
Journal of Cryptographic Engineering (2018) 8:341–349
https://doi.org/10.1007/s13389-018-0183-z

REGULAR PAPER

A trivial debiasing scheme for Helper Data Systems

Boris Škorić1

Received: 11 March 2016 / Accepted: 17 February 2018 / Published online: 23 February 2018
© The Author(s) 2018. This article is an open access publication

Abstract
We introduce a debiasing scheme that solves the more noise than entropy problem which can occur in Helper Data Systems
when the source is very biased. We perform a condensing step, similar to Index-Based Syndrome coding, that reduces the
size of the source space in such a way that some source entropy is lost, while the noise entropy is greatly reduced. In addition,
our method allows for even more entropy extraction by means of a ‘spamming’ technique. Our method outperforms solutions
based on the one-pass and two-pass von Neumann algorithms.

Keywords Debiasing · Fuzzy extractor · PUF

1 Introduction

1.1 Helper Data Systems

The past decade has seen a lot of interest in the field of
security with noisy data. In several security applications it
is necessary to reproducibly extract secret data from noisy
measurements on a physical system. One such application
is read-proof storage of cryptographic keys using physical
unclonable functions (PUFs) [5,16,18–20]. Another applica-
tion is the privacy-preserving storage of biometric data.

Storage of keys in nonvolatile digital memory can often
be considered insecure because of the vulnerability to phys-
ical attacks. (For instance, fuses can be optically inspected
with a microscope; flash memory may be removed and read
out.) PUFs provide an alternative way to store keys, namely
in analog form, which allows the designer to exploit the
inscrutability of analog physical behavior. Keys stored in this
way are sometimes referred to as PhysicallyObfuscatedKeys
(POKs) [12]. In both the biometrics and the PUF/POK case,
one faces the problem that some form of error correction
has to be performed, but under the constraint that the redun-
dancy data,which are visible to attackers, do not endanger the
secret extracted from the physical measurement. This prob-
lem is solved by a special security primitive, theHelper Data
System (HDS). A HDS in its most general form is shown in
Fig. 1. The Gen procedure takes as input a measurement X .

B Boris Škorić
b.skoric@tue.nl

1 TU Eindhoven, Eindhoven, Netherlands

It outputs a secret S and (public) Helper DataW . The helper
data are stored. In the reconstruction phase, a fresh measure-
ment X ′ is obtained. Typically, X ′ is a noisy version of X ,
close to X (in terms of, e.g., Euclidean distance or Hamming
distance) but not necessarily identical. The Rec (reconstruc-
tion) procedure takes X ′ and W as input. It outputs Ŝ, an
estimate of S. If X ′ is not too noisy then Ŝ = S.

Two special cases of the general HDS are the Secure
Sketch (SS) and the fuzzy extractor (FE) [10]. The Secure
Sketch has S = X (and Ŝ = X̂ , an estimator for X). If
X is not uniformly distributed, then S is not uniform. The
SS is suitable for privacy-preserving biometrics, where high
entropy of S (given W) is required, but not uniformity. The
fuzzy extractor is required to have a (nearly) uniform S given
W . The FE is typically used for extracting keys from PUFs
and POKs.

1.2 The code offset method (COM)

Byway of example we briefly present the code offset method
[4,9,10,14,21], the oldest and most well-known HDS. The
COM makes use of a linear code C with k-bit messages and
n-bit codewords. The syndrome function is denoted as Syn :
{0, 1}n → {0, 1}n−k . The code supports a syndrome decod-
ing algorithm SynDec : {0, 1}n−k → {0, 1}n that maps
syndromes to error patterns. Use is alsomade of a key deriva-
tion function KeyDeriv : {0, 1}n ×{0, 1}∗ → {0, 1}�, with
� ≤ k. Below we show how the COM can be used as a FE
for either uniform or non-uniform source X .

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-018-0183-z&domain=pdf
http://orcid.org/0000-0003-1409-4127

342 Journal of Cryptographic Engineering (2018) 8:341–349

Fig. 1 Data flow in a generic
Helper Data System

Enrollment :
The enrollment measurement gives X ∈ {0, 1}n . The helper
data are computed as W = Syn X . The key is computed
as S = KeyDeriv(X , R), where R is (optional) public
randomness. The W and R are stored.
Reconstruction :
A fresh measurement of the PUF gives X ′ ∈ {0, 1}n . The
estimator for X is computed as

X̂ = X ′ ⊕ SynDec(W ⊕ Syn X ′), (1)

and the reconstructed key is Ŝ = KeyDeriv(X̂ , R).

1.3 The problem of bias

After seeing the helper dataW as specified above, an attacker
has uncertainty H(X |W) about X .1 As W is a function of X ,
we have H(X |W) = H(X |Syn X) = H(X) − H(Syn X).
Let us consider the simplest possible noise model, the binary
symmetric channel (BSC). In the case of a BSC with bit
error rate β, the code’s redundancy has to satisfy n − k ≥
nh(β) in order for the error correction to work. (Here, h
denotes the binary entropy function, h(β) = −β logβ −
(1 − β) log(1 − β), with ‘log’ the base 2 logarithm.) More
generally, H(Syn X) has at least to be equal to the entropy of
the noise. Hence, the COM helper data in the BSC case leak
at least nh(β) bits of information about X . This becomes a
problem when X itself does not have much entropy, which
occurs for instance if the bits in X are highly biased [13,
15]. Note that the problem is not fundamental: if the bias
parameter (see Sect. 2) is denoted as p, the secrecy capacity
is nh(p + β − 2pβ) − nh(β), which is positive.

A solution was proposed by Maes et al. [17]. Their
approach is to combine debiasing with error correction. For
the debiasing they use the von Neumann algorithm in a
single-pass or multi-pass manner. Their helper data comprise
a selection ‘mask’ that helps the reconstruction algorithm to
identify the locations where von Neumann should yield out-
put.

In this paper we follow a simpler approach similar to the
Index-Based Syndrome (IBS) method [22]. In IBS the helper
data consist of an ordered list of pointers to locations in X ; the
content of X in those locations together forms a codeword.

1 The notationH stands for Shannon entropy. For information-theoretic
concepts, see, e.g., [8].

1.4 Contributions and outline

We introduce an alternative solution to the bias problem
in helper data systems. We follow the condense-then-fuzzy-
extract philosophy proposed by Canetti et al. [7] as one of the
available options when faced with ‘more noise than entropy’
scenarios. Condensing means mapping the source variable
X to a smaller space such that most of the entropy of X is
retained, but the noise entropy is greatly reduced. Our way
of condensing the source is to restrict X to the bit positions
U , with U ⊂ {1, . . . , n} a random subset containing all the
rare symbols. The set U becomes part of the helper data.

Our U bears some similarity to the von Neumann mask
in [17], but there are important differences. (i) The size of
U is tunable. (ii) We can extract source information based
on the legitimate party’s ability to distinguish U from fake
instances of U when a ‘spamming’ technique similar to [21]
is applied.

The outline of this paper is as follows. Section 2 gives
the details of the scheme. Section 3 analyzes the extractable
entropy and the practicality of the ‘spamming’ option. In
Sect. 5 we make some remarks on the use of min-entropy.
Section 6 summarizes and suggests future work.

2 Debiasing based on subset selection

We will use the following notation. The set {1, . . . , n} is
written as [n]. The notation XU means X restricted to the
positions specified in U . Set difference is written as ‘\.’ A
string consisting of n zeroes is written as 0n . The Hamming
weight of X is denoted as w(X). We will consider a source
X ∈ {0, 1}n made up of i.i.d. bits Xi following a Bernoulli
distribution with parameter p, i.e., Pr[Xi = 1] = p. With-
out loss of generality we take p ∈ (0, 1

2). In particular we
are interested in the case p < β where direct application of
the COM fails. The notation ‘log’ stands for the base-2 loga-
rithm. Information distance (Kullback–Leibler divergence)
is denoted as D(p||q) = p log p

q + (1 − p) log 1−p
1−q for

p, q ∈ (0, 1).

2.1 The scheme

Below we present a barebones version of our proposed
scheme. We omit details concerning the protection of the
stored data. There are well-known ways to protect helper
data, using either Public Key Infrastructure or one-way func-
tions [6]. We also omit details that have to do with the
verification of the reconstructed key. These details can be
trivially added.

123

Journal of Cryptographic Engineering (2018) 8:341–349 343

Systemsetup
The following system parameters are fixed. An integer u
satisfying np < u < n, representing the size of U ; a list
length L; a pseudorandom generator f that takes as input a
seed σ and a counter j , and outputs a subset f (σ, j) ⊂ [n]
such that | f (σ, j)| = u; a Secure Sketch (Gen,Rec) that
acts on a source in {0, 1}u and is able to handle bit error rateβ;
a key derivation function KDF : {0, 1}u ×[L] → {0, 1}�. All
these parameters are public.

Enrollment

E1. Measure X ∈ {0, 1}n .
E2. Draw a random subset U ⊂ [n] of size u such that XU

contains as many ‘1’s as possible.
E3. Compute Y = XU and W = Gen(Y).
E4. Draw a random seed σ .
E5. Draw a random z ∈ [L]. Determine a permutation π :

[n] → [n] such that2 π(U) = f (σ, z).
E6. Derive the secret key as S = KDF(Y , z).
E7. Store σ, π,W .

Reconstruction

R1. Read σ, π,W .
R2. Measure X ′ ∈ {0, 1}n .
R3. Construct a set M′ = {i ∈ [n] : X ′

i = 1}. Compute
M = π(M′).

R4. Construct the list L = (f (σ, j))Lj=1.
R5. Determine the index ẑ ∈ [L] for which Lẑ has the

largest overlap withM.
R6. Compute Û = π inv(Lẑ) and Ŷ = Rec(X ′

Û ,W).

R7. Reconstruct the key as Ŝ = KDF(Ŷ , ẑ).

We will typically consider u ≥ 2np. With an exponentially
small probability it may occur that w(X) ≥ u, leading to
XU = 1u in step E2. Even if such an exceptional PUF is
encountered, the scheme still works.

2.2 Explanation of the scheme

The effect of steps E4,E5 is to create a list of U-candidates,
of which only entry z is correct. To an attacker (who knows
u but does not know X or X ′) the L candidates are indistin-
guishable.3

Steps R3–R5 allow for a quick search to identify the
index z of the correct U-candidate. Note that the reconstruc-

2 π(U) means π applied to each element of U individually.
3 Given the i.i.d. model for creating X , the set U itself is uniformly
random. If we want a different model for X , e.g., with asymmetries
between the positions, then L will need to be generated in a way that
follows the statistics of X .

tion algorithm compares a permutedM to L-entries instead
ofM to permuted L-entries; this improves speed. To further
optimize for speed, steps R4 and R5 can be combined in a
loop to select good z values on the fly as soon as a new L j is
generated.

Note that extremely fast pseudorandom generators exist
which spew out more than 8 bits per clock cycle [1,2]. This
makes it practical to work with large values of L , as long
as not too many plausible z-candidates are generated. See
Sect. 3.3. Even on CPU-constrained devices4 (clock speed
of MHz order) it should be possible to achieve L = 210.

We did not explicitly specify how tomap a seed to a size-u
subset of [n]. A very straightforward algorithm would be to
pick u pseudorandom locations in [n].

We did not specify an algorithm for determining the per-
mutation π , nor did we specify in which form π is stored.
These are minor details and have no impact on the overall
efficiency of the scheme, since steps E5 and R3 are per-
formed only once. The computational bottleneck is R4, R5.
For details about permutations we refer to [3,11].

Note that inputting z into the key derivation function
increases the entropy of S by log L bits. If the PUF has ample
entropy then L = 1 suffices, and one can skip all steps involv-
ing the seed σ and the permutation π ; the U itself is stored
as helper data. This yields a scheme that is very fast and
implementable on resource-constrained devices.

3 Analysis

3.1 Entropy after condensing

The Hamming weight of X carries very little information.
Let us assume for the moment that T = w(X) ∈ {0, . . . , u}
is known to the attacker5, just to simplify the analysis.

Even if the attacker knows t and U (i.e., z), there are
(u
t

)

equally probable possibilities for Y . Hence,

H(Y |Z = z, T = t) = log

(
u

t

)

> uh

(
t

u

)
− 1

2
log

t(u − t)

u
− log

e2√
2π

. (2)

The inequality follows from Stirling’s approximation.
As (2) does not depend on z, the entropy H(Y |T = t)

is also given by (2). A lower bound on H(Y |T) is obtained
by taking the expectation over t . This turns out to be rather

4 We are considering devices that are able to employ the PUF key
in cryptographic computations; hence, they cannot be very resource-
constrained.
5 In the security analysis, we denote random variables using capitals,
and their numerical realisations in lowercase.

123

344 Journal of Cryptographic Engineering (2018) 8:341–349

messy, since the distribution of t is a truncated binomial. (It is
given that t ≤ u, while originally w(X) ∈ {0, . . . , n}). As t
equals approximately np on average, the result is H(Y |T) ≈
uh(

np
u). A more precise lower bound is given in Theorem 1

below.

Theorem 1 Let δ be defined as

δ = min

{

e
−2np2

(
u
np −1

)2

, e
−np 1

3

(
u
np −1

)

, e−nD(u
n ||p)

}

. (3)

Let δ < p. Let u ≥ 2np/(1−δ). Then, the entropy of Y given
T can be lower bounded as

H(Y |T) > uh

(
np − nδ

u

)
− 1

2
log

np

1 − δ

− log
e2√
2π

+ 1

2 ln 2

np − nδ

u

−u

{
1 − p

np
+ 2δ

p
+ δ + δ3

p3

}
(1 − δ)−1

(
1 − δ

p

)−2

.

(4)

Proof The proof is rather tedious and can be found in
‘Appendix A.’ �

The entropy of Y is obtained as follows,

H(Y) = H(YT) = H(T) + H(Y |T). (5)

The H(T) is the entropy of the truncated binomial distribu-
tion.

Theorem 2 Let qt = (n
t

)
pt (1 − p)n−t denote the probabil-

ities in the full binomial distribution. Let δ be defined as in
Theorem 1.

H(T)> log
2π

e

√
np(1 − p)+log(1 − δ)−(n−u)qu log

1

qu
.

Proof See ‘Appendix B.’ �
Theorem 3 Let δ be defined as in Theorem 1. Let δ < p. Let
u ≥ 2np/(1 − δ).

H(Y) > uh

(
np − nδ

u

)
+ 1

2 ln 2

np − nδ

u
− log

e3

(2π)3/2

+1

2
log(1 − p) + 3

2
log(1 − δ) − (n − u)qu log

1

qu

−u

[
1 − p

np
+ 2δ

p
+ δ + δ3

p3

]
(1 − δ)−1

(
1 − δ

p

)−2

.

(6)

Proof Follows directly from Theorems 1 and 2 by adding
H(T) + H(Y |T). �

The complicated expression (6) can be well approximated
by uh(np/u) − u/np. Note that the difference between the
original source entropy H(X) = nh(p) and the condensed
form H(Y) ≈ uh(np/u) − u/np is considerable. For exam-
ple, setting n = 640, p = 0.1, u = 128 yields H(Y) ≈ 126
and H(X) ≈ 300. A small part of this huge difference can be
regained using the trick with the entropy of Z . The practical
aspects are discussed in Sect. 3.3.

Note also that our scheme outperforms simple von Neu-
mann debiasing by a factor of at least 2. The von Neumann
algorithm takes n/2 pairs of bits; each pair has a probability
2p(1 − p) of generating a (uniform) output bit; hence, the
extracted entropy is np(1 − p) < np. In our scheme, if we
set u ≈ 2np we get H(Y) ≈ 2np − 2. Furthermore, H(Y) is
an increasing function of u.

3.2 Fuzzy Extraction after condensing

The code offset method applied to Y ∈ {0, 1}u leaks at least
uh(β) bits of information about Y . In case of a ‘perfect’
error-correcting code, the length of a noise-robust key recon-
structed with the COM is H(Y) − uh(β). In Fig. 2 we plot
H(Y) − uh(β) for some example parameter settings. (Note
that in all cases shown here β ≥ p holds; the COM act-
ing on the original source X would be unable to extract any
entropy.) Clearly, there is an optimal u for given (n, p, β).
In practice one is given p and β and has to find (n, u) such
that the H(Y) − uh(β) is large enough.

3.3 The list size L

Webriefly discuss how large L can bemade before the recon-
struction procedure sketched in Sect. 2 starts to produce too
many candidates for z. We define p̃ = p + β − 2pβ.

On the one hand, there is the number of ‘1’ symbols in
X ′
U for the correct U . The number of 1’s in XU is on average

np. Of these, on average np(1 − β) will be a ‘1’ in X ′. The
(u − np) zeroes in XU will generate on average (u − np)β
1’s in X ′. Hence, the number of 1’s in X ′

U is expected to be
around np(1 − β) + (u − np)β = np + (u − 2np)β.

On the other hand, there is the number of 1’s for incorrect
U-candidates. The number of 1’s in X ′ is approximately n p̃.
We pretend that n p̃ is integer, for notational simplicity. We
denote by A ∈ {0, . . . , n p̃} the number of 1’s in X ′

V for a
randomly chosen subset V , with |V| = u. The A follows a
hypergeometric probability distribution

Pr[A = a] =
(n p̃
a

)(n−n p̃
u−a

)

(n
u

) =
(u
a

)(n−u
n p̃−a

)

(n
n p̃

) . (7)

The first expression looks at the process of selecting u out of
n positions with exactly a 1’s hitting the n p̃ existing 1’s in
X ′; the second expression looks at the process of selecting n p̃

123

Journal of Cryptographic Engineering (2018) 8:341–349 345

200 300 400 500 600 700

20

40

60

80

100

120

140

β = 0.10

β = 0.15β = 0.20

u

H(Y) − uh(β) n = 1024; p = 0.10

100 200 300 400 500 600 700

20

40

60

80

100

120

140

n = 1024

n = 768n = 512

u

H(Y) − uh(β) p = 0.10; β = 0.10

Fig. 2 The key length H(Y) − uh(β) that the code offset method can
reproducibly extract after the condensing step, plotted as a function of
u for various parameter values. For H(Y) the bound in Theorem 3 is
used

positions in X ′ such that exactly a of them lie in V . We have
Ea a = u p̃ andEa(a−u p̃)2 = u p̃(1− p̃)(n−u)/(n−1) <

u p̃. In other words, a is sharply peaked around u p̃.
Wecanput a threshold θ somewhere in the gapbetweenu p̃

and np+ (u−2np)β, and declare a U-candidate V to be bad
if the Hamming weight of X ′

V is lower than θ . Let us set θ =
np+ (u − 2np)β − c ·√np with c sufficiently large to avoid
false negatives (i.e., missing the correct U). In a way analo-
gous to (3), we can bound the false positive probability as

Pr[A ≥ θ] < min

{
e−2u p̃2(θ/u p̃−1)2 , e−u p̃ 1

3 (θ/u p̃−1),

e
−uD

(
θ
u || p̃

)}
. (8)

These bounds are obtained by applying (3) and replacing
u → θ , n → u, p → p̃. Figure3 shows how many bits of
entropy (b ≈ − log Pr[A > θ]) can be obtained from z with-
out running into false positives in step R5. To extract b bits of
entropy, a list length L = 2b is needed. Figure3 serves just to
show the orders of magnitude and is by no means an exhaus-
tive treatment of the whole parameter space n, p, β, u, θ . We

1000 1500 2000

5

10

15

20

25

– log Pr[A > θ]

n

p = 0.1 p = 0.15

p = 0.2

Fig. 3 Plots of − log Pr[A > θ] as a function of n for β = p,
u = 2.25np, and θ = np + (u − 2np)β − c

√
np with c = 4. The

Pr[A > θ] was obtained by numerical summation of (7). The vertical
axis represents approximately the number of bits b = log L that can be
extracted from z without generating false positives

remark that the curves depend quite strongly on the threshold
parameter c.

It is important to note that it is perfectly possible to make
L extremely large. Then, many false positives occur, but this
is not a fundamental problem. It requires extra work: one key
reconstruction and one verification (e.g., of a key hash) per
false positive. Depending on the available n, the computing
platform, etc., this may be a viable option.

4 Comparison to other debiasing schemes

The main algorithms to compare against are given in the
CHES2015 paper byMaes et al. [17]. They introduce several
schemes that performdebiasing in the context of a helper data
system: Classic VonNeumann (CVN), Pair-Output (2O-VN)
and Multi-Pass Tuple Output (MP-TO-VN). The following
figures of merit are important, (i) the amount of entropy
retained in Y , from the original nh(p) contained in X ; (ii) the
amount of work required during the reconstruction phase to
derive Ŷ from X ′.

Here, we will not include the additional entropy obtained
from Z in our scheme. The procedure for reconstructing ẑ has
no equivalent in [17], whichmakes comparison very difficult.

Scheme Retained entropy Reconstruction of Ŷ

Trivial ≈ 2np − 2 Take subset of X ′
Debiasing (at u = 2np)
CVN np(1 − p) Take subset of X ′;

≈ np binary comp
2O-VN np(1 − p) Take subset of X ′
MP-TO-VN np(1 − p)

(two-pass) + 1
2n

p2(1−p)2

p2+(1−p)2
Take subset of X ′

123

346 Journal of Cryptographic Engineering (2018) 8:341–349

The reconstruction effort is practically the same in all these
schemes and is very low.

The entropy estimates are obtained as follows. The result
np(1 − p) for the original von Neumann algorithm is dis-
cussed in Sect. 3.1. The CVN and 2O-VN retain exactly this
amount. In the second VN pass as described in [17], there are
n
2 − np(1 − p) bit pairs left after the first pass, and in each
bit pair the two bits have the same value. In the second pass,
this gives rise to n

4 − 1
2np(1 − p) = n

4 [p2 + (1 − p)2]
von Neumann comparisons. Each comparison yields an

output bit with probability 2 p2

p2+(1−p)2
(1−p)2

p2+(1−p)2
. Hence,

the expected number of output bits in the second pass is
1
2np

2(1 − p)2/[p2 + (1 − p)2].
Note that the two-pass MP-TO-VN adds at most 25% to

the CVN entropy, while trivial debiasing adds slightly more
than 100%.

5 Some remarks onmin-entropy

One could take the point of view that the relevant quantity
to study is min-entropy instead of Shannon entropy, since
we are deriving cryptographic keys. The min-entropy of the
source is Hmin(X) = n log(1 − p)−1, corresponding to the
all-zero string. For small p this is significantly smaller than
the Shannon entropy H(X) = nh(p). On the other hand,
the entropy loss is also smaller when computed in terms of
min-entropy.

Theorem 4 Consider a linear binary code with message
length k and codeword length n that is able to correct t
errors. Let X ∈ {0, 1}n consist of i.i.d. bits that are Bernoulli-
distributed with parameter p < 1

2 .

Hmin(X |Syn X) > Hmin(X) − (n − k)

+(t + 1) log
1 − p

p

− 1

2n−k ln 2

t∑

a=0

(
n

a

) {(
1 − p

p

)t−a+1

− 1

}

. (9)

The proof is given in ‘Appendix C.’ For codes that are far
from perfect, the last term in (9) is negligible.

However, there are strong arguments against using min-
entropy in the context of biased PUFs. A situation where
X has a Hamming weight far below the typical value np
can be seen as a hardware error and is likely to occur only
when the chip itself is malfunctioning. If we condition all our
probabilities on the premise that the hardware is functioning
correctly, then we are back in the typical regime; there min-
entropy is almost identical to Shannon entropy.

6 Summary

Wehave introduced amethod for source debiasing that can be
used in Helper Data Systems to solve the ‘more noise than
entropy’ problem. Our method applies the condense-then-
fuzzy-extract idea [7] in a particularly simple way: the space
{0, 1}n is condensed to {0, 1}u in such a way that all the rare
symbols are kept; meanwhile, the noise entropy is reduced
from nh(β) to uh(β). Theorem 3 gives a lower bound on the
retained entropy H(Y). Furthermore, there is the option of
extracting additional entropy from the index z, which points
at the real subset U among the fakes. Even in its bare form,
without the fake subsets, our method outperforms basic von
Neumann debiasing by factor of at least 2.

Figure2 shows that after the condensing step the code
offset method can extract significant entropy in a situation
where the bareCOMfails. It also shows the trade-off between
the reduction of source entropy and noise entropy as u varies.

In Sect. 3.3 we did a very preliminary analysis of the prac-
ticality of extracting information from the index z.Morework
is needed to determine how this works out for real-world
parameter values n, p, β and to see how the computations in
steps R4 and R5 can be optimized for speed.

The entropy analysis can be improved and extended in var-
ious ways, e.g., by considering different noise models such
as asymmetric noise.

Acknowledgements We thank Sebastian Verschoor, Frans Willems,
Ruud Pellikaan, and Niels de Vreede for useful discussions.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

A Proof of Theorem 1

Westart with a number of definitions and supporting lemmas.
We define the binomial probability qt = (n

t

)
pt (1 − p)n−t .

We define Δ = Pr[w(X) > u] = ∑n
t=u+1 qt and πt =

qt/(1 − Δ) for t ≤ u, such that the vector (πt) is the proba-
bility distribution of t from the attacker’s point of view. The
notation Et will refer to the binomial distribution (qt)nt=0,
while Ẽ will refer to the truncated binomial (πt)

u
t=0.

Lemma 1 Let k ≥ 1, n ≥ 2.

nh

(
k

n

)
− 1

2 log
k(n − k)

n
− log

e2√
2π

≤ log

(
n

k

)

≤ nh

(
k

n

)
− 1

2 log
k(n − k)

n
− log

2π

e
. (10)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Journal of Cryptographic Engineering (2018) 8:341–349 347

Proof We write
(n
k

) = n!
k!(n−k)! and apply Stirling’s inequali-

ties
√
2πNN+ 1

2 e−N ≤ N ! ≤ eN N+ 1
2 e−N (valid for N ≥ 1)

to n!, k! and (n − k)!. In the first line, the inequalities used
are n! ≥ . . ., k! ≤ . . ., and (n − k)! ≤ In the second
line, the inequalities point in the other direction. After some
tedious rewriting, the Lemma follows. �
Lemma 2 Let u > 2np. For the above defined Δ, it then
holds that Δ ≤ δ, with

δ
def= min

{

e
−2np2

(
u
np −1

)2

, e
−np 1

3

(
u
np −1

)

, e−nD(u
n ||p)

}

.

(11)

Proof The three expressions result from the tail inequalities
of Hoeffding, Chernoff, and Chernoff–Hoeffding, respec-
tively. Hoeffding’s inequality states that Pr[w(X) ≥ np +
nε] ≤ exp(−2nε2); a version the Chernoff bound for ε ≥
p has Pr[w(X) ≥ np + nε] ≤ exp(− 1

3nε); Chernoff–
Hoeffding gives exp[−nD(p+ε||p)].We have ε = u/n− p.
Only the listed form of the Chernoff bound actually needs
u > 2np as a condition. �
Lemma 3 It holds that Ẽt t > n(p − δ).

Proof

Ẽt t = 1

1 − Δ

u∑

t=0

qt t >

u∑

t=0

qt t = np −
n∑

t=u+1

qt t

> np −
n∑

t=u+1

qtn = np − nΔ ≥ np − nδ. (12)

In the last step, we used Lemma 2. �
Lemma 4 It holds that Ẽt t <

np
1−δ

.

Proof

Ẽt t = 1

1 − Δ

u∑

t=0

qt t <
1

1 − Δ

n∑

t=0

qt t = np

1 − Δ
≤ np

1 − δ
.

(13)

In the last step, we used Lemma 2. �
Lemma 5 It holds that

Ẽt t
2 <

(np)2 + np(1 − p)

1 − δ
. (14)

Proof

Ẽt t
2 = 1

1 − Δ

u∑

t=0

qt t
2 <

1

1 − Δ
Et t

2

= (np)2 + np(1 − p)

1 − Δ
≤ (np)2 + np(1 − p)

1 − δ
. (15)

In the last step, we used Lemma 2. �
Lemma 6 Let p ∈ [0, 1]. Let r ∈ (0, 1

2]. Then, it holds that

h(p) ≥ Ωr (p)

Ωr (p) = h(r) + (p − r)h′(r)

− (p − r)2

r2
[h(r) − rh′(r)]. (16)

The expression h(r) − rh′(r) is a nonnegative increasing
function on r ∈ (0, 1

2].
Proof Ωr is a parabola constructed such that Ωr (0) = 0,
Ωr (r) = h(r) and Ω ′

r (r) = h′(r). The property h(p) ≥
Ωr (p) is verified by visual inspection. We define g(r) =
h(r) − rh′(r). We have limr→0 g(r) = 0. Furthermore,
d
dr g(r) = −rh′′(r) > 0, which proves that g is increasing.
Together with g(0) = 0 that implies that g(r) is nonnegative
on the given interval. �
Lemma 7 Let δ < p and u ≥ 2np/(1 − δ).

Ẽt h

(
t

u

)
> h

(
np − nδ

u

)

−
{
1 − p

np
+ 2δ

p
+ δ + δ3

p3

}
(1 − δ)−1

(
1 − δ

p

)−2

. (17)

Proof We use Lemma 6 to expand h(t
u) around t = Ẽt t ,

h(t
u) ≥ h

(
Ẽt

t
u

)
+ linear −

(
t − Ẽt t

)2

(
Ẽt t

)2

[
h

(
Ẽt

t
u

)

−Ẽt
[t
u

]
h′ (

Ẽt
t
u

)]
. (18)

When we take the expectation Ẽt , the term linear in t − Ẽt t
disappears,

Ẽt h(t
u) ≥ h

(
Ẽt

t
u

)
−

⎡

⎢
⎣

Ẽt t2
(
Ẽt t

)2 − 1

⎤

⎥
⎦

[
h

(
Ẽt

t
u

)

−Ẽt
[t
u

]
h′ (

Ẽt
t
u

)]
. (19)

Weuse Ẽt t < u/2 to bound the second occurrence of h(Ẽt
t
u)

as h(· · ·) < 1 and to use h′ > 0. For the first occurrence of
h(Ẽt

t
u) we use that h is an increasing function and apply

Lemma 3.

Ẽt h
(t
u

)
> h

(
np − nδ

u

)
−

[
Ẽt t2

(Ẽt t)2
− 1

]

. (20)

Finally, we bound Ẽt t2 using Lemma 5 and we bound Ẽt t
using Lemma 3. �

123

348 Journal of Cryptographic Engineering (2018) 8:341–349

Lemma 8

Ẽt log

(
u

t

)
> uẼt h(t

u) − log
e2√
2π

− 1
2 log

np

1 − δ
+ 1

2 ln 2

np − nδ

u
. (21)

Proof We start from Lemma 1 and write

log

(
u

t

)
≥ uh(

t

u
) − 1

2 log
t(u − t)

u
− log

e2√
2π

. (22)

We expand the second term as − 1
2 log

t(u−t)
u = − 1

2 log t −
1
2 log(1− t

u) > − 1
2 log t+ 1

2 ln 2
t
u . Then, we apply Ẽt . Jensen

followed by Lemma 4 gives Ẽt log t ≤ log Ẽt t < log np
1−δ

.

Lemma 3 gives Et
t
u >

np−nδ
u . �

With all these lemmas we can finally prove Theorem 1.
From (2) we have

H(Y |T) = ẼtH (Y |T = t) = Ẽt log

(
u

t

)
. (23)

We apply Lemma 8, and then Lemma 7 to lower bound
Ẽt h(t

u).

B Proof of Theorem 2

We begin by lower bounding the entropy of the un-truncated
distribution (qt)nt=0.

Lemma 9 It holds that H(q) ≥ log 2π
e

√
np(1 − p).

Proof

H(q) = −Et log[
(
n

t

)
pt (1 − p)n−t]

= (−Et t) log p − (n − Et t) log(1 − p) − Et log

(
n

t

)

= nh(p) − Et log

(
n

t

)

≥ nh(p) − log

(
n

Et t

)
= nh(p) − log

(
n

np

)
. (24)

In the last line, we used Jensen’s inequality for the function
log

(n
t

)
. We use Lemma 1 to upper bound log

(n
np

)
. �

Now we write

H(T) = Ẽt log
1 − Δ

qt
= log(1 − Δ) + 1

1 − Δ

u∑

t=0

qt log
1

qt

> log(1 − δ) +
u∑

t=0

qt log
1

qt

= log(1 − δ) + H(q) −
n∑

t=u+1

qt log
1

qt

> log(1 − δ) + H(q) −
n∑

t=u+1

qu log
1

qu

= log(1 − δ) + H(q) − (n − u)qu log
1

qu
. (25)

In the last inequality, we used that qt log 1
qt

is a decreasing
function of t for t > u. Finally, we lower bound H(q) with
Lemma 9.

C Proof of Theorem 4

Hmin(X |Syn X) = − logEσ max
x

Pr[X = x |Syn X = σ]
= − log

∑

σ

max
x

Pr[X = x ∧ Syn X = σ]

= − log
∑

σ

max
x :Synx=σ

pw(x)(1 − p)n−w(x)

= − log(1 − p)n
∑

σ

max
x :Synx=σ

(
p

1 − p

)w(x)

= Hmin(X) − log
∑

σ

max
x :Synx=σ

(
p

1 − p

)w(x)

.

The maxx selects the smallest weight w(x). Among the
strings x ∈ {0, 1}n that have syndrome σ (a coset), the one
with the lowest Hamming weight is called the coset leader.
For each weight a, there are possibly multiple cosets whose
leader has weight a. The coset leader weight enumerator,
denoted as ca , counts how many cosets have a leader of
weight a. The

∑
σ summation in the expression above can

be written in terms of the ca ,

∑

σ

max
x :Synx=σ

(
p

1 − p

)w(x)

=
∑

a≥0

ca

(
p

1 − p

)a

. (26)

The code can correct t errors, so for a ≤ t it holds that
ca = (n

a

)
. A perfect code has ca = 0 for a > t . We consider

codes that are far from perfect. We split
∑

σ , which has 2
n−k

terms, into a part with coset leader weights ≤ t and a part
with weights > t . In the latter part, we write (

p
1−p)w(x) ≤

(
p

1−p)t+1. This yields

123

Journal of Cryptographic Engineering (2018) 8:341–349 349

Hmin(X |Syn X) − Hmin(X)

≥ − log

[
t∑

a=0

(
n

a

) (
p

1 − p

)a

+
(

p

1 − p

)t+1
{

2n−k −
t∑

a=0

(
n

a

)}]

. (27)

For a far-from-perfect code, the dominant term in the loga-
rithm is (

p
1−p)t+12n−k . We write the logarithm term in (27)

as − log[(p
1−p)t+12n−k(1 + ε)], with ε � 1, which equals

−(n − k) + (t + 1) log 1−p
p − log(1 + ε). Finally, we apply

− log(1 + ε) ≥ −ε.

References

1. http://gjrand.sourceforge.net/
2. http://www.digicortex.net/node/22
3. Beckenbach, E.F.: Applied Combinatorial Mathematics. Wiley,

London (1964)
4. Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, M.: Prac-

tical quantum oblivious transfer. In: CRYPTO, pp. 351–366 (1991)
5. Böhm, C., Hofer, M.: Physical Unclonable Functions in Theory

and Practice. Springer, Berlin (2013)
6. Boyen,X.: Reusable cryptographic fuzzy extractors. In:ACMCon-

ference on Computer and Communications Security, pp. 82–91
(2004)

7. Canetti, R., Fuller, B., Paneth, O., Reyzin, L., Smith, A.: Reusable
fuzzy extractors for low-entropy distributions. In: Eurocrypt 2016
(2016). eprint.iacr.org/2014/243

8. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd
edn. Wiley, London (2005)

9. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors:
how to generate strong keys from biometrics and other noisy data.
SIAM J. Comput. 38(1), 97–139 (2008)

10. Dodis, Y., Reyzin,M., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. In: Eurocrypt
2004, volume 3027 of LNCS, pp. 523–540. Springer (2004)

11. Durstenfeld, R.: ACM algorithm 235: random permutation. Com-
mun. ACM 7(7), 420 (1964)

12. Gassend, B.: Physical Random Functions. Master’s thesis, Mas-
sachusetts Institute of Technology (2003)

13. Ignatenko, T., Willems, F.M.J.: Information leakage in fuzzy com-
mitment schemes. IEEE Trans. Inf. Forensics Secur. 5(2), 337–348
(2010)

14. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. ACM
Conf. Comput. Commun. Secur. 1999, 28–36 (1999)

15. Koeberl, P., Li, J., Rajan, A., Wu, W.: Entropy loss in PUF-based
keygeneration schemes: the repetition code pitfall. IEEE Int. Symp.
Hardw. Oriented Secur. Trust 2014, 44–49 (2014)

16. Maes, R.: Physically Unclonable Functions: Constructions, Prop-
erties and Applications. Springer, Berlin (2013)

17. Maes, R., van der Leest, V., van der Sluis, E., Willems, F.M.J.:
Secure key generation from biased PUFs. In: Cryptographic Hard-
ware and Embedded Systems (CHES) 2015, volume 9293 of
LNCS, pp. 517–534. Springer (2015)

18. Sadeghi, A.-R., Naccache, D. (eds.): Towards Hardware-Intrinsic
Security. Springer, Berlin (2010)

19. Tuyls, P., Schrijen, G.-J., Škorić, B., van Geloven, J., Verhaegh,
R., Wolters, R.: Read-proof hardware from protective coatings. In:
Cryptographic Hardware and Embedded Systems (CHES) 2006,
volume 4249 of LNCS, pp. 369–383. Springer (2006)

20. Tuyls, P., Škorić, B., Kevenaar, T.: Security with Noisy Data:
Private Biometrics, Secure Key Storage and Anti-Counterfeiting.
Springer, London (2007)

21. Škorić, B., de Vreede, N.: The spammed code offset method. IEEE
Trans. Inf. Forensics Secur. 9(5), 875–884 (2014)

22. Yu,M.-D.,Devadas, S.: Secure and robust error correction for phys-
ical unclonable functions. IEEEDesign Test Comput. 27(1), 48–65
(2010)

123

http://gjrand.sourceforge.net/
http://www.digicortex.net/node/22

	A trivial debiasing scheme for Helper Data Systems
	Abstract
	1 Introduction
	1.1 Helper Data Systems
	1.2 The code offset method (COM)
	1.3 The problem of bias
	1.4 Contributions and outline

	2 Debiasing based on subset selection
	2.1 The scheme
	2.2 Explanation of the scheme

	3 Analysis
	3.1 Entropy after condensing
	3.2 Fuzzy Extraction after condensing
	3.3 The list size L

	4 Comparison to other debiasing schemes
	5 Some remarks on min-entropy
	6 Summary
	Acknowledgements
	A Proof of Theorem 1
	B Proof of Theorem 2
	C Proof of Theorem 4
	References

