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Abstract
Abiotic and biotic stresses are the major factors limiting plant growth worldwide. Plants exposed to abiotic and biotic stresses
often cause reduction in plant biomass as well as crop yield, resulting in plant biomass carbon loss. As a beneficial and quasi-
essential element, silicon accumulation in rhizosphere and plants can alleviate the unfavorable effects of the major forms of
abiotic and biotic stress through several resistance mechanisms and thus increases plant biomass accumulation and crop yield.
The beneficial effects of silicon on plant growth and crop yield have been widely reviewed over the last years. However, carbon
accumulation of silicon-associated plant biomass under abiotic and biotic stresses has not yet been systematically addressed. This
review article focuses on both the main mechanisms of silicon-mediated alleviation of abiotic and biotic stresses and their effects
on plant biomass carbon accumulation in terrestrial ecosystems. The major points are the following: (1) the recovery of plant
biomass via silicon mediation usually exhibits a bell-shaped response curve to abiotic stress severity and an S-shaped response
curve to biotic stress severity; (2) although carbon concentration of plant biomass decreases with silicon accumulation, more than
96% of the recovered plant biomass contributes to plant biomass carbon accumulation; (3) silicon-mediated recovery generally
increases plant biomass carbon by 35% and crop yield by 24%. In conclusion, silicon can improve plant growth and enhance
plant biomass carbon accumulation under abiotic and biotic stresses in terrestrial ecosystems.
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1 Introduction

Abiotic and biotic stresses are the important factors limiting
plant growth and crop yield worldwide. The drought and salt
stresses are the two major abiotic stress factors that restrict
plant growth and productivity (Cramer et al. 2011; Zhu
2016), while pathogen infection and animal grazing are the
two major biotic stress factors that cause plant injuries and
biomass losses (Massey et al. 2007; Dow et al. 2017). The
area subject to meteorological drought constitutes about 21%
of the earth’s land area, with nearly 13% under moderate to
severe conditions (Prudhomme et al. 2014; Damberg and
AghaKouchak 2014), whereas the area suffering from soil
salinization accounts for approximately 7% of the global land
area and 20% of the total cropland area (Rasool et al. 2013).
Other forms of abiotic stress, such as soil acidification
(Sumner and Noble 2003), heavy metal contamination
(Adrees et al. 2015), UV radiation (Jansen and van den
Noort 2000), extreme temperature (Levitt 1980), and nutrient
imbalance (Huber et al. 2012), also have negative effects on
plant growth. Among the biotic stresses, fungal pathogen con-
tributes to 70–80% of plant diseases (Ray et al. 2017), while
bacterial or viral pathogens usually have a long latent period
and cause fatal plant injuries (García and Pallás 2015; Kim
et al. 2016). Insect infestation and herbivore grazing often lead
to tissue losses, which are more costly to renovate for slow-
growing plant species (Massey et al. 2007). The negative ef-
fects of abiotic and biotic stresses have been reported to re-
duce crop yield and plant biomass carbon through restraining
plant photosynthesis and biomass accumulation (Eneji et al.
2008; Nicol et al. 2011). Additionally, climatic and environ-
mental changes may cause more severe and frequent occur-
rences of abiotic and biotic stresses in the future.

Traditional measures to alleviate abiotic and biotic stresses
may have some negative environmental and ecological effects
(e.g., pesticide residues). Alternatively, many studies have
demonstrated that silicon (Si) accumulation in plants can in-
crease the adaptive capacity of plants under abiotic and biotic
stresses (Tuna et al. 2008; Kim et al. 2014; Kang et al. 2016;
Song et al. 2016) (Fig. 1). Silicon that is tightly bound to the
cell walls is naturally present as a structural material in relation
to enhancement of cell wall rigidity and elasticity (Weiss and
Herzog 1978; He et al. 2013). When monosilicic acid concen-
tration is high in the xylem sap, it becomes an important
osmolyte improving plant osmotic and water potentials

(Casey et al. 2004; Mitani et al. 2005; Yin et al. 2013). In
addition, Si requires relatively less energy than the biomole-
cules such as lignin and proline with regard to structural ma-
terial and osmolyte (Raven 2001; Broadley et al. 2012).
Therefore, Si can improve the homeostasis of plant resistance
to multiple abiotic and biotic stresses in terrestrial ecosystems
at a low cost.

Important literature has reported that Si application
can promote plant growth, biomass accumulation, and
crop yield under various abiotic (Liang et al. 2007;
Cooke and Leishman 2016; Rios et al. 2017) and biotic
(Hartley and DeGabriel 2016; Luyckx et al. 2017; Wang
et al. 2017) stresses. Recently, researches on molecular
mechanisms of Si uptake, transport, and accumulation in
plants have achieved a critical milestone in molecular
evolution of aquaporins (Deshmukh et al. 2015;
Yamaji et al. 2015; Vivancos et al. 2016). However,
the linkage between the mechanism of Si-mediated alle-
viation and the effect of Si on plant biomass carbon
accumulation in terrestrial ecosystems has not yet been
clarified accurately. Different from other reviews focus-
ing on the mechanisms of Si-mediated resistance to var-
ious stresses (Guntzer et al. 2012; Zhu and Gong 2014;
Rizwan et al. 2015; Imtiaz et al. 2016), this review
summarizes and discusses the mechanisms on how Si
improves plant biomass carbon accumulation under abi-
otic and biotic stresses. First, we introduce the negative
effects of various stresses on plant biomass carbon ac-
cumulation as abiotic and biotic stresses severely sup-
press plant growth. Second, we make the connection
between the physiological mechanisms of Si-mediated
alleviation under different stresses and the factors con-
trolling Si enhancement of plant biomass carbon accu-
mulation. Third, we discuss the role of Si in enhancing
aboveground net primary productivity (ANPP) and plant
biomass carbon accumulation in terrestrial ecosystems.
Finally, we discuss the potential of Si in enhancing
plant biomass carbon accumulation for future investiga-
tion at the ecosystem scale.

2 Materials and methods

2.1 Data compilation

Data on Si-mediated recovery of plant biomass and crop yield
under abiotic and biotic stresses were collected from peer-
reviewed publications. In order to avoid publication bias, the
following keywords were employed to search the Web of
Science: silicon, abiotic stresses (i.e., drought stress, salt
stress, UV-B radiation, nutritional imbalance, and heavy metal
toxicities), and biotic stresses (i.e., bacterial blight, brown
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spot, stalk borer, and neck blast). In addition, the following
two criteria were used to select literatures for analysis:

1. Plant biomass was provided or could be calculated based
on dry weight of leaf, grain, stalk, and root;

2. Crop yields were provided.

Plant biomass included aboveground biomass only or
was comprised of below- and aboveground biomass. In
total, 41 papers dealing with plant biomass and 12 pa-
pers dealing with crop yield were selected in our syn-
thesis. The original data of plant growth with and with-
out Si application under various stress conditions were
extracted from reported tables or graphs using GetData
Graph Digitizer (Version 2.22, Russian Federation).

2.2 Data calculation

Because the control treatment of Si application usually
displays enhancement of plant biomass accumulation as
well, in order to preclude the Si fertilization effect,
plant biomass increment (PBI) mediated by Si applica-
tion under both abiotic and biotic stresses was calculat-
ed using Eq. (1).

PBI %ð Þ ¼ BSþSi=BS−Si−BCþSi=BC−Si

BCþSi=BC−Si
� 100 ð1Þ

where BS is the plant biomass under stressful condition,
BC is the plant biomass of the control, and the sub-
scripts of “−Si” and “+Si” are experimental treatment
without and with Si application, respectively. For the

studies without Si application to the control, the plant
biomass increment was calculated using Eq. (2).

PBI %ð Þ ¼ BSþSi−BS−Si
BS−Si

� 100 ð2Þ

Besides, Si-mediated plant recovery from stressful condi-
tions usually accompanies with increasing Si concentration
and decreasing carbon concentration in plant biomass.
Hence, plant biomass carbon increment (BCI) was calculated
using Eq. (3).

BCI %ð Þ ¼ PBI� DC f ð3Þ

where DCf is the coefficient of biomass carbon decreasing
with Si accumulation in plant biomass. Until now, the
largest Si content increase, which was induced by Si ad-
dition, was 3.96% by weight in rice leaf (Detmann et al.
2012). Thus, we concluded that Si application to alleviate
multiple abiotic and biotic stresses increases no more than
4% of Si in plant biomass by weight. Besides, 1% of Si
increase in plant biomass generally induces less than 1%
plant biomass carbon reduction (Klotzbücher et al. 2018;
Neu et al. 2017). Therefore, 0.96 was set as the coefficient
in this study for estimating plant biomass carbon incre-
ment that is mediated by Si application under stressful
conditions.

Similar to data calculation of plant biomass increment,
crop yield increment (CYI) was calculated using Eq. (4)
to exclude the Si fertilization effect.

CYI %ð Þ ¼ YSþSi=YS−Si−YCþSi=YC−Si

YCþSi=YC−Si
� 100 ð4Þ

a b

c d

Fig. 1. Beneficial effect of Si
application to rice growth under
salt stress (a) and common Si-
accumulating crops: rice (b),
cucumber (c), and wheat (d). In
sub-figure (a), Si-0, Si-5, Si-10,
and Si-20 denote 0, 5, 10, and
20 g Si fertilizer per pot,
respectively
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where YS is the crop yield under stressful condition, BC
is the crop yield of the control, and the subscripts of “−Si”
and “+Si” are experimental treatment without and with Si
application, respectively. For the studies without Si appli-
cation to the control, the crop yield increment was calcu-
lated using Eq. (5).

CYI %ð Þ ¼ YSþSi−YS−Si
YS−Si

� 100 ð5Þ

2.3 Data analysis

All statistical analyses were performed using SPSS software
(IBM, version 23.0). Graph was drawn using Origin Software
(OriginLab Corp., Version 9.0).

3 Plant biomass carbon accumulation
under abiotic and biotic stresses

3.1 Abiotic stresses

Plants suffer from physiological stresses when exposed to
abnormal environments such as extreme temperatures,
drought, high salinity, heavy metals, and nutrient imbalance
(Genga et al. 2011; Savvides et al. 2016). Hyperosmotic
stress, cell dehydration, reactive oxygen species (ROS) over-
production, and leaf chlorosis are the main responses to such
stresses (Table 1). In addition, plants endure secondary stress-
es when several abiotic stresses interplay. For example, inter-
connections between drought stress and salt stress may lead to
nutritional deficiency and hyperosmotic stress, while Ca, B,
Zn, and K deficiencies often increase the incidences of plant
disease and insect attack (Huber et al. 2012; Zhu and Gong
2014). By contrast, low N availability caused by drought and
salt stresses may enhance plant resistance to pest attacks
(Huber et al. 2012). Plants have developed highly complicated
strategies to efficiently acclimatize themselves to the adverse
conditions (Zhu 2016). Network relationships between bio-
logical damages and abiotic stresses indicate that systemic
acquired resistance of plants can alleviate most abiotic and
biotic stresses.

Although plants can mediate the intrinsic defense networks
to mitigate the damages caused by adverse habitats, most of
them have to pay a tradeoff between extra-consumption of
resources for homeostasis and plant growth. Equal propor-
tions of plant biomass and biomass carbon are lost from abi-
otic stresses compared with non-stressful conditions due to
almost the same carbon concentration of the harvested dry
matter under stressful and non-stressful conditions. Pot exper-
iments show that the biomass of maize (Zeamays) and broom-
corn (Sorghum bicolor) decreased by 49 and 79% under

drought stress, respectively (Hattori et al. 2005; Kaya et al.
2006). The biomass of pea (Pisum sativum) decreased by 38%
under 100 μM chromium (VI) stresses, as compared to bio-
mass reduction of 5 and 64% in wheat (Triticum aestivum)
seedling exposed to 5 and 25 μM cadmium stress, respective-
ly, and that of 33% under UV-B stress (Tripathi et al. 2015,
2017; Wu et al. 2016a). Additionally, abiotic stresses caused
by extreme weather and climate may result in plant growth
arrest and even death, resulting in inefficient carbon assimila-
tion and ANPP in terrestrial ecosystems (Kogan et al. 2004;
Craine et al. 2012). In summary, plant exposure to abiotic
stresses usually reduces plant biomass and crop yield,
resulting in plant biomass carbon loss.

3.2 Biotic stresses

Herbivory, pathogen, and pest attacks are the main biotic
stresses that plants need to cope with during their lifecycles
(Table 1). The major determinants of plant disease and pest
incidences include plant species (Massey et al. 2007), habitat
(Massey et al. 2007), nutrient status, and the degree of overlap
between the susceptible growth stages of the host plants and
the reactive pathogens and pests (Walters and Bingham 2007;
Huber et al. 2012). The renovation of injured tissues of slow-
growing plant species is more costly in resource-limited envi-
ronments than that of fast-growing plant species in resource-
rich environments (Massey et al. 2007). Furthermore, the
complexity of these responses is significantly affected by the
extent and duration of biotic stresses (both acute and chronic)
(Cramer et al. 2011), which leads to different impacts on plant
growth and biomass carbon accumulation. In summary, the
investment in defensive strategies among plant species to re-
sist or tolerate these biotic stresses is usually associated with
plant growth rates and their habitats.

Plant physiological responses often have double-edged ef-
fects when they are used to counteract various biotic stresses.
For example, the bilateral functions of ROS induced by vari-
ous environmental stresses not only cause damage to plants
but also act as signaling transducer and cause programmed
cell death in response to fungal attack (Schieber and
Chandel 2014; Demidchik 2015; Lehmann et al. 2015).
Furthermore, Si coupling with Mn accumulation in the infect-
ed region may lead to increased biosynthesis of phenolics and
phytoalexins, which are catalyzed byMn-containing enzymes
(Huber et al. 2012). In addition, many facultative and obligate
parasites may increase the risk of disease outbreak, especially
when the concentrations of sugars and amino acids in the
apoplasms of the leaves increase due to nutrient imbalances
such as insufficient Ca, B, Zn, and K and excess N (Walters
and Bingham 2007; Huber et al. 2012). These results indicate
that plant nutrient status plays an important role in
counteracting the negative effects of biotic stresses on plant
growth and biomass accumulation.
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The effects of biotic stresses have two different patterns,
i.e., pathogen infection and grazing, on suppression of plant
growth and biomass accumulation (Table 1). Plants suffering
from pathogen infection often undergo lower photosynthetic
capacity and carbon assimilation due to leaf necrosis and vas-
cular wilt. A pot experiment shows that rice (Oryza sativa)
infected with leaf blight decreased by 55% of biomass on
average (Song et al. 2016). In contrast, insect and herbivore
grazing has an immediate biomass loss and the ANPP is reg-
ulated by the grazing intensity (Schönbach et al. 2010; Irisarri
et al. 2016). In addition, extra-consumption of resources for
systemic acquired resistance and homeostasis has negative
effects on plant photosynthesis and carbon assimilation as
well. In conclusion, plant biomass reduction caused by path-
ogen infection and herbivore damage usually generates poten-
tial loss of biomass carbon in terrestrial ecosystems.

4 Silicon distribution in plants and its
alleviation of stresses

4.1 Silicon distribution and accumulation in plants

Silicon is the second most abundant element and constitutes
28.8% of the Earth’s crust (Epstein 1999). The Si content in
soils ranges widely from less than 1% in histosols to 45% in
the very old podzols (Skjemstad et al. 1992; Sommer et al.
2006). In the soil matrix, primary silicate mineral, secondary
clay mineral, and amorphous silica account for most of the
total Si pool, but they are relatively insoluble and
biogeochemically inert (Savant et al. 1997; Sommer et al.
2006). Plant-available Si is primarily released from the
recycling of biogenic Si pools and partly derived from the
geochemical cycling of mineral Si pools (Bartoli 1985;
Alexandre et al. 1997; Tubaña and Heckman 2015; Cornelis
and Delvaux 2016). In the plant–soil system, successive Si
influx and efflux transporters in plants regulate Si uptake
and transport from the solution in vitro to the terminals of
the transpiration stream (Ma and Yamaji 2006). Monosilicic
acid movement from soil solution to the exodermis and endo-
dermis root cells passes through an influx channel-type trans-
porter (Lsi1) via the passive transport (Ma and Yamaji 2015).
Then, an active Si efflux transporter (Lsi2) facilitates Si load-
ing from the endodermis root cells to the xylem (Yamaji et al.
2015). In rice xylem sap, the concentration of monosilicic acid
can reach up to 20 mM, while silicic acid in vitro polymerizes
into silica gel when its concentration exceeds 2 mM (Mitani
et al. 2005). Monosilicic acid unloads from the xylem into leaf
cells via another Si influx transporter (Lsi6) as similar to Lsi1,
but its localization is in the xylem transfer cell layer (Ma and
Yamaji 2015). In addition, another Si efflux transporter (Lsi3)
localized at rice node in cooperation with Lsi2 and Lsi6
reloads Si to the xylem of diffuse vascular bundle and

facilitates Si unloading to the panicle (Yamaji et al. 2015).
Finally, more than 90% of Si in plants is distributed in the
shoots and most of it is deposited in the leaf sheaths and leaf
blades (Broadley et al. 2012). In summary, the ability of plants
to absorb Si is regulated by the cooperative system of Si influx
and efflux transporters in plant.

Increasing evidence suggested that the ability of Si accu-
mulation in different plant species demonstrates a direct cor-
relation between Si transporter genes (NIP2s) and Lsi2s
(Deshmukh et al. 2015; Deshmukh and Bélanger 2016;
Vivancos et al. 2016). However, homologous genes of Si
transporters in different plant species do not show the same
Si uptake and transport patterns due to diverse root and shoot
architectures (Deshmukh and Bélanger 2016). In principle, all
monocots (e.g., sugarcane, rice, and most cereals) and a few
dicots (e.g., sunflower, soybean, and cucumber) are defined as
high Si-accumulating plants (> 1% dry weight) and acquire
positive effects from Si application (Ma et al. 2001; Liang
et al. 2005a; Deshmukh and Bélanger 2016). By contrast,
most dicots (e.g., tomato) taking up small amounts of Si (<
0.1% dry weight) are defined as low Si-accumulating plants.
The dicots accumulating Si ranging from 0.1 to 1% of Si
belong to the intermediate Si accumulator category (Guntzer
et al. 2012; Deshmukh and Bélanger 2016). In addition,
systematical benefits of Si conferred to plants depend on the
ability of Si adsorption among different plant species (Ma and
Yamaji 2006; Deshmukh and Bélanger 2016). Hence, Si-
accumulating plants are more sensitive to Si feeding than in-
termediate and low Si-accumulating plants.

4.2 Silicon alleviation of abiotic stresses

Silicon in the soil solution is transported to the rhizosphere as
monosilicic acid (H4SiO4) by belowground transpiration
streams. Soluble Fe/Al–O–Si complexes may also be trans-
ferred to the root zones and activated by root exudates
(Pokrovski et al. 2003; Hobara et al. 2016; Wu et al. 2016b).
The accumulation of monosilicic acid in the rhizosphere and
the formation of iron plaques on the root absorbency area play
important roles in preventing the entrance of heavymetals into
plant roots (Liang et al. 2005b; Wu et al. 2016b). Co-
precipitation of toxic cationic metals with plant-available Si
and adsorption of toxic anionic metals on the iron plaques are
the major mechanisms for Si to mediate the alleviation of
heavy metal toxicity in soils (Liang et al. 2005b; Gu et al.
2011; Adrees et al. 2015; Wu et al. 2016b). In addition, Si
deposition in the roots is the primary inhibitory effect on
apolasmic transport of Na+ across the roots (Gong et al.
2006), while monosilicic acid competition with arsenite can
reduce plant arsenic uptake under anaerobic conditions (Ma
et al. 2008; Tripathi et al. 2013; Marmiroli et al. 2014; Tripathi
et al. 2016a). Furthermore, Si-mediated alleviation of heavy
metal toxicity also occurs in root cells and xylem vessels
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(Liang et al. 2007; Lukačová et al. 2013; Ma et al. 2014). The
activated Si in the rhizosphere, root systems, and xylem vessels
inactivates the detrimental substances in vitro and in vivo (Fig.
2) and prevents them from entering plant shoots. For nutrient
uptake, Si application elevates the harvest index and nitrogen
use efficiency (Detmann et al. 2012; Song et al. 2017). More
plant-available Si can suppress excessive phosphorus uptake in
rice (Ma and Takahashi 1990) but promote phosphorus uptake
under phosphorus deficiency stress (Ma et al. 2001; Pontigo
et al. 2015; Kostic et al. 2017). Increasing Si application can
mediate potassium accumulation in shoots when plants are
subject to salt stress and potassium deficiency (Wang and
Han 2007; Chen et al. 2015). In addition, Si can alleviate iron
deficiency in cucumber (Cucumis sativus) and soybean
(Glycine max), although this effect is plant-specific and dose-
dependent (Gonzalo et al. 2013; Pavlovic et al. 2013).
However, the effects of Si on manganese and zinc are not clear
(Hernandez-Apaolaza 2014). In general, Si imposes positive
effects on regulation of plant nutrition uptake.

Considerable amounts of Si that are deposited in the cell
walls of plant roots and xylem vessels can withstand crop
lodging through strengthening the mechanical property of
plant roots and the haulms (Balasta et al. 1989; Hattori et al.
2003; Ma and Yamaji 2006). More than 90% Si absorbed by
plant roots is transferred into shoots via the xylem (Ma and
Takahashi 2002). High concentrations of monosilicic acid in
the xylem and leaves can improve the osmotic potential of
epidermis cells and increase the leaf water potential against
plant evapotranspiration (Mitani et al. 2005; Pei et al. 2010;

Chen et al. 2011;Ming et al. 2012). Silicon deposition beneath
the cuticle of the epidermal cells and the inflorescence bracts
reduces the leaf and panicle transpiration, stretches the leaf
blade, and promotes photosynthetic efficiency (Hattori et al.
2008; Ma and Yamaji 2006, 2008; Tripathi et al. 2016b).
Overall, these beneficial effects of Si on plant water retention
have been shown to improve plant tolerance to drought, salt,
extreme temperature, and excessive light stresses (Kaya et al.
2006; Liang et al. 2008; Ming et al. 2012; Tuna et al. 2008;
Soundararajan et al. 2014; Shen et al. 2010a; Guntzer et al.
2012; Zhu and Gong 2014) (Fig. 2). In addition, Si application
can improve plant water use efficiency and increase photosyn-
thesis pigment as well as net assimilation rate under multiple
abiotic stresses (Shen et al. 2010b; Chen et al. 2011; Shi et al.
2013). In summary, Si-mediated changes to osmotic potential
and the physical barrier can help regulate plant transpiration
and improve water use efficiency.

The alleviation of oxidative stress caused by silicon accu-
mulation in plants (Shen et al. 2010a; Zhu et al. 2016) may
decrease the activity of ROS-scavenging enzymes that are
involved in lignin, phenolics, and phytoalexin biosynthesis
(Ortega et al. 2006; Huber et al. 2012; Schaller et al. 2012).
For example, lignin content in canola decreases when Si is
applied as a fertilizer and increases as Si is deficient
(Hashemi et al. 2010; Suzuki et al. 2012; Zhang et al.
2013s). Application of Si can decrease the concentrations of
malondialdehyde (MDA) and hydrogen peroxide (H2O2)
without complete relation to goal-oriented ROS-scavenging
enzyme activities (Shen et al. 2010a; Zhang et al. 2013;

Si-cuticle double layer
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1. Physical barrier hampering pathogen penetration
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Fig. 2. Principal mechanisms of silicon-mediated alleviation of abiotic and biotic stresses on plant growth and development
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Coskun et al. 2016), indicating indirect effects of Si on bio-
synthesis of antioxidant enzyme (Fig. 3). Hence, we speculate
that Si accumulation in plants promotes tolerance of plants to
the adverse effect of various abiotic stresses, which decreases
the effects of oxidative stress as well as ROS production and
reduces ROS-dependent signal transduction as well as biosyn-
thesis of antioxidant enzyme (Schieber and Chandel 2014;
Zhu et al. 2016). Furthermore, based on systemic-acquired
acclimation, we also suggest that the effects of Si-mediated
alleviation of the archetypal defense hormones can be derived
from the improvement of physiological conditions rather than
from the regulation of Si on the pathways of plant hormones
(Kim et al. 2014; Rizwan et al. 2015) (Fig. 3). Until now, no
direct evidence has shown the existence of Si-involved signal-
ing pathway in plants. Therefore, antioxidant enzyme activi-
ties and phytohormone levels independent of Si concentration
are probably the result of Si-mediated alleviation instead of Si
itself. In conclusion, the down-regulated responses of antiox-
idant defenses and hormone immunity are probably attributed
to Si-mediated improvements in plant homeostasis.

4.3 Silicon regulation of biotic stresses

The deposition of Si in the cell walls of roots improves the
biomechanical properties of plants (Hansen et al. 1976) and
thus increases root resistance to soil-borne diseases and pests
(Johnson et al. 2010). The appearance of root-specific
phytoliths in the roots and tubers shows that Si also partici-
pates in protecting belowground tissues from soil-borne pests
(Lux et al. 2003; Chandler-Ezell et al. 2006). Plant transpira-
tion leads to the accumulation of over 90% Si in the shoots
where the Si is used as the structural materials for the cuticle–
silica double layer and silicified cells (Hodson and Sangster

1989; Ma and Takahashi 2002; Huber et al. 2012). The cuti-
cle–silica double layer often serves as a physical barrier that
impedes the penetration of fungus and pest (Ma and Yamaji
2006). Silica cell/bodies in grasses can result in rough taste to
insect pests and herbivores (Hartley and DeGabriel 2016)
(Fig. 2). Furthermore, it is the symplastic Si, rather than the
apoplastic Si, that seems to inhibit the spread of Pythium
aphanidermatum in tomato plant roots (Heine et al. 2007).
The osmotic effect of soluble Si (Liang et al. 2005c; Liang
et al. 2015) and the Si-associated biosynthesis of phytoalexins
(Ghanmi et al. 2004) enhance the resistance of host plants to
pathogen infection. This may be related to the symplastic Si
(Fig. 3), which may act as a modulator that influences the
timing and extension of the systemic acquired resistance
(Liang et al. 2015) through the long-distance electrical and
hydraulic signals. However, the interaction between the
symplastic Si and systemic acquired resistance is not clear.
The effects of Si-mediated plant osmotic and water potential
on electrical and hydraulic signals under biotic stresses need to
be further investigated.

Silicon accumulated around the attempted infection sites is
three to four times higher than that around the successful pen-
etration sites (Heath and Stumpf 1986; Carver et al. 1987).
Manganese accumulation that accompanies Si at the infection
sites may be related to Si-mediated biosynthesis of phenolics
and phytoalexins to resist pathogen infection (Menzies et al.
1991; Huber et al. 2012). Furthermore, plant diseases and
pests induced by nutrient deficiencies and ion imbalances
would be alleviated by Si-mediated nutrient uptake and distri-
bution (Pavlovic et al. 2013; Gonzalo et al. 2013; Hernandez-
Apaolaza 2014; Chen et al. 2015). Therefore, Si accumulation
in plant tissues may increase the resistance to nutrient
deficiency-induced diseases and pests by alleviating

+ Si 

Antioxidant response system Enzymatic pathway
Ubiquitination pathway

SA–JA pathway

SA–ET pathway

ABA–JA pathway

The stress hormone response
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Fig. 3. Possible pathways of Si-
mediated alleviation of
phytohormone defense systems
and antioxidant defense systems.
SA, salicylic acid; JA, jasmonic
acid; ET, ethylene; ABA, abscisic
acid. The figure depicts that the
stress hormone response and
antioxidant system may be
regulated by post-feedback of Si-
mediated alleviation rather than
forward feedback of Si-associated
signaling pathway
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micronutrient deficiencies in plants. Besides, the cuticle–silica
double layer and silica cell/bodies do not account for all the
preventive effects because soluble Si in plant tissues is also
involved in prophylactic alleviation of the detrimental impact
of many biotic stresses (Liang et al. 2015). These studies show
that Si deposition in leaves and silica cell/bodies postpones
protection from pathogen and insect pest attack, while soluble
Si in plant tissues plays a real-time role in plant resistance.

Classic hormone defense pathways have little correlation
with Si-mediated plant resistance to various biotic stresses
(Van Bockhaven et al. 2015; Vivancos et al. 2015). The down-
regulated archetypal defense hormones such as abscisic acid,
jasmonic acid, and salicylic acid are not derived from the Si-
mediated mechanism related to plant disease resistance (Van
Bockhaven et al. 2015; Vivancos et al. 2015). At present, only
the ethylene pathway of rice against the brown spot fungus has
been testified (Van Bockhaven et al. 2015). Silicon-induced
changes in plant enzymatic or non-enzymatic defense systems
that counteract ROS overproduction (Debona et al. 2014;
Nascimento et al. 2016) may also result from Si-mediated
alleviation of various biotic stresses (Fig. 3). In summary,
increasing Si in plant tissues could reduce the metabolic costs
of systemic acquired acclimation for adapting to multiple bi-
otic stresses.

5 Silicon enhancement of plant biomass
carbon accumulation under stresses

5.1 Silicon enhancement of carbon accumulation
under abiotic stresses

Silicon supply has beneficial effects on plant biomass carbon
accumulation under multiple abiotic stresses (Hattori et al.
2005; Liang et al. 2005b; Fu et al. 2012; Mateos-Naranjo
et al. 2015). Compared with plant biomass carbon loss caused
bymultiple abiotic stresses, Si-mediated plant biomass carbon
recovery rarely reaches the biomass carbon accumulation un-
der non-stress condition. Compared to the control, wheat
plants lose their biomass carbon by 32 and 44% under salinity
stress and 25 and 16% in salt-tolerant and salt-sensitive Si-fed
plants, respectively (Tuna et al. 2008). The stress-sensitive
plants would receive more biomass carbon accumulation than
the stress-tolerant ones as well as when Si is added under
drought stress and heavy metal toxicity (Kaya et al. 2006;
Farooq et al. 2013; Wu et al. 2016a). In addition, increasing
Si application (monosilicic acid in soil solution at pH below
9.0 is less than 2 mM) can improve the performance of plant
biomass carbon accumulation (Kaya et al. 2006; Tuna et al.
2008; Pei et al. 2010). However, the performance of Si appli-
cation to alleviate cadmium toxicity in wheat increases with
stress severity in moderate stress conditions but decreases in
both mild stress and severe stress conditions (Farooq et al.

2013; Wu et al. 2016a). The results suggest that Si-mediated
biomass carbon accumulation probably displays progressive
increase from mild to moderate stress but turns into declina-
tion under severe stress conditions. In summary, the recovery
performances of plant biomass carbon induced by Si-
modulated mitigation have different responses to plant culti-
vars, Si application dosage, and abiotic stress intensity.
Therefore, we propose that the efficiency of Si-mediated alle-
viation responses to the severity gradients of abiotic stresses
will probably display a bell-shaped curve (Fig. 4(a)).
Accordingly, the input–output ratio between Si fertilization
and the restoration performance of plant biomass carbon
should be fully scrutinized.

In addition, most studies have reported that Si application
to alleviate many abiotic stresses can enhance the expression
of key genes related to photosynthesis, increase photosynthet-
ic pigments, and promote plant photosynthesis as well as net
assimilation rate (Shen et al. 2010b; Chen et al. 2011; Shi et al.
2013; Song et al. 2014; Li et al. 2015a; Kang et al. 2016). As a
result, Si-mediated recovery frommultiple abiotic stresses can
stimulate CO2 assimilation in plants and biomass carbon ac-
cumulation in terrestrial ecosystems. Furthermore, Si applica-
tion to grassland can enhance ANPP andmaintain biodiversity
of grassland under high nitrogen fertilizer (Xu et al. 2015).
Specifically, the mass proportion of the increased Si ranges
from 0.02 to 3.96% of the recovered plant biomass (Detmann
et al. 2012; Kurabachew and Wydra 2014), while 1% of Si
increase in rice and wheat reduces plant biomass carbon by
0.87 and 0.57%, respectively (Klotzbücher et al. 2018; Neu
et al. 2017). It suggests that an increase in the Si content of
plant by 1%may reduce the plant biomass carbon by less than
1%. Therefore, although carbon concentration of plant bio-
mass decreases with silicon accumulation, more than 96% of
the recovered plant biomass contributes to plant biomass car-
bon accumulation. In conclusion, Si cycling improves carbon
accumulation through abiotic stress mitigation in terrestrial
ecosystems.

5.2 Silicon enhancement of carbon accumulation
under biotic stresses

Plant growth and biomass accumulation often respond
differently to herbivores, insect pests, and diseases due
to multifarious attack patterns (Table 1). Therefore, the
response mechanisms of Si-modulated alleviation may de-
pend on the biotic stresses the plant is subject to (Etesami
and Jeong 2018). Silicon-modulated prevention of biotic
stresses is the major effect of Si-associated ecological
functions (Soininen et al. 2013; Hartley and DeGabriel
2016). The effect of Si-mediated alleviation on various
biotic stresses, especially on the diseases induced by fungi
and bacteria, often depends on their active periods and the
susceptible stages of the host plants (Huber et al. 2012).
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Compared to the control, Song et al. (2016) reported that
rice biomass decreased by 59 and 72% under bacterial
blight infection (Xanthomonas oryzae pv. oryzae) without
Si addition in hydroponic and pot experiments, respec-
tively, but decreased by 55 and 47% due to Si application.
In addition, Si-mediated plant biomass carbon recovery
from biotic stresses demonstrated a positive correlation
with the application amount of Si (Ferreira et al. 2015).
Similar to abiotic stresses, more than 96% of the Si-
mediated plant biomass recovery under biotic stresses
contributes to plant biomass carbon. However, the

mutability of biomass carbon loss which is caused by
different biotic stresses often gives rise to difficulties in
evaluating Si-mediated alleviation efficiency.

Plant species with different survival strategies and hab-
itats also have a decisive influence on the efficiency of Si-
mediated alleviation of plant biomass losses (Massey
et al. 2007; Kurabachew and Wydra 2014). For example,
chewing insects and herbivores have few adverse effects
on inherently fast-growing plant species that live in
resource-rich environments, whereas they have consider-
able negative impacts on slow-growing plant species that
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Fig. 4. Potential of plant biomass enhanced by additional silicon supply
under different abiotic (a) and biotic (b) stress degrees. The hypotheses
we proposed illustrate that the performances of plant biomass recovery

from Si-mediated alleviation are stress degree-dependent for abiotic stress
and stress degree-independent for biotic stress
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live in resource-poor environments (Massey et al. 2007).
Therefore, the Si-mediated alleviation of different plant
species living in different habitats could lead to variations
in recovery performances. Nevertheless, positive impacts
have been demonstrated in crops and grasses, especially
for high Si-accumulating crops (Datnoff et al. 1997; Ma
and Takahashi 2002) and grasses grown in poor-resource
habitats (Massey et al. 2007; Soininen et al. 2013; Hartley
and DeGabriel 2016). Accordingly, we propose a hypoth-
esis that the efficiency of Si-mediated alleviation against

the severity of a certain biotic stress follows an S-shaped
curve (Fig. 4(b)). The beneficial effects of the Si-
modulated restoration would increase with Si supply and
the severity of the biotic stresses. The relatively earlier
formation of the cuticle–silica double layer and silica
cells/bodies will improve resistance to biotic stresses dur-
ing the highest active period of pathogens and pests. As a
result, the beneficial effects of Si on plant biomass recov-
ery from multiple biotic stresses will enhance plant bio-
mass carbon accumulation in terrestrial ecosystems.

Table 2 Silicon enhancement of
the estimated plant biomass
carbon accumulation under
abiotic and biotic stresses

Stress type Plant species Estimated biomass
carbon increment (%)

References

Drought Sorghum bicolor 98–123 Hattori et al. (2005)
Zea mays 26–43 Kaya et al. (2006)
Triticum aestivum − 1 to 12 Ahmad et al. (2007)
Chloris gayana 88 Eneji et al. (2008)
Sorghum sudanense 18
Festuca arundinacea 28
Phleum pratense 44
Triticum aestivum 48 Pei et al. (2010)
Lupinus albus 37–63 Abdalla (2011)
Sorghum bicolor 26 Ahmed et al. (2011)
Oryza sativa 57–60 Chen et al. (2011)
Oryza sativa 17 Ming et al. (2012)

Salt Solanum lycopersicum 21 Al-Aghabary et al. (2005)
Triticum aestivum 5–49 Tuna et al. (2008)
Triticum aestivum 26–116 Ali et al. (2009)
Cucurbita pepo − 2 to 35 Savvas et al. (2009)
Saccharum officinarum 5–83 Ashraf et al. (2010)
Oryza sativa 16–39 Shi et al. (2013)
AbelmoschusMedicus 4–15 Abbas et al. (2015)
Solanum lycopersicum 75 Li et al. (2015b)
Cicer arietinum 6–29 Garg and Bhandari (2016)

UV-B radiation Saccharum officinarum 6–12 Elawad et al. (1985)
Glycine max 4–10 Shen et al. (2010b)
Triticum aestivum 53 Pavlovic et al. (2013)
Triticum aestivum − 13 to − 1 Tripathi et al. (2017)

P deficiency Oryza sativa 4–16 Ma et al. (2001)
Fe deficiency Glycine max − 3 to 45 Gonzalo et al. (2013)
Fe2+ toxicity Oryza sativa 8–17 Fu et al. (2012)
Cu toxicity Spartina densiflora 42 Mateos-Naranjo et al. (2015)
Zn toxicity Glycine max 26–40 Pascual et al. (2016)
As toxicity Oryza sativa − 21 to 33 Wu et al. (2016b)

Oryza sativa − 27 to 9 Zia et al. (2017)
Cd toxicity Zea mays 60–123 Liang et al. (2005b)

Gossypium hirsutum 25–44 Farooq et al. (2013)
Avicennia marina 4–11 Zhang et al. (2014)
Triticum aestivum 8–40 Wu et al. (2016a)
Solanum nigrum 5 Liu et al. (2013)

Cr toxicity Hordeum vulgare 39–59 Ali et al. (2013)
Pisum sativum 9 Tripathi et al. (2015)

Mn toxicity Cucurbita moschata 81–137 Ma et al. (2001)
Bacterial blight Oryza sativa 5–87 Song et al. (2016)
Bacterial fruit blotch Cucumis melo 29–175 Ferreira et al. (2015)
Bacterial wilt Solanum lycopersicum 42 Diogo and Wydra (2007)

Solanum lycopersicum 15–66 Kurabachew and Wydra (2014)
Brown spot Oryza sativa 70–100 Ning et al. (2014)
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6 Implications for the management
of terrestrial ecosystems

In terrestrial ecosystems, biogenic Si dissolution and mineral
weathering are the major sources of bio-available Si pools
(Tubaña and Heckman 2015; Cornelis and Delvaux 2016).
The supplement rate of monosilicic acid to soil solution de-
pends mainly on the size of bio-available Si pools, water re-
tention time, temperature, and Si turnover rate (Sommer et al.
2006; Liang et al. 2015; Tubaña and Heckman 2015; Cornelis

and Delvaux 2016). Rapidly available Si in soils and water-
soluble Si in rivers have been used to estimate the biogeo-
chemical cycles of Si in many watersheds (Neal et al. 2005;
Klotzbücher et al. 2015), while little attention has been given
to the Si pool in terrestrial vegetation. However, the biogeo-
chemical Si cycle in terrestrial ecosystems plays a consider-
able role in improving ANPP and ecosystem resilience
(Massey et al. 2007; Tuna et al. 2008; Wu et al. 2016a). The
multiple beneficial effects of Si on plant growth and biomass
accumulation are more significant under various stresses (Ma

Table 3 Silicon enhancement of
crop yield under abiotic and biotic
stresses

Stress type Plant species Range of yield
increment (%)

References

Drought stress Triticum aestivum 14–25 Ahmed et al. (2016)

Vitis vinifera 11–17 Zhang et al. (2017)

Salt stress Cucurbita pepo 1–26 Savvas et al. (2009)

Vicia faba − 6 to 48 Kardoni et al. (2013)

P deficiency Oryza sativa 20–55 Ma et al. (2001)

As toxicity Oryza sativa − 17 to 60 Wu et al. (2016b)

Fungal infection Phaseolus vulgaris 13 Polanco et al. (2014)

Neck blast Oryza sativa 18–73 Seebold et al. (2000)

Oryza sativa 33–51 Datnoff and Rodrigues (2005)

Saccharum officinarum 4–23 Keeping and Meyer (2002)

Stalk borer damage Saccharum officinarum 16–18 Meyer and Keeping (2005)

Enhancement of ecosystem ANPPs and biomass carbon accumulation
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carbon assimilation efficiency

Promotion of crop yield and 
plant biomass accumulation

Mitigation of secondary stresses and 
physiological injuries in plant tissues
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Fig. 6. Primary approaches of Si-
mediated enhancement of
ecosystem ANPPs and plant
biomass carbon accumulation
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and Takahashi 2002). In total, Si-mediated plant biomass res-
toration from multiple abiotic and biotic stresses contributes,
on average, to 35% of biomass carbon (Fig. 5, Table 2) and
24% of crop yield increments (Table 3). By contrast, the effect
of Si-mediated restoration of plant biomass is ambiguous un-
der arsenic stress (Wu et al. 2016b; Zia et al. 2017). In addi-
tion, the Si-mediated defensive responses commonly demon-
strate a systemic acquired acclimation (Zhu 2016) and result
in survival cost minimization. Overall, regardless of the plant-
available Si located in the rhizosphere, plant roots, xylem
vessel, or leaves, the beneficial effects of Si on the alleviation
of abiotic and biotic stresses play crucial roles in the perfor-
mances of belowground and aboveground plant organs.

The restoration of plant biomass that is derived from
Si-mediated alleviation of abiotic and biotic stresses
would promote the ANPP of terrestrial vegetation and
ecosystem carbon accumulation (Fig. 6). Different levels
of Si application can change the contents of plant cel-
lulose, lignin, and phenol that depend on plant tissue
function (Schaller et al. 2012; Klotzbücher et al.
2018). In summary, the elevated ANPPs have positive
effects on the long-term carbon sequestration in terres-
trial ecosystem and soils. However, the concentration of
Si in the shoots varies greatly among plant species (Ma
and Takahashi 2002; Hodson et al. 2005), which sug-
gests that Si requirement and the restoration effects will
differ greatly among different plant species under the
same abiotic or biotic stresses. Moreover, different de-
fensive investment strategies among plant species
against herbivore grazing (Massey et al. 2007) suggest
that the efficiency of Si for different plant species to
cope with various environmental stresses would also
vary considerably. This means that the effects of Si on
plant biomass carbon accumulation are very difficult to
evaluate across many ecosystems but relatively easy for
croplands and grasslands due to their fewer plant spe-
cies and higher sensitivity to environmental changes.
Therefore, the distribution of vegetation and the supply
capacity of plant-available Si are the main determinants
to evaluate the utility of Si to ecosystem resilience.

Terrestrial ecosystems in fragmented landscapes or
resource-imbalanced regions constantly suffer from multiple
abiotic and biotic stresses (Walters and Bingham 2007;
Renton et al. 2013). The interconnection among the primary
and secondary stresses greatly decreases plant biomass pro-
duction and local biodiversity, which results in ecosystem
degradation (Eneji et al. 2008; Cramer et al. 2011; Rasool
et al. 2013). Because Si has versatile and beneficial effects
on plant growth under multiple abiotic and biotic stresses
(Liang et al. 2007; Ma and Yamaji 2008; Farooq and Dietz
2015; Meharg and Meharg 2015), more plant-available Si
supply to these vulnerable landscapes could enhance the eco-
system health and resilience and thus promote the ecological

restoration. Overall, ecosystems that possess more bio-
available Si would have a higher ANPP (Fig. 6), which could
be crucial for terrestrial carbon turnover and result in more
ecosystem carbon accumulation, especially under abiotic
and/or biotic stresses.

7 Conclusions and perspectives

Based on the adverse impacts of multiple stresses on plant
growth and the mechanisms of Si-mediated alleviation un-
der abiotic and biotic stresses, this review highlighted the
role of Si in enhancing plant biomass carbon accumulation.
More plant-available Si in the ecosystem can enhance the
ANPP and plant biomass carbon accumulation under vari-
ous stress conditions. It is presumed that Si-mediated recov-
ery of plant biomass usually exhibits a bell-shaped response
curve to abiotic stresses and an S-shaped response curve to
biotic stresses. Although more Si accumulation in plant re-
duces carbon concentration of plant biomass, more than
96% of the increased plant biomass contributes to plant
biomass carbon accumulation. Si application to crops suf-
fering from abiotic and biotic stresses can increase averaged
plant biomass carbon and crop yield by 35 and 24%, respec-
tively. However, the effectiveness of Si-mediated restora-
tion significantly fluctuates with plant species and cultivars,
intensity of abiotic and biotic stresses, and bio-available Si
supply. Silicon-mediated alleviation usually exhibits imme-
diate and preventive effects on plants suffering from abiotic
and biotic stresses. In brief, additional Si supply and the
subsequent increase in biogeochemical Si cycle could alle-
viate the adverse effects of abiotic and biotic stresses and
thus accelerate biomass carbon accumulation in terrestrial
ecosystems.

Based on this review, we suggest that researchers
should investigate further the following areas:

1. Because experiments on Si application have yet
mainly been conducted in hydroponics and pots,
field- to ecosystem-scale studies are now urgently
needed.

2. Several challenges, such as the coupling relations
between Si and plant essential elements, the effi-
ciencies of Si-mediated plant biomass carbon resto-
ration among plant species and stress intensities, and
the relationship between biogeochemical Si cycle
and the resilience of terrestrial ecosystems, require
further investigation especially in the fragmented
landscapes.

3. Finally, it should be developed an evaluation model
that predicts Si-mediated recovery contribution to
plant biomass carbon accumulation in different ter-
restrial ecosystems.
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