010; Panozzo
et al. 2013; Scarabel et al. 2011). The results of the screening
on randomly sampled populations proved that resistance is
frequently present even in the two areas where it had not
previously been recorded through complaint monitoring.
However, most of the infestation densities recorded during
sampling were medium to low (between about 1 plant ×
10 m−2 and about 1 plant × 100 m−2), especially in area S.
This suggests that the low level of infestation may not alarm
farmers, so they do not complain about or report poor herbi-
cide control. The low infestation density probably does not
affect crop yield nor entail any economic loss. The generally
low infestation levels are probably related to the higher level
of diversity in the cropping systems (Renton et al. 2014;
Norsworthy et al. 2012) practiced in these areas, especially
in area L.; here, in fact, crop rotation and dry seeding are more
frequent, mainly leading to the selection of different weed
species (Juraimi et al. 2013).

4 Conclusions

We present a large dataset that meets the need to document
and understand which agronomic factors drive herbicide re-
sistance evolution in the field. By analyzing the available
data on about 200,000 ha of Italian rice fields, we demon-
strate that herbicide resistance is strongly correlated with
management practices such as seeding type (water- or dry-
seeded) and crop rotation, as well as soil clay content. Dry
seeding and crop rotation rate are negatively correlated with
resistance presence. Through the integration of complaint
monitoring, mapping, and neural network analyses, we
prove that a high risk of resistance evolution is associated
with traditional rice cropping systems with intense rates of
monoculture and in areas where water-seeding is wide-
spread. Although the impact of agronomic practices and

environmental factors on resistance evolution is well known,
this is the first time that these interactions are analyzed at
such a large scale.

Random sampling revealed that resistance is present even
in the areas where previous monitoring based on farmers’
complaints had not revealed any resistant case. However, the
density of resistant populations is medium-low, so possibly
does not alarm rice farmers as they can manage the problem
with practices that keep resistance at an acceptable level. This
situation is confirmed by the resistance risk map, which shows
that some risk is also present in these areas. It therefore ap-
pears that, although very useful for stakeholders, GIRE maps
underestimate resistance.

We prove that resistance is present over the whole main rice
growing area in Italy, likely related to the widespread and
intense use of herbicides and standardization of cropping sys-
tems. Nevertheless, where appropriate agronomic practices
such as dry seeding and crop rotation are implemented, and
therefore diversity in the system is higher, the impact of resis-
tance is lower and kept to an acceptable level.

The identification of concise, yet informative, agronomic
predictors of diffusion of herbicide resistance can significantly
facilitate effective management and improve sustainability.
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