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Abstract
The paper is the first part of a program devoted to the study of the behavior of operator-
valued multipliers in Morrey spaces. Embedding theorems and uniform separability
properties involving E-valued Morrey spaces are proved. As a consequence, maximal
regularity for solutions of infinite systems of anisitropic elliptic partial differential
equations are established.

Keywords Differential operators · Maximal regularity · Partial differential
equations · Morrey Spaces

1 Introduction

The aim of this note is to study the behavior of some differential operators in Morrey
spaces. Useful tools to achieve this goal are embedding properties of these spaces
studied in [33–35]. It is worth to mention that weighted spaces are used, in order to
introduce weighted variational and quasi-variational inequalities and kinetic equations
(see [4–6]).
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The interest of such a general setting raises from the following considerations.
Fourier multipliers, in vector-valued function spaces, has been well studied (see
e.g. [29,45]) as well as operator-valued Fourier multipliers [7,15,22,25,46]. On the
other hand, the study of Morrey spaces has received considerable attention in the last
thirty years in different research areas (see e.g. [8–10,16,17,19–21,23,28,31,36,43]). A
further motivation comes from the fact that, to our knowledge, nothing is known con-
cerningMorrey estimates for such operator-valued Fourier multipliers and embedding
properties of abstract Sobolev–Morrey spaces. Lebesgue multipliers of the Fourier
transformation are, in a clear way and in detail, treated in [45], §2.2.1–§2.2.4. We also
mention the papers [24,37,47]where boundary value problems (BVPs) for differential-
operator equations (DOEs) have been studied.

Our main results are operator-valued multiplier theorems in E-valued Morrey
spaces L p,λ (�; E) .Todevelop this study, the authors consider the E-valued Sobolev–
Morrey type function space Wl,p,λ (�; E0, E) = Wl,p,λ (�; E) ∩ L p,λ (�; E0),
where � is a domain in Rn , E0 and E are two Banach spaces and E0 is continu-
ously and densely embedded into E .

Let us introduce the set E
(
Aθ
)
as the space D

(
Aθ
)
equipped with the following

norm

‖u‖E(Aθ ) =
(
‖u‖p + ∥∥Aθu

∥∥p
) 1

p
, 1 ≤ p < ∞, −∞ < θ < ∞.

Let E1 and E2 be twoBanach spaces and θ and p such that 0 < θ < 1 and 1 ≤ p ≤ ∞.

Let us denote by (E1, E2)θ,p the interpolation space obtained from {E1, E2} by the
K -method ([45] §1.3.1), for the above values of p and θ .

In Theorems 4.2 and 4.6 the authors prove that themost regular class of interpolation
space Eα, between E0 and E , is the one such that the mixed differential operators Dα

are bounded from Wl,p,λ (�; E0, E) to L p,λ (�; Eα), where α = (α1, α2, . . . , αn)

and l = (l1, l2, . . . , ln) are n-tuples of nonnegative integer numbers such that |α : l| =∑n
k=1

αk
lk

≤ 1, and are compact from Wl,p,λ (�; E0, E) to L p,λ (�; Eα) if the last
inequality is strict, that is, if |α : l| = ∑n

k=1
αk
lk

< 1.
We point out that these results are sharp because, among the spaces Eα such that

the following embedding holds

DαWl
p (�; E (A) , E) ⊂ L p,λ (�; Eα),

the space (E (A) , E)k,p is the most smooth, i.e. (E (A) , E)k,p ⊂ Eα for all kind of
spaces Eα such that the above embedding is valid.

The undertaken study has the purpose to refine and improve the outcomes contained
in [3] §9, [42] §1.7 for scalar Sobolev spaces, the upshot contained in [26] for one
dimensional vector function spaces, and the achievements obtained in [39–41] for
Hilbert-space valued class.

Throughout the paper we refer to the following parameter-dependent differential-
operator equation

( L + ν) u =
∑

|α:l|=1

aαD
αu + (A + ν) u +

∑

|α:l|<1

Aα (x) Dαu = f , (1.1)
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where ν is a positive parameter, aα are complex numbers, A and Aα (x) are linear
operators in a Banach space E . We notice that, for l1 = l2 = · · · = ln = 2m, Eq.
(1.1) can be written as the following elliptic DOE

∑

|α|=2m

aα (x) D2m
k u (x) + Au (x) +

∑

|α|<2m

Aα (x) Dαu (x) = f (x).

We establish that Eq. (1.1) is L p,λ (Rn; E)-separable, namely, we show that, for all
f ∈ L p,λ (Rn; E), there exists a unique solution u ∈ Wl,p,λ (Rn; E (A) , E) satisfy-
ing (1.1) almost everywhere on Rn and there exists a positive constant C independent
of f , such that the following coercive estimate:

n∑

k=1

∥∥
∥Dlk

k u
∥∥
∥
L p,λ(Rn;E)

+ ‖Au‖L p,λ(Rn;E) ≤ C ‖ f ‖L p,λ(Rn;E)

is true.
This enables us to state that if f ∈ L p,λ (Rn; E) and u is the solution of (1.1), then

all the terms of Eq. (1.1) belong to L p,λ (Rn; E) or, equivalently, that all the terms are
separable in L p,λ (Rn; E).

Moreover, we point out that the above estimate implies that the inverse of
the differential operator generated by (1.1) is bounded from L p,λ (Rn; E) to
Wl,p,λ (Rn; E (A) , E).

The paper is organized as follows. In Sect. 2 we mention the necessary tools from
Banach space theory and some backgroundmaterials. Section 3 is devoted to the proof
of multiplier theorems. In Sect. 4 we study continuity and compactness of embed-
ding operators in E-valued Sobolev–Morrey spaces. In Sect. 5 we obtain separability
properties and, finally, in Sect. 6 maximal regularity properties of infinite systems of
anisotropic

2 Notation and background

Let us introduce the main tools and briefly discuss some consequence of them. Given
� ⊂ Rn a measurable set, E a Banach space and, for x = (x1, x2, . . . , xn), γ = γ (x)
a positive measurable function on �, we set L p,γ (�; E) for the Banach space of
strongly measurable E-valued functions defined in �, endowed with the norm

‖ f ‖L p,γ
= ‖ f ‖L p,γ (�;E) =

(∫

�

‖ f (x)‖p
E γ (x) dx

) 1
p

1 ≤ p < ∞.

We note L p = L p (�; E), the space L p,γ (�; E) when γ (x) ≡ 1.
Let us consider 1 < p < ∞ and 0 ≤ λ < n. We use the notation L p,λ(Rn; E),

for the E-valued Morrey Space of those functions f ∈ L1
loc(R

n; E) for which the
following quantity is finite

|| f ||p
L p,λ(Rn;E)

= sup
x∈Rn , r>0

1

rλ

∫

Br (x)
‖ f (y)‖p

E dy.
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It is worth emphasize that a Banach space E is a ζ -convex space if there exists a
symmetric real-valued function ζ (u, v), defined in E × E , that is convex with respect
to each variable and that satisfies the following properties

ζ (0, 0) > 0, ζ (u, v) ≤ ‖u + v‖ , for ‖u‖ = ‖v‖ = 1.

Wemention that a ζ -convex Banach space E is usually called a UMD space, see for
instance [11]. We also recall that E is a UMD space if and only if the Hilbert operator

(H f ) (x) = lim
ε→0

∫

|x−y|>ε

f (y)

x − y
dy

is bounded in the space L p (R; E) ,∀p ∈ (1,∞).
Note that L p and 
p spaces, as well as Lorentz spaces L pq , p, q ∈ (1,∞), belong to
the class of UMD spaces. We refer the reader to [11] for further information on the
above definitions and comments.

In what follows we need the following definitions.

Definition 2.1 Let γ be a weight function. ABanach space E is called a γ -UMD space
if all E-valuedmartingale difference sequences are unconditional in L p,γ (Rn; E), for
every p ∈ (1,∞), or, equivalently, if there exists a positive constant Cp such that for
any martingale { fk, k ∈ N0} (see [14] §5), any choice of signs {εk, k ∈ N} ∈ {−1, 1}
and any N ∈ N, we have

∥∥∥∥
∥
f0 +

N∑

k=1

εk ( fk − fk−1)

∥∥∥∥
∥
L p,γ (�,E)

≤ Cp ‖ fN‖L p,γ (�,E).

We assume that a Banach space E has the h p,γ property if the Hilbert operator is
bounded in L p,γ (Rn; E) , for all p ∈ (1,∞).
Let C be the set of complex numbers and 0 ≤ ϕ < π. We set

Sϕ = {ξ ; ξ ∈ C, |arg ξ | ≤ ϕ} ∪ {0}.

A linear operator A is said to be positive in a Banach space E and has bound M > 0,
if its domain D (A) is dense in E and

∥
∥∥(A + ξ I )−1

∥
∥∥
B(E)

≤ M (1 + |ξ |)−1 , ∀ξ ∈ Sϕ, ∀ϕ ∈ [0 , π),

where I is the identity operator in E and B (E) is the space of bounded linear operators
on E . The constant M is dependent only on ϕ but, since we consider ϕ a fixed angle,
we do not need uniformly estimate with respect to ϕ.Without ambiguity we only write
A + ξ instead of A + ξ I and denote it by Aξ . It is useful to recall ([45] §1.15.1) that
there exist fractional powers Aθ of the positive operator A, −∞ < θ < ∞.

We need to introduce the following definition, that hereafter plays an important
role.
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Denoting by F the Fourier transformation, a function � ∈ L∞ (Rn; L (E1, E2))

is called a multiplier from L p,λ (Rn; E1) to Lq,λ (Rn; E2), provided there exists a
positive constant C such that

∥∥∥F−1� (ξ) Fu
∥∥∥
Lq,λ(Rn;E2)

≤ C ‖u‖L p,λ(Rn;E1)

for all u ∈ L p,λ (Rn; E1).
Let us denote by Mq,λ

p,λ (E1, E2) the set of all multipliers from L p,λ (Rn; E1) to

Lq,λ (Rn; E2) . If E1 = E2 = E we simply write Mq,λ
p,λ (E) instead of Mq,λ

p,λ (E1, E2).
In the sequel let us consider H a generic set, h a parameter in H and

M (H) =
{
�h ∈ Mq,λ

p,λ (E1, E2) , h ∈ H
}

a collection of multipliers in Mq,λ
p,λ (E1, E2).

A family of sets M (H) ⊂ B (E1, E2), dependent on h ∈ H , is called a uniform
collection of multipliers , if there exists a positive constant C , independent of h ∈ H ,
such that ∥∥∥F−1�h Fu

∥∥∥
Lq,λ(Rn;E2)

≤ C ‖u‖L p,λ(Rn;E1)

for all h ∈ H and u ∈ L p,λ (Rn; E1).
A set K ⊂ B (E1, E2) is said to be R-bounded (see e.g. [15,22,46]), if there exists

a positive constant C such that for all T1, T2, . . . , Tm ∈ K and u1,u2, . . . , um ∈ E1,
m ∈ N,

1∫

0

∥∥∥
∥∥∥

m∑

j=1

r j (y) Tju j

∥∥∥
∥∥∥
E2

dy ≤ C

1∫

0

∥∥∥
∥∥∥

m∑

j=1

r j (y) u j

∥∥∥
∥∥∥
E1

dy,

where
{
r j
}
is a sequence of independent symmetric [−1, 1]-valued random variables

on [0, 1]. The smallest constantC is called the R-bound of K and is denoted by R (K ).
A family of sets K (h) ⊂ B (E1, E2) , dependent on the parameter h ∈ H , is called

uniformly R-bounded with respect to h, if there is a positive constant C such that, for
all T1, T2, . . . , Tm ∈ K (h) and u1,u2, . . . , um ∈ E1, m ∈ N,

1∫

0

∥∥∥
∥∥∥

m∑

j=1

r j (y) Tj (h) u j

∥∥∥
∥∥∥
E2

dy ≤ C

1∫

0

∥∥∥
∥∥∥

m∑

j=1

r j (y) u j

∥∥∥
∥∥∥
E1

dy,

where the constant C is independent of the parameter h, that is

sup
h∈H

R (K (h)) < ∞.

In a similar way we can introduce the multipliers in the weighted spaces
L p,γ (Rn; E) and define Mp,γ

p,γ (E) as the collection of multipliers in L p,γ (Rn; E).
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In view of the next definition we set

Un = {β =(β1, β2, . . . , βn)∈N × N × · · · × N , |β| ≤ n} and ξβ = ξ
β1
1 ξ

β2
2 · · · ξβn

n .

Definition 2.2 A Banach space E satisfies a multiplier condition, with respect to p ∈
(1,∞) and a weight function γ, if for every � ∈ Cn (Rn \ {0}; B (E)) such that

{
ξβDβ

ξ � (ξ) : ξ ∈ Rn \ {0}, β ∈ Un

}
,

is R-bounded, it follows that � ∈ Mp,γ
p,γ (E).

Remark 2.3 It is interesting to observe that the classicalmultiplier results (see Theorem
1 and 2 in [44]) implies that the space 
p, p ∈ (1,∞), satisfies themultiplier condition
with respect to p and the weight functions

γ = |x |α , −1 < α < p − 1, γ =
N∏

k=1

⎛

⎝1 +
n∑

j=1

∣∣x j
∣∣α jk

⎞

⎠

βk

,

α jk ≥ 0, N ∈ N, βk ∈ R.

We recall that a Banach space E satisfies Property (α) (see e.g. [22]) if there exists
a constant α such that

∥∥∥∥∥∥

N∑

i, j=1

αi jεiε
′
j xi j

∥∥∥∥∥∥
L2

(
�×�

′ ;E
)

≤ α

∥∥∥∥∥∥

N∑

i, j=1

εiε
′
j xi j

∥∥∥∥∥∥
L2(�×�′;E)

for all N ∈ N, xi, j ∈ E , αi j ∈ {0, 1}, i, j = 1, 2, . . . , N , and all choices of indepen-
dent, symmetric, {−1, 1}-valued random variables ε1, ε2, . . . , εN , ε′

1, ε
′
2, . . . , ε

′
N on

probability spaces � and �′.
For instance, the space L p (�), 1 ≤ p < ∞, verify Property (α).
A Banach space E is said to have local unconditional structure (in short l.u.st.)

(see [32]) if there exists a positive constant C with the following property: given any
finite dimensional subspace F ⊂ E , there exists a space U , with an unconditional
basis {un}, and operators A from F to U and B from U to E such that BA is the
identity on F and ‖A‖ · ‖B‖ · χ{un} ≤ C .

Let us recall that a function γ is aMuckenhoupt Ap weight (see [30] ), i.e. γ ∈ Ap,
1 < p < ∞, if there is a positive constant C such that

⎛

⎜
⎝

1

|Q|
∫

Q

γ (x) dx

⎞

⎟
⎠

⎛

⎜
⎝

1

|Q|
∫

Q

γ
− 1

p−1 (x) dx

⎞

⎟
⎠

p−1

≤ C,

for all balls Q ⊂ Rn .
The next remark shows a useful property that correlates the above definitions ([38],

Theorem 3.7).
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Remark 2.4 If E is a UMD space having Property (α), it satisfies the multiplier con-
dition with respect to γ ∈ Ap, for p ∈ (1,∞).

It is well known (see [25,27]) that any Hilbert space satisfies the multiplier condi-
tion. There are, however, Banach spaces which are not Hilbert spaces but satisfy the
multiplier condition, for example UMD spaces (see [15,22,46]).

Definition 2.5 We say that a positive operator A is R-positive in the Banach space E,

if there exists ϕ ∈ [ 0, π ) such that the set

L A =
{
ξ (A + ξ I )−1 : ξ ∈ Sϕ

}

is R-bounded.

In a Hilbert space, every norm bounded set is R-bounded. As a consequence, in a
Hilbert space all positive operators are R-positive.

Let us now consider � a domain in Rn and l = (l1, l2, . . . , ln). We define
Wl,p,λ (�; E0, E) the space of all functions u ∈ L p,λ (�; E0) having generalized

derivatives Dlk
k u = ∂lk

∂x
lk
k

u ∈ L p,λ (�; E) and equipped with the norm given by:

‖u‖Wl,p,λ(�;E0,E) = ‖u‖L p,λ(�;E0)
+

n∑

k=1

∥∥∥Dlk
k u
∥∥∥
L p,λ(�;E)

< ∞.

For E0 = E the space Wl,p,λ (�; E0, E) is simply denoted by Wl,p,λ (�; E).
Let us recall the definition of aHardy-LittlewoodMaximal function, a notion which

is very important in various areas of analysis including harmonic analysis, PDE’s and
function theory (see e.g. [18]).

Definition 2.6 Let f ∈ L1
loc(R

n; E). The Hardy-Littlewood Maximal function of f
is defined by

M( f )(x) = sup
r>0

1

|Br (x)|
∫

Br (x)
‖ f (y)‖E dy

where Br (x) is a ball centered at x ∈ Rn with radius r > 0.

Let us consider the following anisotropic partial differential equation (PDE)

∑

|α:l|≤1

aαD
αu (x) = f (x),

where aα are complex numbers. It is anisotropic elliptic if, for all ξ ∈ Rn, there exists
a positive constant C such that

∣∣∣∣∣∣

∑

|α:l|=1

aαξα

∣∣∣∣∣∣
≥ C

n∑

k=1

|ξk |lk .

The term anisotropic means that the principal part could contain generally, different
differentiation with respect to different variables.
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3 Multiplier theorems

Our aim in this section is to prove a sufficient condition to have multipliers in E-
valued Morrey spaces L p,λ(Rn; E). In order to obtain this result we make use of
the concepts of Hardy-Littlewood maximal function, Muckenhoupt weights Ap and
Fouriermultipliers theorems in E-valued in L p spaces.We refer the reader to [2,12,48]
for related results.

Theorem 3.1 Assume that the following conditions are verified:

(1) E, E1 are UMD spaces satisfying Property (α), �h ∈ Cn (Rn \ {0} ; B (E, E1)),
h ∈ H;

(2) γ ∈ Ap, 1 < p < ∞.

Moreover, if the quantity

sup
h∈H

R
({

ξβDβ
ξ �h (ξ) : ξ ∈ Rn \ {0} , β ∈ Un

})

is finite, then {�h}h∈H is a uniformly collection of multipliers in M p,γ
p,γ (E, E1).

If n = 1 then, the result remains true for all the UMD spaces E and E1.

Proof The theorem is proved, in a similar way as in [1]. ��
Remark 3.2 It is easily verifiable that Theorem 3.1 is true if multiplier functions are
not dependent on a parameter.

Theorem 3.3 Let us suppose that all conditions of Theorem 3.1 are true. Then,
{�h}h∈H is a uniform collection of multipliers in L p,λ (Rn; E), for every 1 < p < ∞
and 0 < λ < n.

Proof We recall that a function � ∈ L∞ (Rn; L (E)) is a multiplier in the space
L p,γ (Rn; E) if there exists a positive constant C such that the operator u →
F−1� (ξ) Fu is bounded in L p,γ (Rn; E). This is equivalent to say that the convo-
lution operator u → Ku = [

F−1� (ξ)
] ∗ u is bounded in L p,γ (Rn; E) i.e.

‖Ku‖L p,γ (Rn;E) ≤ C ‖u‖L p,γ (Rn;E) (3.1)

for all u ∈ L p,γ (Rn; E).
We get the required result if we prove that estimate (3.1) implies

‖Ku‖L p,λ(Rn;E) ≤ C ‖u‖L p,λ(Rn;E).

Let us fix any γ̄ ∈]λ/n; 1[. For any x0 ∈ Rn and any r > 0 we consider χ = χBr (x0),
the characteristic function of Br (x0) and M χBr (x0) the Hardy-Littlewood maximal
function of χBr (x0).

We know that [(MχBr (x0))
γ̄ ] ∈ A1 ⊂ Ap for 0 < γ̄ < 1, 1 < p < ∞ ([13] see

also [18]) and from Lemma 8 in [9] we have
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∫

Br (x0)
‖K u(x)‖p

E dx =
∫

Rn
‖K u(x)‖p

E

[(
χBr (x0)(x)

)γ̄ ]
dx

≤
∫

Rn
‖K u(x)‖p

E

[(
MχBr (x0)(x)

)γ̄ ]
dx

≤
∫

Rn
‖u(x)‖p

E

[(
MχBr (x0)(x)

)γ̄ ]
dx

=
{∫

B2r
‖u(x)‖p

E

(
MχBr (x0)(x)

)γ̄
dx

+
∞∑

k=2

∫

B2kr \B2k−1r

‖u(x)‖p
E

(
MχBr (x0)(x)

)γ̄
dx

}

≤ c rλ ‖u‖p
L p,λ(Rn)

{

2λ +
∞∑

k=2

2λ k

(2(k − 1) − 1)n γ̄

}

≤ c rλ ‖u‖p
L p,λ(Rn)

.

Then, it follows immediately

‖Ku‖L p,λ(Rn) ≤ C ‖u‖L p,λ(Rn).

��

4 Embedding theorems in abstract Morrey spaces

In this section, continuity and compactness of embedding operators in E-valued
Sobolev–Morrey spaces are derived. Specifically, boundedness and compactness of
mixed differential operators in the framework of abstract interpolation of Banach
spaces are shown.

Theorem 4.1 Let 1 < p < ∞, γ ∈ Ap, 0 < λ < n, l = (l1, l2, . . . , ln) and E be
a Banach space. Let us also assume that � ⊂ Rn is a region such that there exists
a bounded linear extension operator from Wl

p,γ (�; E) to Wl
p,γ (Rn; E). Then, there

exists a bounded linear extension operator from Wl,p,λ (�; E) to Wl,p,λ (Rn; E).

Proof From the assumptions we know that there exists a bounded extension operator
P acting from Wl

p,γ (�, E) to Wl
p,γ (Rn, E), i.e.

‖Pu‖Wl
p,γ (Rn ,E) ≤ C ‖u‖Wl

p,γ (�,E)

for allu ∈ Wl
p,γ (�, E) .Let us fix any γ̄ ∈]λ/n; 1[;weknow that [(MχBr (x0))

γ̄ ](x) ∈
A1 ⊆ Ap, for every ball Br = Br (x0) having center x0 ∈ Rn and radius r > 0. Then,
we have
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∫

Br (x0)
‖P u(x)‖p

E dx =
∫

Rn
‖P u(x)‖p

E (χBr (x0)(x))
p[(χBr (x0)(x)

)γ̄ ]
dx

≤
∫

Rn
‖Pu(x)‖p

E (χBr (x0)(x))
p [(MχBr (x0))(x)

γ̄ ]dx

≤
∫

�

‖u(x)‖p
E (χBr (x0)(x))

p [(MχBr (x0))(x)
γ̄ ]dx

≤ c rλ‖u‖p
L p,λ(�,E)

.

Repeating the same arguments for the generalized derivatives Dlk
k Pu we obtain the

requested inequality

‖Pu‖Wl,p,λ(Rn ,E) ≤ C ‖u‖Wl,p,λ(�,E) (4.1)

for all u ∈ Wl,p,λ (�, E). ��
Theorem 4.2 Let us suppose that the following assumptions are true:

(1) E is aBanach space satisfying themultiplier conditionwith respect to p ∈ (1,∞),
A is a R-positive operator in E for ϕ ∈]0, π ];

(2) let 0 < λ < n,α = (α1, α2, . . . , αn) be given and suppose that l = (l1, l2, . . . , ln)
is a n-tuples of nonnegative integer numbers such that

κ = |α : l| =
n∑

k=1

αk

lk
≤ 1 and 0 ≤ μ ≤ 1 − κ;

(3) � ⊂ Rn is a region such that there exists a bounded linear extension operator
from Wl,p,λ (�; E (A) , E) to Wl,p,λ (Rn; E (A) , E).
Then, the embedding

DαWl,p,λ (�; E (A) , E) ⊂ L p,λ
(
�; E

(
A1−κ−μ

))

is continuous and there exists a positive constant Cμ such that

∥
∥Dαu

∥
∥
L p,λ(�;E(A1−κ−μ))

≤ Cμ

[
hμ ‖u‖Wl,p,λ(�;E(A),E) + h−(1−μ) ‖u‖L p,λ(�;E)

]
(4.2)

for all u ∈ Wl,p,λ (�; E (A) , E) and every h > 0.

Proof We distinguish two cases.
First case: � = Rn .

We have that

∥∥Dαu
∥∥
L p,λ(Rn;E(A1−κ−μ))

∼
∥∥∥F−′ (iξ)α A1−κ−μû

∥∥∥
L p,λ(Rn;E)

.
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Additionally, for every u ∈ Wl,p,λ (Rn; E (A), E), we see that

‖u‖Wl,p,λ(Rn;E(A),E) = ‖u‖L p,λ(Rn;E(A)) +
n∑

k=1

∥∥
∥Dlk

k u
∥∥
∥
L p,λ(Rn;E)

=
∥∥∥F−1û

∥∥∥
L p,λ(Rn;E(A))

+
n∑

k=1

∥∥∥F−1
[
(iξk)

lk û
]∥∥∥

L p,λ(Rn;E)

∼
∥∥
∥F−1Aû

∥∥
∥
L p,λ(Rn;E)

+
n∑

k=1

∥∥
∥F−1

[
(iξk)

lk û
]∥∥
∥
L p,λ(Rn;E)

.

Then, prove (4.2) is equivalent to show

∥
∥∥F−1 (iξ)α A1−κ−μû

∥
∥∥
L p,λ(Rn ,E)

≤ Cμ

[
hμ

(∥∥∥F−1Aû
∥∥∥
L p,λ(Rn ,E)

+
n∑

k=1

∥∥∥F−1
[
(iξk)

lk û
]∥∥∥

L p,λ(Rn ,E)

)

+ h−(1−μ)
∥∥∥F−1û

∥∥∥
L p,λ(Rn ,E)

]
, (4.3)

for a suitable positive constant Cμ. We obtain inequality (4.3), at once, if we prove

that Q0h = ξαQh (ξ) and Qkh = ξ
lk
k Qh (ξ) are uniform collections of multipliers in

L p,λ (Rn, E), where

Qh (ξ) = hμ

(

A +
n∑

k=1

|ξk |lk
)

+ h−(1−μ), h > 0

This fact is proved in a similar way as in [1], Theorem A2. Really, to achieve this, we
prove that the sets

{
ξβDβ�i,h (ξ) : ξ ∈ Rn \ {0} , β ∈ Un, i = 0, 1, . . . , n

}

are R-bounded in E and the R-bounds are independent of h, applying a technique
similar to the one used in [40] Lemma3.1. From [40] Lemma3.1,we have the existence
of a constant C > 0 such that

∣∣ξβ
∣∣ ∥∥Dβ�h (ξ)

∥∥
B(E)

≤ C, ξ ∈ Rn \ {0}, β ∈ Un, (4.4)

uniformly in h. Using the R-positivity assumption of the operator A and from the
above estimate we obtain that the following sets

{
AQ−1

h (ξ) : ξ ∈ Rn \ {0}
}
,

{(

1 +
n∑

k=1

|ξk |lk + h−1

)

Q−1
h (ξ) : ξ ∈ Rn \ {0}

}
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are R-bounded, uniformly respect to h. Furthermore, for u1,u2, . . . , um ∈ E , m ∈ N
and ξ j = (

ξ1 j , ξ2 j , . . . , ξnj
) ∈ Rn \ {0}, we get

∥
∥∥
∥
∥∥

m∑

j=1

r j (y)�h

(
ξ j
)
u j

∥
∥∥
∥
∥∥
L p(0,1;E)

=
∥
∥∥
∥
∥∥

m∑

j=1

r j (y) ξαA1−κ−μQ−1
h

(
ξ j
)
u j

∥
∥∥
∥
∥∥
L p(0,1;E)

= ‖
m∑

j=1

r j (y) ξα

(

1 +
n∑

k=1

∣
∣ξk j

∣
∣lk + h−1

)−(κ+μ)

·
[(

1 +
n∑

k=1

∣∣ξk j
∣∣lk + h−1

)

Q−1
h

(
ξ j
)](κ+μ) [

AQ−1
h

(
ξ j
)]1−(κ+μ)

u j ‖L p(0,1;E),

where
{
r j
}
is a sequence of independent symmetric {−1, 1}-valued random variables

in [0, 1] . By virtue of Kahane’s contraction principle ([15], Lemma 3.5) from the
above equality, we obtain

∥∥
∥∥∥∥

m∑

j=1

r j (y) �h

(
ξ j
)

u j

∥∥
∥∥∥∥
L p(0,1;E)

≤ M0 ‖
m∑

j=1

r j (y)

[(

1 +
n∑

k=1

∣∣ξk j
∣∣lk + h−1

)

Q−1
h

(
ξ j
)](κ+μ)

[
AQ−1

h

(
ξ j
) ]1−(κ+μ)

u j ‖L p(0,1;E).

From (4.4), combining the above estimate and product properties of the collec-
tion of R-bounded operators (see e.g. [15], Proposition 3.4), we get that the set
{�h (ξ) : ξ ∈ Rn \ {0}}h>0 is R-bounded, uniformly with respect to h. Analogously,
having in mind Kahane’s contraction principle and both products and additional prop-
erties of the collection of R-bounded operators ([15], Proposition 3.4), we ensure that
the sets {

ξβDβ�h (ξ) : ξ ∈ Rn \ {0} , β ∈ Un
}
h>0

are R-bounded, uniformly with respect to h. It implies that {�h (ξ) : ξ ∈ Rn \ {0}}h>0

is a uniform collection of multipliers in Mp,λ
p,λ (E) and, therefore, we obtain estimate

(4.3).
Second case: � is a generic set in Rn .

Let us set B a bounded linear extension operator from Wl,p,λ(�; E(A), E) to
Wl,p,λ(Rn; E(A), E), and let B� be the restriction operator from Rn to �. Then, for
any u ∈ Wl,p,γ (�; E(A), E), we have

∥∥Dαu
∥∥
L p,λ(�;E(A1−κ−μ))

= ∥∥DαB�Bu
∥∥
L p,λ(�;E(A1−κ−μ))

≤ ∥
∥DαBu

∥
∥
L p,λ(Rn;E(A1−κ−μ))
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≤ Cμ

[
hμ ‖Bu‖Wl,p,λ(Rn ;E(A),E) + h−(1−μ) ‖Bu‖L p,λ(Rn ;E)

]

≤ Cμ

[
hμ ‖u‖Wl,p,λ(�;E(A)E) + h−(1−μ) ‖u‖L p,γ (�;E)

]
,

from which follows estimate (4.2). ��
Corollary 4.3 For the isotropic case i.e., l1 = l2 = · · · = ln = m, κ = |α|

m ≤ 1,
1 < p < ∞, 0 ≤ μ ≤ 1 − κ and 0 < λ < n, the embedding

DαWm,p,λ (�; E (A) , E) ⊂ L p,λ
(
�; E

(
A1−κ−μ

))

is continuous and an estimate of type (4.2) holds.
For n = 1, 0 ≤ j ≤ m − 1 we get that the embedding

D jWm,p,λ (0, 1; E (A) , E) ⊂ L p,λ
(
0, 1; E

(
A1− j

m

))

is continuous.

Theorem 4.4 Let us suppose that all assumptions of Theorem 4.2 are satisfied.
Then, for 0 < μ < 1 − κ and 0 < λ < n, the embedding

DαWl,p,λ (�; E (A), E) ⊂ L p,λ (�; (E (A), E)κ,p
)

is continuous and there exists a positive constant Cμ such that

∥∥Dαu
∥∥
L p,λ

(
�;(E(A),E)κ,p

) ≤ C ‖u‖Wl,p,λ(�;E(A),E)

for all u ∈ Wl,p,λ (�; E (A), E).

Proof Following the line of the proof of Theorem 4.2, it is sufficient to show that an
operator function � (ξ) = ξα[A +∑n

k=1 ξ
lk
k ]−1 is a multiplier from L p,λ (Rn; E) to

L p,λ(Rn; ((E (A) , E)κ,p)). It is proved taking into account R-positivity properties of
the operator A and using the definition of the interpolation spaces ([45], §1.14.5). ��

Let us now prove the next compactness result, using the s-horn condition (see
definition in [3], §7).

Theorem 4.5 Let E and E0 be two Banach spaces such that the embedding E0 ⊂ E
is compact. Let also � ⊂ Rn be a bounded region satisfying the s-horn condition,
1 < p < n : 1 < p ≤ q < p∗ = pσl

σl−p , 1 < q1 ≤ q, σl = ∑n
k=1

1
lk
, 0 < λ < n,

(
1
p − 1

q

)∑n
k=1

1
lk

< 1 and η ≤ n
(
1 − q1

q

)
.

Then, the embedding

Wl,p,λ (�; E0, E) ⊂ Lq1,η (�; E)

is compact.
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Proof UsingRellich’sTheorem,wehave thatWl,p (�; E0, E) is compactly embedded
in Lq (�; E) , for every q ∈ [1, p∗[. We also have that

Lq (�; E) ⊂ Lq1,η (�; E) , q1 ≤ q : n − η

q1
≥ n

q
.

According to the fact that Wl,p,λ (�; E0, E) ⊂ Wl,p (�; E0, E) , the compactness is
established. ��
Theorem 4.6 Suppose that E is a Banach space, � ⊂ Rn is a bounded region
satisfying the s-horn condition and A−1 is a compact operator in E . Let us also
assume 0 < λ < n, 1 < p < n : 1 < p ≤ q < p∗ = pσl

σl−p , σl = ∑n
k=1

1
lk
,

1 < q1 ≤ q and 0 < λ ≤ n
(
1 − p

q

)
.

Then, for 0 < μ ≤ 1 − κ, the embedding

DαWl,p,λ (�; E (A) , E) ⊂ L p,λ
(
�; E

(
A1−κ−μ

))

is compact.

Proof Let us consider (4.2) for h = ‖u‖L p,λ(�;E) ‖u‖−1
Wl,p,λ(�;E(A),E)

.
We obtain, for 0 ≤ μ ≤ 1 − κ , the following multiplicative inequality

∥
∥Dαu

∥
∥
L p,λ(�;E(A1−κ−μ))

≤ Cμ ‖u‖μ

L p,λ(�;E)
‖u‖1−μ

Wl,p,λ(�;E(A),E)
. (4.5)

Assuming, in Theorem 4.5, q1 = p and λ = η, we get that the following embedding
Wl,p,λ (�; E(A), E) ⊂ L p,λ (�; E) is compact.

Then, for any bounded sequence {uk}k∈N ⊂ Wl,p,λ (�; E (A), E) there exists a
subsequence

{
uk j
}
k j∈N which converges in L p,λ (�; E) to an element u. Furthermore,

the boundedness of the set {uk}k∈N in Wl,p,λ (�; E (A), E) and the estimate (4.2)
imply the boundedness of the set {Dαuk}k∈N in L p,λ (�; E), for κ ≤ 1, i.e. this set
is weakly compact in L p,λ (�; E). hence, generalized derivatives Dαu of the limit
function u exist and verify Dαu ∈ L p,λ (�; E). Moreover, due to closedness of
A we get Au ∈ L p,λ(�; E), i.e. u ∈ Wl,p,λ (�; E(A), E). Then, from (4.5), for
0 < κ ≤ 1 − μ, we have

∥∥Dα
(
uk j − u

)∥∥
L p,λ(�;E(A1−κ−μ))

≤ Cμ

∥∥(uk j − u
)∥∥μ

L p,λ(�;E)

∥∥(uk j − u
)∥∥1−μ

Wl,p,λ(�;E(A),E)
.

Due to the boundedness of {uk}k∈N in Wl,p,λ (�; E (A), E), there exists a positive
constantM such that‖(uk − u)‖1−μ

Wl,p,λ(�;E(A),E)
≤ M .Since

∥∥(uk j − u
)∥∥μ

L p,λ(�;E)
→

0 for j → ∞, the above estimate implies that
∥∥Dα

(
uk j − u

)∥∥
L p,λ(�;E(A1−κ−μ))

→ 0

for j → ∞. Hence, the operator u → Dαu is compact from Wl,p,λ (�; E (A), E) to
L p,λ

(
�; E (A1−κ−μ

))
and we reach the conclusion. ��
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In a similar way we obtain the following result.

Theorem 4.7 Suppose that all assumptions of Theorem 4.6 are satisfied.
Then, for 0 < μ ≤ 1 − κ , the embedding

DαWl,p,λ (�; E (A) , E) ⊂ L p,λ (�; ((E (A) , E)κ+μ,p
))

is compact.

We highlight that for the isotropic case and n = 1. From Theorem 4.7, we obtain
the following result.

Corollary 4.8 Let us set 0 ≤ j < m − 1, 0 < μ < 1 − j
m , 1 < p < n and

0 < λ ≤ n
(
1 − p

q

)
.

Then, the embedding

D jWm,p,λ (0, 1; E (A) , E) ⊂ L p,λ
(
0, 1; (E (A) , E) j

m +μ

)

is compact.

Remark 4.9 If E = H , p = q = 2, � = (0, T ) , l1 = l2 = · · · = ln = m and
A = A∗, we obtain a generalization of result Lions–Peetre [26]. Namely, even in the
one dimensional case the result of Lions–Peetre has an improvement considering, in
general, nonselfadjoint positive operators A.

Corollary 4.10 If E = R, A = I and � is a bounded domain, we obtain an embed-
ding in Sobolev–Morrey spaces Wl, p, λ (�). Precisely, for 1 < p < n, 0 < λ ≤
n
(
1 − p

q

)
and κ = ∑n

k=1
αk
lk

≤ 1, the embedding DαWl,p,λ (�) ⊂ L p,λ(�) is
compact.

Example 4.11 For s ∈ R+ let us consider the following space ([45], §1.18.2):

lsq = {u; u = {ui } , i = 1, 2, . . . ,∞, ui ∈ C, }

equipped with the norm

‖u‖lsq =
( ∞∑

i=1

2iqs |ui |q
)1/q

< ∞.

We point out that l0p = 
p. Let us also set A an infinite matrix defined in the space 
q

such that D (A) = 
sq , A = [
δi j2si

]
, where δi j = 0 for i �= j and δi j = 1 if i = j,

being i, j = 1, 2, . . . ,∞. Since the operator A is R-positive in 
q , from Theorems
4.2 and 4.7, we have:
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(1) for κ = ∑n
k=1

αk
lk

≤ 1, 1 < p < n and 0 < λ ≤ n
(
1 − p

q

)
the embedding

DαWl,p,λ
(
�; 
sq , 
q

)
⊂ L p,λ

(
�; 


s(1−κ)
q

)
is continuous and there exists a pos-

itive constant Cμ such that

∥∥Dαu
∥∥
L p,λ

(
�;l(1−κ−μ)s

q

)

≤ Cμ

[
hμ ‖u‖

Wl,p,λ
(
�;lsq ,lq

) + h−(1−μ) ‖u‖L p,λ(�;lq)
]

for all u ∈ Wl,p,λ
(
�; 
sq , 
q

)
and h > 0;

(2) for κ < 1, 0 < λ < n and 0 ≤ μ ≤ 1 − κ the following embedding

DαWl,p,λ
(
�; 
sq , 
q

)
⊂ L p,λ

(
�; 


s(1−κ−μ)
q

)
is compact.

It should be noted that the above embedding has not been obtained by the authors
using a classical method concerning the integral representation of differentiable func-
tions.

5 Separable differential in Morrey spaces

Let us consider the parameter-dependent principal equation

Lu ≡
∑

|α:l|=1
aαD

αu + (A + ν) u = f , (5.1)

where aα are complex numbers, ν is a complex parameter and A is a linear opera-
tor defined in a Banach space E . We want to highlight the fact that A could be an
unbounded operator.

By reasoning as in [1] Theorem A4 we have the following result.

Theorem 5.1 Let us assume that the following assumptions are true:

(1) E is a Banach space satisfying themultiplier condition with respect to p ∈ (1,∞)

and 0 < λ < n;
(2) A is a R-positive operator in E with ϕ ∈ [0 π), ν ∈ S (ϕ1), ϕ1 ∈ [0 π),

ϕ + ϕ1 < π and

K (ξ) =
∑

|α:l|=1

aα (iξ1)
α1 (iξ2)

α2 · · · (iξn)αn ∈ S (ϕ),

|K (ξ)| ≥ C
n∑

k=1

|ξk |lk , ξ ∈ Rn .

Then, for every f ∈ L p,λ (Rn; E) there is a unique solution u of equation (5.1)
that belongs to the space Wl,p,λ (Rn; E (A) , E) and the following coercive uniform
estimate holds true:
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∑

|α:l|≤1

|ν|1−|α:l| ∥∥Dαu
∥∥
L p,λ + ‖Au‖L p,λ ≤ C ‖ f ‖L p,λ . (5.2)

Proof Applying Fourier transform to Eq. (5.1) it follows

K (ξ) + (A + ν) uˆ(ξ) = f ˆ(ξ), (5.3)

where
K (ξ) =

∑

|α:l|=1

aα (iξ1)
α1 (iξ2)

α2 · · · (iξn)αn .

Since K (ξ) ∈ S (ϕ), for every ξ ∈ Rn , we derive that the operator A + K (ξ) is
invertible in E . Then, the solution of (5.3) can be expressed as

u (x) = F−1 [A + K (ξ) + ν]−1 f .̂ (5.4)

Thanks to this expression of u, we have

‖Au‖L p,λ =
∥∥∥F−1A [A + K (ξ) + ν]−1 f ˆ

∥∥∥
L p,λ

,

∥
∥Dαu

∥
∥
L p,λ =

∥
∥∥F−1 (iξ1)

α1 (iξ2)
α2 · · · (iξn)αn [A + K (ξ) + ν]−1 f ˆ

∥
∥∥
L p,λ

.

Then, it is enough to prove that

σ1 (ξ) = A [A + K (ξ) + ν]−1 ,

σ2 (ξ) =
∑

|α:l|≤1

(iξ1)
α1 (iξ2)

α2 · · · (iξn)αn [A + K (ξ) + ν]−1

are multipliers in L p,λ (Rn; E). Therefore, we must show that the following collec-
tions

{
ξβDβσ1 (ξ) : ξ ∈ Rn \ {0} , β ∈ Un

}
,

{
ξβDβσ2 (ξ) : ξ ∈ Rn \ {0} , β ∈ Un

}

are R-bounded in E, uniformly in ν ∈ S (ϕ1). Thanks to the R-positivity of A, the set

{
σ1 (ξ) : ξ ∈ Rn \ {0} , β ∈ Un

}

is R-bounded, uniformlywith respect to parameter ν. Similarly to the proof ofTheorem
4.2 and having in mind hypothesis (2), we have that the set

{
σ2 (ξ) : ξ ∈ Rn \ {0}, β ∈ Un

}
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is R-bounded. Furthermore, making use of Kahane’s contraction principle, product
properties of the collection of R-bounded operators (see e.g. [15], Lemma 3.5, Propo-
sition 3.4) and R-positivity of operator A, we have

R
{
ξβDβσ1 (ξ) : ξ ∈ Rn \ {0}, β ∈ Un

} ≤ C,

R
{
ξβDβσ2 (ξ) : ξ ∈ Rn \ {0}, β ∈ Un

} ≤ C . (5.5)

Estimates (5.5) imply that the functions σ1 (ξ) and σ2 (ξ) are L p,λ (E) multipliers.
The proof is achieved. ��

Let us denote by L0 the differential operator in L p,λ (Rn; E) generated by (5.1)
that is

L0u ≡
∑

|α:l|=1

aαD
αu + Au.

The domain D (L0) of L0 is equal to Wl,p,λ (Rn, E(A), E).
From Theorem 5.1 we obtain the following consequence.

Corollary 5.2 Let us assume that all conditions of Theorem 5.1 are satisfied.
Then, there exist two positive constants M1, M2 such that the solution
u ∈ Wl,p,λ (Rn; E (A) , E) of (5.1) satisfies the following inequalities

M1 ‖u‖Wl,p,λ(Rn;E(A),E) ≤ ‖L0u‖L p,λ(Rn;E) ≤ M2 ‖u‖Wl,p,λ(Rn;E(A),E).

Proof The left part of the chain comes from Theorem 5.1.
The right side is obtained fromTheorem4.2. Indeed, according to the lastmentioned

result, for all u ∈ Wl,p,λ (Rn; E (A) , E), we have

‖L0u‖L p,λ(Rn;E) ≤
∑

|α:l|=1

|aα| ∥∥Dαu
∥∥
L p,λ(Rn;E)

+ ‖Au‖L p,λ(Rn;E)

≤ max
α

|aα|
∑

|α:l|=1

∥∥Dαu
∥∥
L p,λ(Rn;E)

+ ‖Au‖L p,λ(Rn;E)

≤ M2 ‖u‖Wl,p,λ(Rn;E(A),E).

��
Corollary 5.3 Let us suppose that all assumptions of Theorem 5.1 are satisfied.

Then, L0 has a bounded inverse L
−1
0 from L p,λ (Rn; E) intoWl,p,λ (Rn; E (A) , E)

and the resolvent operator (L0 + ν)−1, for ν ∈ S (ϕ1), satisfies the following sharp
coercive estimate

∑

|α:l|≤1

|ν|1−|α:l|
∥∥∥(L0 + ν)−1

∥∥∥
B(L p,λ)

+
∥∥∥A (L0 + ν)−1

∥∥∥
B(L p,λ)

≤ C,

for a suitable constant C > 0.
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Proof From Theorem 4.2 we have that, for ν ∈ S (ϕ1), the operator (L0 + ν)−1 is
bounded from L p,λ (Rn; E) into Wl,p,λ (Rn; E(A), E) and applying (4.2) the above
estimate follows. ��

As a natural consequence of Corollary 5.3 we have the following result.

Corollary 5.4 Let us suppose that all conditions of Theorem 5.1 are true.
Then, the operator L0 is positive in L p,λ (Rn; E).

Let us call L the differential operator in L p,λ (Rn; E) generated by (1.1). Namely,

Lu = L0u + L1u, where L1u =
∑

|α:l|<1

Aα (x) Dαu,

and its domain D (L) is the set Wl,p,λ (Rn, E(A), E).

Theorem 5.5 Let us consider that all conditions of Theorem 5.1 hold and let us also
suppose that

Aα (x) A1−|α:l|−μ ∈ L∞
(
Rn; B (E)

)
for 0 < μ < 1 − |α : l|.

Then, for all f ∈ L p,λ (Rn; E) and sufficiently large |ν| > 0, Eq. (1.1) has a unique
solution u that belongs to the space Wl,p,λ (Rn; E (A) , E) and satisfies the following
coercive estimate

∑

|α:l|≤1

|ν|1−|α:l| ∥∥Dαu
∥∥
L p,λ + ‖Au‖L p,λ ≤ C ‖ f ‖L p,λ .

Proof In view of the above condition on Aα and by virtue of Theorem 4.2 we can state
that there exists h > 0 such that

‖L1u‖L p,λ ≤
∑

|α:l|<1

∥∥Aα (x) Dαu
∥∥
L p,λ ≤

∑

|α:l|<1

∥∥∥A1−|α:l|−μDαu
∥∥∥
L p,λ

≤ hμ

⎛

⎝
∑

|α:l|=1

∥∥Dαu
∥∥
L p,λ + ‖Au‖L p,λ

⎞

⎠+ h−(1−μ) ‖u‖L p,λ (5.6)

for u ∈ Wl,p,λ (Rn; E(A), E). Then, from estimates (5.2) and (5.6), for u ∈
Wl,p,λ (Rn; E(A), E), we obtain

‖L1u‖L p,λ ≤ C
[
hμ ‖(L0 + ν)u‖L p,λ + h−(1−μ) ‖u‖L p,λ

]
. (5.7)

Since ‖u‖L p,λ = 1
ν

‖(L0 + ν) u − L0u‖L p,λ for ν > 0, by Corollary 5.4, ∀u ∈
Wl,p,λ(Rn; E(A), E), we get
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‖u‖L p,λ ≤ 1

ν
‖(L0 + ν) u‖L p,λ + 1

ν
‖L0u‖L p,λ

≤ 1

ν
‖(L0 + λ) u‖L p,λ + M

ν

⎡

⎣
∑

|α:l|=1

∥∥Dαu
∥∥
L p,λ + ‖Au‖L p,λ

⎤

⎦. (5.8)

For every u ∈ Wl,p,λ (Rn; E (A) , E), from estimates (5.6) and (5.7), it follows

‖L1u‖L p,λ ≤ Chμ ‖(L0 + ν) u‖L p,λ + CMν−1h−(1−μ) ‖(L0 + ν) u‖L p,λ . (5.9)

Taking suitable h and ν : Chμ < 1 and CMh−(1−μ) < ν, from (5.10) for sufficiently
large ν, we have ∥∥∥L1 (L0 + ν)−1

∥∥∥
B(L p,λ(Rn;E))

< 1. (5.10)

Now, we have the following relations

(L + ν) = L0 + ν + L1,

(L + ν)−1 = (L0 + ν)−1
[
I + L1 (L0 + ν)−1

]−1
.

Hence, using inequality (5.10), Theorem 5.1 and the perturbation theory of linear
operators. we obtain that the differential operator L+ν is invertible from L p,λ (Rn; E)

into Wl,p,λ (Rn; E (A) , E). This concludes the proof. ��

6 Maximal regular infinite systems of anisotropic equations

Let us define the following infinite system of equations

∑

|α:l|=1

aαD
αum (x)+dm (x) um (x)+

∑

|α;l|<1

∞∑

j=1

dα j (x) D
αu j (x)+νum (x)= fm (x),

(6.1)
for x ∈ Rn, m = 1, 2, . . . ,∞, ν > 0. Let us also fix

D = {dm} , dm > 0, u = {um} , Du = {dmum} ,m = 1, 2, . . . ∞,

lq (D) = lsq , s > 0

for every x ∈ Rn and 1 < q < ∞.

Theorem 6.1 Let us suppose p, q ∈ (1,∞), 0 < λ < n, aα , dαmj ∈ L∞ (Rn) be such
that, for 0 < μ < 1 − |α : l|,
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∣∣
∣∣∣∣

∑

|α:l|=1

aα (iξ1)
α1 (iξ2)

α2 · · · (iξn)αn
∣∣
∣∣∣∣
≥ C

n∑

k=1

|ξk |lk , ξ ∈ Rn,

∑

|α:l|<1

∞∑

j,m=1

[
dα j d

−(1−|α:l|−μ)
m

]q ′
< ∞, for a.e. x ∈ Rn,

1

q
+ 1

q ′ = 1.

Then, for all f (x) = { fm (x)}∞1 ∈ L p,λ
(
Rn; lq

)
and for sufficiently large |ν|, ν ∈

S (ϕ), 0 ≤ ϕ < π , system (6.1) has a unique solution u(x) = {um (x)}∞1 that belongs
to the space Wl,p,λ

(
Rn, lq (D) , lq

)
and the uniform coercive estimate

∑

|α:l|≤1

|ν|1−|α:l| ∥∥Dαu
∥∥
L p,λ(Rn;lq) ≤ C ‖ f ‖L p,λ(Rn;lq)

holds.

Proof Let E = lq , A and Aα (x) be infinite matrices, such that

A = [
dmδmj

]
, Aα (x) = [

dα j (x)
]
, j = 1, 2, . . . ∞.

The operator A is obviously positive in 
q . Thus, thanks to Theorem 5.5, the assertion
is immediate. ��
Remark 6.2 As an application of the above results, considering concreteBanach spaces
instead of E, and concrete R-positive differential, pseudo differential operators, or
finite, infinite matrices instead of operator A, on the differential-operator equation
(1.1), by virtue of Theorem 5.5 we catch different classes of maximal regular partial
differential equations or systems of equations.

Acknowledgements The authors wish to thank to the referees for very useful and fruitful suggestions. The
research of M.A. Ragusa is partially supported by the Ministry of Education and Science of the Russian
Federation (Agreement No. 02.03.21.0008)

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Agarwal, R.P., O’ Regan, D., Shakhmurov, V.B.: Separable anisotropic differential operators in
weighted abstract spaces and applications. J. Math. Anal. Appl. 338(2), 970–983 (2008)

2. Amann, H.: Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications. Math.
Nachr. 186, 5–56 (1997)

3. Besov, O.V., Ilin, V.P., Nikolskii, S.M.: Integral Representations of Functions and Embedding Theo-
rems. Nauka, Moscow (1975)

4. Bianca, C.: Thermostatted kinetic equations asmodels for complex systems in physics and life sciences.
Phys. Life Rev. 9(4), 359–399 (2012)

123

http://creativecommons.org/licenses/by/4.0/


M. A. Ragusa, V. Shakhmurov

5. Bianca, C.: On set of nonlinearity in thermostatted active particles models for complex systems.
Nonlinear Anal. Real World Appl. 13(6), 2593–2608 (2012)

6. Bianca, C.: Modeling complex systems by functional subsystems representation and thermostatted-
KTAP methods. Appl. Math. Inf. Sci. 6, 495–499 (2012)

7. Bourgain, J.: Some remarks on Banach spaces in which martingale differences are unconditional. Ark.
Mat. 21(2), 163–168 (1983)

8. Burenkov, V.I.: Recent progress in studying boundedness of classical operators of real analysis in
general Morrey-type spaces. I. Eurasian Math. J. 3(3), 11–32 (2012)

9. Burenkov, V.I., Guliyev, V.S.: Necessary and sufficient conditions for boundedness of the maximal
operator in local Morrey-type spaces. Studia Math. 163(2), 157–176 (2004)

10. Burenkov, V.I., Guliyev, V.S.: Necessary and sufficient conditions for the boundedness of the Riesz
potential in local Morrey-type spaces. Potential Anal. 30(3), 211–249 (2009)

11. Burkholder: A geometric conditions that implies the existence of certain singular integrals of Banach-
space-valued functions. In: Conference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. I,
II (Chicago, IL), pp. 270–286 (1981)

12. Clement, P., Pagter, B., de Sukochev, F.A., Witvliet, H.: Schauder decomposition and multiplier theo-
rems. Studia Math. 138(2), 135–163 (2000)

13. Coifman, R., Rochberg, R.: Another characterization of BMO. Proc. Am. Math. Soc. 79(2), 249–254
(1980)

14. Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge University Press,
Cambridge (1995)

15. Denk, R., Hieber, M., Prüss, J.: R-Boundedness, Fourier Multipliers and Problems of Elliptic and
Parabolic Type, vol. 166, no. 788. Memoirs of the American Mathematical Society (2003)

16. Eroglu,A., Omarova,M.,Muradova, Sh.: Elliptic equationswithmeasurable coefficients in generalized
weighted Morrey spaces. In: Proceedings of the Institute of Mathematics and Mechanics National
Academy of Sciences Azerbaijan, vol. 43, number (2), pp. 197–213 (2017)

17. Foss,M., Passarelli di Napoli, A., Verde, A.: GlobalMorrey regularity results for asymptotically convex
variational problems. Forum Math. 20(5), 921–953 (2008)

18. Garcia-Cuerva, J., Rubio De Francia, J.L.: Weighted Norm Inequalities and Related Topics, North-
Holland Mathematical Studies, vol. 116. North-Holland Publishing Co., Amsterdam (1985)

19. Guliyev, V.S.: Generalized weighted Morrey spaces and higher order commutators of sublinear oper-
ators. Eurasian Math. J. 3(3), 33–61 (2012)

20. Guliyev, V.S., Muradova, Sh., Omarova, M., Softova, L.: Gradient estimates for parabolic equations
in generalized weighted Morrey spaces. Acta Math. Sin. 32(8), 911–924 (2016)

21. Guliyev, V., Omarova, M., Sawano, Y.: Boundedness of intrinsec square functions and their commu-
tators on generalized weighted Orlicz–Morrey spaces. Banach J. Math. Anal. 9(2), 44–62 (2015)

22. Haller, R., Heck, H., Noll, A.: Mikhlin’s theorem for operator-valued Fourier multipliers in n variables.
Math. Nachr. 244, 110–130 (2002)

23. Ho, K.-P.: The fractional integral operators on Morrey spaces with variable exponent domains. Math.
Inequal. Appl. 16(2), 363–373 (2013)

24. Krein, S.G.: LinearDifferential Equations inBanachSpace, Translations ofMathematicalMonographs,
vol. 29. American Mathematical Society, Providence (1971)

25. Kree, P.: Sur les multiplicateurs dans F L p avec poids. Ann. Inst. Fourier 16, 91–121 (1966)
26. Lions, J.-L., Peetre, J.: Sur une classe d’espaces d’interpolation. Inst. Hautes Etudes Sci. Publ. Math.

19, 5–68 (1964)
27. Lizorkin, P.I.:

(
L p, Lq

)
-multipliers of Fourier integrals.Dokl.Akad.Nauk. SSSR 152, 808–811 (1963)

28. Lu, S., Shi, S.: A characterization of Campanato space via commutator of fractional integral. J. Math.
Anal. Appl. 419(1), 123–137 (2014)

29. McConnell, Terry R.: On Fourier multiplier transformations of Banach-valued functions. Trans. Am.
Mater. Soc. 285(2), 739–757 (1984)

30. Muckenhoupt, B.: Hardy’s inequality with weights, Collection of articles honoring the completion by
Antoni Zygmund of 50 years of scientific activity I. Studia Math. 44, 31–38 (1972)

31. Nakamura, S.: Generalized weightedMorrey spaces and classical operators. Math. Nachr. 289(17–18),
2235–2262 (2016)

32. Pisier, G.: Some results on Banach spaces without local unconditional structure. Compos. Math. 37(1),
3–19 (1978)

123



Embedding of vector-valued Morrey spaces and separable...

33. Ragusa, M.A.: Commutators of fractional integral operators on vanishing-Morrey spaces. J. Glob.
Optim. 40(1–3), 361–368 (2008)

34. Ragusa,M.A.: HomogeneousHerz spaces and regularity results. NonlinearAnal. 71(12), e1909–e1914
(2009)

35. Ragusa, M.A.: Embeddings for Morrey–Lorentz spaces. J. Optim. Theory Appl. 154(2), 491–499
(2012)

36. Ragusa, M.A., Tachikawa, A., Takabayashi, H.: Partial regularity for p(x)-harmonic maps. Trans.
AMS 365, 3329–3353 (2013)

37. Shklyar, AYa.: Complete Second Order Linear Differential Equations in Hilbert Spaces, Operator
Theory: Advances and Applications, vol. 92. Birkhauser, Basel (1997)

38. Shakhmurov, V.B.: Embedding and maximal regular differential operators in Sobolev–Lions spaces.
Acta Math. Sin. 22(5), 1493–1508 (2006)

39. Shakhmurov, V.B.: Imbedding theorems and their applications to degenerate equations. Differ. Equ.
24(4), 475–482 (1988)

40. Shakhmurov, V.B.: Coercive boundary value problems for strongly degenerating abstract equations.
Dokl. Akad. Nauk. SSSR 290(3), 553–556 (1986)

41. Shakhmurov, V.B.: Embedding operators and maximal regular differential-operator equations in
Banach-valued function spaces. J. Inequal. Appl. 4, 329–345 (2005)

42. Sobolev, S.L.: Some Applications of Functional Analysis in Mathematical Physics, Translations of
Mathematical Monographs, vol. 90. American Mathematical Society, Providence (1991)

43. Tanaka, H.: Morrey spaces and fractional operators. J. Aust. Math. Soc. 88(2), 247–259 (2010)
44. Triebel, H.: Spaces of distributions with weights. Multipliers in L p-spaces with weights. Math. Nachr.

78, 339–356 (1977)
45. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathemat-

ical Library, vol. 18. North-Holland Publishing Co., Amsterdam (1978)
46. Weis, L.: Operator-valued Fourier multiplier theorems and maximal L p regularity. Math. Ann. 319(4),

735–758 (2001)
47. Yakubov, S., Yakubov, Ya.: Differential-Operator Equations. Ordinary and Partial Differential Equa-

tions, Chapman and Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 103.
Chapman and Hall/CRC, Boca Raton (2000)

48. Zimmerman, F.: On vector-valued Fourier multiplier theorems. Studia Math. 93(3), 201–222 (1989)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

123


	Embedding of vector-valued Morrey spaces and separable differential operators
	Abstract
	1 Introduction
	2 Notation and background
	3 Multiplier theorems
	4 Embedding theorems in abstract Morrey spaces
	5 Separable differential in Morrey spaces
	6 Maximal regular infinite systems of anisotropic equations
	Acknowledgements
	References




