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Abstract In this paper, we study global regularity for oblique boundary value prob-
lems of augmented Hessian equations for a class of general operators. By assuming
a natural convexity condition of the domain together with appropriate convexity con-
ditions on the matrix function in the augmented Hessian, we develop a global theory
for classical elliptic solutions by establishing global a priori derivative estimates up
to second order. Besides the known applications for Monge–Ampère type operators
in optimal transportation and geometric optics, the general theory here embraces
Neumann problems arising from prescribed mean curvature problems in confor-
mal geometry as well as general oblique boundary value problems for augmented
k-Hessian, Hessian quotient equations and certain degenerate equations.
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1 Introduction

In this paper we develop the essentials of a general theory of classical solutions of
oblique boundary value problems for certain types of fully nonlinear elliptic par-
tial differential equations, which we describe as augmented Hessian equations. Such
problems arise in various applications, notably to optimal transportation, geomet-
ric optics and conformal geometry and our critical domain and augmenting matrix
convexity notions are adapted from those introduced in [31,40,45] for regularity in
optimal transportation. Our main concern here will be with semilinear boundary con-
ditions but we will also cover the nonlinear case for appropriate subclasses of our
general operators. The classical solvability of the Neumann problem for the Monge–
Ampère equation was proved by Lions et al. [27]. Not only was the approach in
[27] special for the Neumann problem, but it follows from the fundamental exam-
ple of Pogorelov [32] that the result cannot be extended to general linear oblique
boundary value problems [47,52]. On the other hand, the classical Dirichlet prob-
lem for basic Hessian equations has been well studied in the wake of fundamental
papers by Caffarelli et al. [1] and Ivochkina [9], with further key developments
by several authors, including Krylov [20] and related papers and Trudinger [38];
(see also [8] for a recent account of the resultant theory under fairly general condi-
tions).

Our main concerns in this paper are second derivative estimates under natural
“strict regularity” conditions on the augmenting matrices, together with accompany-
ing gradient and Hölder estimates, which then lead to classical existence theorems.
Our theory embraces a wide class of examples which we also present as well as
a key application to semilinear Neumann problems arising in conformal geometry,
where remarkably our adaptation of optimal transportation domain convexity from
[40,45] enables us to replace the rather strong umbilic boundary condition for sec-
ond derivative bounds, assumed in previous work [3,19], by more general natural
convexity conditions, (in the prescribed positive mean curvature case). In ensuing
papers we consider extensions to weaker matrix convexity conditions as well as
the regularity of weak solutions and the sharpness of our domain convexity con-
ditions. Extensions to the Dirichlet problem for our general class of equations are
treated in [14]. Overall this paper provides a comprehensive framework for study-
ing oblique boundary value problems for a large class of fully nonlinear equations,
which embraces the Monge–Ampère type case in Section 4 in [16] as a special
example.

Specifically we study augmented Hessian partial differential equations of the form,

F[u] := F[D2u − A(·, u, Du)] = B(·, u, Du), in �, (1.1)
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subject to boundary conditions

G[u] := G(·, u, Du) = 0, on ∂�, (1.2)

where � is a bounded domain in n dimensional Euclidean space R
n with smooth

boundary, Du and D2u denote the gradient vector and the Hessian matrix of the
solution u ∈ C2(�), A is a n × n symmetric matrix function defined on � ×R×R

n ,
B is a scalar valued function on �×R×R

n and G is a scalar valued function defined
on ∂� × R × R

n . We use x , z, p, r to denote the points in �, R, Rn and R
n×n

respectively. For G ∈ C1(∂� × R × R
n), the boundary condition (1.2) is said to be

oblique, with respect to u ∈ C1(�̄), if

G p(·, u, Du) · ν ≥ β0, on ∂�, (1.3)

where ν is the unit inner normal vector field on ∂� and β0 is a positive constant. If
G p · ν > 0 on all of ∂� ×R×R

n , we will simply refer to G (or G) as oblique. In the
context, we shall use either F or F to denote the general operator in (1.1), and either
G or G to denote the boundary operator in (1.2).

Letting S
n denote the linear space of n × n symmetric matrices, the function F

in (1.1) is defined on an open, convex cone � in S
n , with vertex at 0, containing the

positive cone K +. In order to consider F in a very general setting, we assume that
F ∈ C2(�) satisfies a subset of the following properties.

F1 F is strictly increasing in �, namely

Fr := Fri j =
{

∂ F

∂ri j

}
> 0, in �. (1.4)

F2 F is concave in �, namely

∂2F

∂ri j∂rkl
ηi jηkl ≤ 0, in �, (1.5)

for all symmetric matrices {ηi j } ∈ S
n .

F3 F(�) = (a0,∞) for a constant a0 ≥ −∞ with

sup
r0∈∂�

lim sup
r→r0

F(r) ≤ a0. (1.6)

F4 F(tr) → ∞ as t → ∞, for all r ∈ �.
F5 For given constants a, b satisfying a0 < a < b, there exists a constant δ0 > 0

such that T (r) := trace(Fr ) ≥ δ0 if a < F(r) < b.
F5+ T (r) → ∞ uniformly for a ≤ F(r) ≤ b as |r | → ∞.

We say an operator F satisfies the above properties, if the corresponding function
F satisfies them. Note that we can take the constant a0 in F2 and F5 to be 0 or −∞.
When F is given as a symmetric function f of the eigenvalues λ1, . . . , λn of thematrix
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356 F. Jiang, N. S. Trudinger

r , with � closed under orthogonal transformations, we will refer to F as orthogonally
invariant. In this case the above conditions are modelled on the conditions introduced
for the study of the Dirichlet problem for the basic Hessian equations, with A = 0, by
Caffarelli et al. [1] and Trudinger [38]. The standard nonlinear operators satisfying the

above properties are the k-Hessian operators, Fk = (Sk)
1
k , k = 2, . . . , n, which satisfy

F1–F4, F5+ on �k with a0 = 0, and their quotients Fk,l = (
Sk
Sl

)
1

k−l , n ≥ k > l ≥ 1,
which satisfy F1–F5 on �k with a0 = 0, where Sk denotes the k-th order elementary
symmetric function defined by

Sk[r ] := Sk(λ(r)) =
∑

1≤i1<···<ik≤n

λi1 . . . λik , k = 1, . . . , n, (1.7)

and �k denotes the cone defined by

�k = {r ∈ S
n | S j [r ] > 0, ∀ j = 1, . . . , k}. (1.8)

As usual we set F0 = 1, so that we can also write the standard k-Hessian Fk as the
quotient Fk,0. It turns out that the proofs of our results and their underlying ideas are
essentially just as complicated for these special cases as for the general situation so
that a reader will not miss the main features of our techniques by restricting attention
to them. More generally when a0 = 0 and F is positive homogeneous of degree one,
then properties F1, F2, F3 imply F4 and F5, with a = 0 and b = ∞. Clearly F4 is
obvious and to show F5 we have by the concavity F2, for a positive constant μ and
r ∈ �,

T (r) ≥ 1

μ
{F(μI ) − F(r) + r · Fr } = F(I ) > 0, (1.9)

where the equality follows from the homogeneity, which implies r · Fr = F(r).
(Clearly it is enough to take μ = 1 here but it is convenient to use a general μ for later
use).

We also note in general that F2 and F3 imply, for r ∈ � and finite a0,

0 ≤ r · Fr ≤ F(r) − a0. (1.10)

By the concavity F2, we have, for t > 0,

F(tr) − F(r) ≤ (t − 1)r · Fr ,

from which (1.10) follows by taking t sufficiently large for the first inequality and
sufficiently small for the second. If a0 = −∞, then (1.10) clearly holds if also F4 is
satisfied, (or more generally lim inf F(tr) > −∞ as t → ∞). From (1.9) and (1.10),
we then obtain for F(r) ≤ b,

T (r) ≥ 1

μ
{F(μI ) − b} ≥ δ0 > 0, (1.11)
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for some constant δ0, depending on F and b, by taking μ sufficiently large, so that
condition F5, with a = a0, is itself a consequence of F2 and F4. Moreover, when a0 is
finite, both F4 and F5, with a = a0, are consequences of F1, F2 and F3; (see Sect. 4.2).

As for (1.10) and (1.11), the condition F4, (and the endpoint ∞ in F3), is typically
more thanwe need in general and can be dispensedwith inmost of our estimates.When
considering the Eq. (1.1), it will be enough to assume instead F(tr) > B(·, u, Du)

for r ∈ � and sufficiently large t , (depending on r ), in accordance with [10].
In our scenario, we call M[u] := D2u− A(·, u, Du) the augmentedHessianmatrix.

Usually, we denote the elements of M[u] and the matrix Fr in F1 bywi j = Di j u − Ai j

and Fi j respectively. A function u is called admissible in � (�̄) if

M[u] ∈ �, in �, (�̄), (1.12)

so that the operator F satisfying F1 is elliptic with respect to u in � (�̄) when (1.12)
holds. It is also clear that if M[u] ∈ �̄ with B ∈ F(�) in � (�̄) then (1.1) is elliptic
with respect to u in � (�̄), namely we require B > a0 in � (�̄) for F satisfying F3.

An important ingredient for regularity of solutions to equations involving the aug-
mented matrix M[u] is the co-dimension one convexity (strict convexity) condition
on the matrix A with respect to p, that is

Akl
i j (x, z, p)ξiξ jηkηl ≥ 0, (> 0), (1.13)

for all ξ, η ∈ R
n , ξ ⊥ η, where Akl

i j = D2
pk pl

Ai j and A is twice differentiable
at (x, z, p) ∈ � × R × R

n . Note that we use the standard summation convention
throughout this paper that repeated indices indicate summation from 1 to n unless
otherwise specified.As in [17,18,40],we also call thematrix A regular (strictly regular)
at x ∈ �̄ if A satisfies (1.13) for all (z, p) ∈ R×R

n . These conditions were originally
formulated for optimal transportation problems in the Monge–Ampère case, k = n,
in [31,45]. The strictly regular condition may also be viewed as a supplementary
ellipticity.

We now start to formulate the main theorems in this paper. First we state a
local/global second derivative estimate which extends the Monge–Ampère case in
[31] and whose global version is needed for our treatment of the boundary condition
(1.2).

Theorem 1.1 Let u ∈ C4(�) be an admissible solution of Eq. (1.1) in �. Assume one
of the following conditions:

(i) F1, F2, F3 and F5+ hold;
(ii) F1, F2, F3, F5 hold, and B is convex with respect to p.

Then for any domains �′ ⊂⊂ �0 in R
n, A ∈ C2(�̄ × R × R

n) strictly regular in
�̄ ∩ �0, B > a0,∈ C2(�̄ ∩ �0 × R × R

n), we have the estimate

sup
�∩�′

|D2u| ≤ sup
∂�∩�0

|D2u| + C, (1.14)
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358 F. Jiang, N. S. Trudinger

for u ∈ C4(�̄∩�0), where the constant C depends on n, A, B, F, �,�∩�0,�∩�′
and |u|1;�.

The estimate (1.14) in Theorem1.1 in the case�′ = � provides us a global estimate
which reduces the bound for second derivatives to the boundary. When �0 = � we
get the usual form of the interior estimate, which is already formulated for case (i) in
[40]. A more precise version involving cut-off functions will be presented in Sect. 2.
For the boundary estimates we need to assume appropriate geometric assumptions
on the domain �. We consider the operator F in (1.1) and domains � ⊂ R

n with
∂� ∈ C2 and ν denoting the unit inner normal to ∂�, δ = D − (ν · D)ν the tangential
gradient in ∂�, and P = I − ν ⊗ ν the projection matrix onto the tangent space on
∂�, where I is the n × n identity matrix. (Here the tangential gradient operator is the
vector operator δ = (δ1, . . . , δn) with δi = (δi j − νiν j )D j , where δi j is the usual
Kronecker delta). Then, for A ∈ C1(∂� × R × R

n), we introduce the A-curvature
matrix on ∂�,

K A[∂�](x, z, p) = −δν(x) + P(Dp A(x, z, p) · ν(x))P. (1.15)

We call ∂� uniformly (�, A, G)-convex with respect to an interval valued function
I(x) on ∂�, if

K A[∂�](x, z, p) + μν(x) ⊗ ν(x) ∈ �, (1.16)

for all x ∈ ∂�, z ∈ I(x), G(x, z, p) ≥ 0 and some μ = μ(x, z, p) > 0. For a
given function u0, if we take I = {u0} in the above definition, then ∂� is called
uniformly (�, A, G)-convex with respect to u0. For the cases � = �k , corresponding
to the k-Hessians and their quotients, (1.16) is equivalent to K A[∂�](x, z, p) ∈ �k−1.
Moreover in the Monge–Ampère case, k = n, we recover our definitions of uniform
(A, G)-convexity in [16], (called “uniform A-convexity with respect to G” there),
which extend the notion of uniform c-convexity with respect to a target domain �∗ in
the optimal transportation case, as introduced in [45]. When the interval I = R, we
will simply call ∂� uniformly (�, A, G)-convex. This includes the case when A and
G are independent of z as then the interval I becomes irrelevant.

As in [16], we will assume that the function G ∈ C2(∂�×R×R
n) is concave in p,

that is G pp ≤ 0 in ∂� ×R×R
n . This includes the quasilinear case, when G pp = 0,

G(x, z, p) = β(x, z) · p − ϕ(x, z), (1.17)

where β = G p and ϕ are defined on ∂� × R. If G pp(·, u, Du) ≤ 0 on ∂� for
u ∈ C1(�̄) then we say that G is concave in p, with respect to u. Note that we define
the obliqueness in (1.3) with respect to the unit inner normal ν, so that our function G
keeps the same sign with those in [16] and is the negative of that in [41,45,48]. When
G is nonlinear in p we will assume a further structural condition on F .

F6 E2 := Fri j rikr jk ≤ o(|r |)T , uniformly for a0 < a ≤ F(r) ≤ b, as |r | → ∞.

We remark that the Hessian operators Fk (k = 2, . . . , n) and the Hessian quotients
Fn,k (1 ≤ l ≤ n − 1) satisfy F6 in the positive cone K + [50]. Further examples are
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given in Sects. 4.2 and 4.3. To complete our hypotheses, we will also assume for the
second derivative bounds in this paper, (unless F6 is satisfied), that the cone � lies
strictly in a half space in the sense that r ≤ trace(r)I for all r ∈ �, that is � ⊂ Pn−1
in accordance with our examples in Sect. 4.2. This property is satisfied by the cones
�k for k ≥ 2, (but excludes the already well known quasilinear case when k = 1). We
now state the global second derivative bound which can be viewed as the main result
of this paper.

Theorem 1.2 Let u ∈ C4(�)∩C3(�̄) be an admissible solution of the boundary value
problem (1.1)–(1.2) in a C3 domain � ⊂ R

n, with boundary ∂� uniformly (�, A, G)-
convex with respect to u. Assume that F satisfies conditions F1–F5, A ∈ C2(�̄×R×
R

n) is strictly regular in �̄, B > a0,∈ C2(�̄ × R × R
n), G ∈ C2(∂� × R × R

n) is
oblique and concave in p with respect to u satisfying (1.3), and either (i) F5+ holds or
(ii) B is independent of p. Assume further that either G is quasilinear and � ⊂ Pn−1
or F also satisfies F6. Then we have the estimate

sup
�

|D2u| ≤ C, (1.18)

where C is a constant depending on F, A, B, G,�, β0 and |u|1;�.

Remark 1.1 A stronger condition than regularity of the matrix function A is necessary
in the above hypotheses as it is known from the Monge–Ampère case that one cannot
expect second derivative estimates for general oblique boundary value problems for
A ≡ 0, which is a special case of regular A but not strictly regular, see [47,52]. We
also remark that the alternative condition that B is independent of p may be replaced
by Dp B sufficiently small, as well as B convex with respect to p, and we will see from
our treatment in Sect. 2 that such a condition is reasonable. Analogously, we may also
replace the condition that G is quasilinear by D2

pG sufficiently small.

Remark 1.2 It should be noted that the feasibility of our uniform convexity condition
depends on an effective relationship between the boundary operatorG and the curvature
matrix K A[∂�] to ensure at least that the matrix

P(Dp A(x, z, p) · ν(x))P

is uniformly bounded from below, for all x ∈ ∂�, z ∈ I(x), G(x, z, p) ≥ 0. More
generally we need to impose a condition on the gradient Du, namely that there exists
a sufficiently small boundary neighbourhood �ρ = {x ∈ �| d(x) < ρ}, where
d(x) = dist(x, ∂�) and ρ is a small positive constant, such that

− δν(x ′) + P(Dp A(x, u(x), Du(x)) · ν(x ′))P + μ0ν(x ′) ⊗ ν(x ′) ∈ �, (1.19)

for all x ∈ �ρ and x ′ ∈ ∂� satisfying d(x, x ′) = d(x) and G(x ′, u(x), Du(x)) ≥ 0,
for a positive constant μ0. In particular we would then obtain a bound (1.18) when
the curvatures of ∂� are sufficiently large. Furthermore since the regularity of A on
∂� implies the curvature matrix K A[∂�](x, z, p) is non-decreasing in p · ν, in the
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Neumann case, (1.17) with β = ν, we need only assume that (1.16) holds for x ∈ ∂�,
z = u(x), p = Du(x) and constant μ = μ0, that is x = x ′ ∈ ∂� in (1.19).

Remark 1.3 We may assume more generally that the matrix function A and scalar
function B are only defined and C2 smooth on some open set U ⊂ R

n ×R×R
n , with

A strictly regular and B > a0 in U . Then Theorems 1.1 and 1.2 will continue to hold
provided the one jet J1 = J1[u](�) = (·, u, Du)(�) is strictly contained inU , with the
constants C in the estimates (1.14) and (1.18) depending additionally on dist(J1, ∂U).
This remark is particularly pertinent to examples arising fromoptimal transportation or
geometric optics where often the resultant Monge–Ampère type equations are subject
to constraints on J1[u] and moreover such constraints may determine an appropriate
constant μ0 in (1.19).

In order to apply Theorem 1.2, to the existence of smooth solutions to (1.1)–
(1.2), we need gradient and solution estimates. Our conditions for gradient estimates
are motivated by the case when F is linear and the corresponding quadratic struc-
ture conditions for gradient estimates for uniformly elliptic quasilinear equations,
as originally introduced by Ladyzhenskaya and Ural’tseva [7,21]. First we need
additional conditions on either A or F which facilitate an analogue of uniform
ellipticity.

To formulate the condition on the matrix function A, we first express the strict
regularity condition (1.13) in the equivalent form,

Akl
i j ξiξ jηkηl ≥ λ|ξ |2|η|2 − λ̄(ξ · η)2, (1.20)

for all ξ, η ∈ R
n , where λ and λ̄ are positive functions in C0(� ×R×R

n). To derive
(1.20) from (1.13), we set η′ = η − (ξ · η)ξ , for |ξ | = |η| = 1, and apply (1.13) to
the orthogonal vectors ξ and η′. We then call A uniformly regular in �, if A is strictly
regular in � and for any M > 0, there exist positive constants λ0 and λ̄0 such that

λ(x, z, p) ≥ λ0, λ̄(x, z, p) ≤ λ̄0, (1.21)

for all x ∈ �, |z| ≤ M , p ∈ R
n . The alternative condition on F extends that introduced

in the orthogonally invariant case for gradient estimates for curvature equations in [2].

F7 For a given constant a > a0, there exists constants δ0, δ1 > 0 such that Fri j ξiξ j ≥
δ0 + δ1T , if a ≤ F(r) and ξ is a unit eigenvector of r corresponding to a negative
eigenvalue.

We remark that F7 implies F5, with b = ∞, and moreover the Hessian quotients Fk,l ,
for 0 ≤ l < k ≤ n satisfy F7 in the cone �k with constants δ0, δ1 > 0, depending
only on k, l and n [2,37].

We formulate (almost) quadratic growth conditions on A and B as follows.

Dx A, Dx B, Dz A, Dz B = O(|p|2), Dz A ≥ o(|p|2)I, Dz B ≥ o(|p|2),
Dp A, Dp B = O(|p|), (1.22)

123



Oblique boundary value problems for augmented Hessian… 361

as |p| → ∞, uniformly for x ∈ �, |z| ≤ M for any M > 0. Note that in the analogous
natural growth conditions in the uniformly elliptic theory, the “o” lower bounds on
Dz A and Dz B in (1.22) can be dispensed with as a continuity estimate is available
[7,25]. Also these are automatically satisfied under standard uniqueness conditions,
namely when A and B are non-decreasing in z, that is Dz A ≥ 0 and Dz B ≥ 0.

We now state a gradient estimate for oblique semilinear boundary conditions, that
is when β in (1.17) is independent of z so that (1.2) may be written in the form

G[u] = G(·, u, Du) = β · Du − ϕ(·, u) = 0, on ∂�. (1.23)

Some variants and extensions, including weaker versions of conditions (1.22), local
gradient estimates and extensions to nonlinearG will also be considered in conjunction
with our treatment in Sect. 3.

Theorem 1.3 Let u ∈ C3(�)∩C2(�̄) be an admissible solution of the boundary value
problem (1.1)–(1.2) for an oblique, semilinear boundary operator G in a bounded C3

domain � ⊂ R
n. Assume that F satisfies F1 and F3, A, B ∈ C1(�̄×R×R

n), satisfy
(1.22), b0 := inf� B(·, u, Du) > a0 and β ∈ C2(∂�), ϕ ∈ C2(∂� × R). Assume
also one of the following further conditions:

(i) A is uniformly regular, F satisfies F2 and F5, with b = ∞, and B − p · Dp B ≤
o(|p|2) in (1.22);

(ii) F is orthogonally invariant satisfying F7, A = o(|p|2) in (1.22) and β = ν.

Then we have the estimate

sup
�

|Du| ≤ C, (1.24)

where C is a constant depending on F, A, B,�, b0, β, ϕ and |u|0;�.

As we will show in Sect. 3 the concavity condition F2 in Theorem 1.3 may be
removed when F is positive homogeneous of degree one and more generally. Note
that the condition on B in case (i) is automatically satisfied when B is convex in p.
Also when B is bounded, we do not need to take b = ∞ in F5, while if the constants
δ0 and δ1 in conditions F5 and F7 are independent of a, the constant C in the estimate
(1.24) does not depend on b0. Analogously to the situation with uniformly elliptic
equations, we obtain gradient estimates in terms of moduli of continuity when the
“o” is weakened to “O” in the hypotheses, (1.22) and case (ii), of Theorem 1.3. In
particular we will also prove a Hölder estimate for admissible functions in the cones
�k for k > n/2, when A ≥ O(|p|2)I , which extends our gradient estimate in the
case k = n in [16], Lemma 4.1. Taking account of this, as well as Theorems 1.2
and 1.3, we have, as an example of our consequent existence results, the following
existence theorem for the augmented k-Hessian and Hessian quotient equations. In
its formulation we will assume the existence of subsolutions and supersolutions to
provide the necessary solution estimates and an appropriate interval I in our boundary
convexity conditions. For this purpose we will say that functions u and ū, in C2(�) ∩
C1(�̄), are respectively subsolution and supersolution of the boundary value problem
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(1.1)–(1.2) if

F[u] ≥ B(·, u, Du), F[ū] ≤ B(·, ū, Dū), (1.25)

at points in �, where they are admissible, and

G[u] ≥ 0, G[ū] ≤ 0, on ∂�. (1.26)

Theorem 1.4 Let F = Fk,l for some 0 ≤ l < k ≤ n, � a bounded C3,1 domain
in R

n, A ∈ C2(�̄ × R × R
n) strictly regular in �̄, B > 0,∈ C2(�̄ × R × R

n), G
semilinear and oblique, with β ∈ C2,1(∂�), ϕ ∈ C2,1(∂� × R). Assume that u and
ū, ∈ C2(�) ∩ C1(�̄) are respectively an admissible subsolution and a supersolution
of (1.1)–(1.2) with ∂� uniformly (�k, A, G)-convex with respect to the interval I =
[u, ū]. Assume also that A, B and ϕ are non-decreasing in z, with at least one of them
strictly increasing, and that A and B satisfy the quadratic growth conditions (1.22)
with Dp B = 0 if l > 0. Then if one of the following further conditions is satisfied:

(i) A is uniformly regular and B − p · Dp B ≤ o(|p|2) in (1.22);
(ii) β = ν and either (a) A = o(|p|2) in (1.22) or (b) k > n/2 and � is convex;
(iii) k = n and A ≥ O(|p|2)I in place of (1.22),

there exists a unique admissible solution u ∈ C3,α(�̄) of the boundary value problem
(1.1)–(1.2), for any α < 1.

Under the monotonicity hypotheses of Theorem 1.4, functions of the form

ū = c0 + c1ψ (1.27)

will be supersolutions of (1.1)–(1.2), for sufficiently large non-negative constants c0
and c1, where ψ ∈ C2(�̄) is a defining function for �, satisfying ψ < 0 in �, ψ = 0,
Dψ �= 0 on ∂�, assuming also c1 = 0 and F[−A(·, c0, 0)] ≤ B(·, c0, 0), whenever
−A(·, c0, 0) ∈ �, in the case when only ϕ is strictly increasing in z. Using (1.27), we
can then replace the interval [u, ū] in the hypotheses of Theorem 1.4 by [u, c0].

This paper is organised as follows. In Sect. 2, we first prove the local/global second
derivative estimate, Theorem 1.1, as well as an extension to non-constant vector fields,
Lemma 2.1. Then in Sect. 2.2, by delicate analysis of the second derivatives on the
boundary, we complete the proof of Theorem 1.2 through Lemmas 2.2 and 2.3 which
treat respectively the estimation of non-tangential and tangential second derivatives.
In the proof of Lemma 2.3 the strict regularity condition is crucial. In Sect. 3, we first
prove the global gradient estimate, Theorem 1.3, under variousmore general structural
assumptions on F , A and B. Following this, in Sect. 3.2, we prove the analogous
local gradient estimates in Theorem 3.1. In Sect. 3.3 we derive a Hölder estimate for
admissible functions in the cones �k for k > n/2, from which we can infer gradient
estimates under natural quadratic growth conditions. In Sect. 4, we prove existence
theorems, Theorems 4.1 and 4.2 for semilinear and nonlinear oblique boundary value
problems based on the a priori derivative estimates, which include Theorem 1.4 as a
special case. We then present in Sect. 4.2 various examples of operators F , matrices
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A, and boundary operators G along with the application to conformal geometry, where
we relax the umbilic boundary restriction for second derivative estimates in Yamabe
problems with boundary as studied in [3,19]. Furthermore we show in Sect. 4.3 that
our theory can be applied to degenerate elliptic equations, where F is only assumed
non-decreasing in F1, with resultant solutions u ∈ C1,1(�̄); see Corollary 4.1, and
provide a particular example in Corollaries 4.2 and 4.3. As indicated at the end of
Section 4.3, these results also embrace degeneracies when b = a0. In Sect. 4.4, we
conclude this paper with some final remarks which also foreshadow further results.

We also point out here that in our formulations and proofs we have generally
assumed for simplicity that the functions A, B, G and domains � are Ck smooth for
appropriate k, although typically this can be replaced by Ck−1,1 smooth, as indicated
in Remark 4.2. Since our main concern here is a priori estimates for classical solutions
the reader may simply assume that all functions and domains are C∞ smooth.

2 Second derivative estimates

We introduce some notation and proceed to the second order derivative estimates for
admissible solutions u of (1.1)–(1.2). We denote the augmented Hessian M[u] by
w = {wi j }, that is

wi j = Di j u − Ai j (·, u, Du). (2.1)

As usual we denote the first and second partial derivatives of F at M[u] by Fi j and
Fi j,kl , namely

Fi j = ∂ F

∂ri j
(M[u]), Fi j,kl = ∂2F

∂ri j∂rkl
(M[u]). (2.2)

Then for an admissible u, we know from F1 that the matrix {Fi j } is positive definite
and from F2 that

Fi j,klηi jηkl ≤ 0

for all {ηi j } ∈ S
n . Let us also denoteT = trace(Fr ) =∑n

i=1 Fii so that by positivity
|Fr | ≤ T .

It will also be convenient here to use (1.20) to express the strict regularity of A,
with respect to u, in the form

Akl
i j (·, u, Du)ξiξ jηkηl ≥ c0|ξ |2|η|2 − c1(ξ · η)2, (2.3)

for arbitrary vectors ξ, η ∈ R
n , where c0 and c1 are positive constants depending on A

and sup(|u| + |Du|). Then for any positive symmetric matrix {Fi j } with eigenvalues
λ1, . . . , λn > 0 and corresponding eigenvectors, φ1, . . . , φn , we can write
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Fi j Akl
i j ηkηl =

n∑
s=1

λs Akl
i j φ

s
i φ

s
jηkηl

≥ c0

n∑
s=1

λs |η|2 − c1

n∑
s=1

λs(φ
s · η)2

= c0T |η|2 − c1Fi jηiη j .

(2.4)

2.1 Local/global second derivative estimates

In this subsection, we derive the local and global second derivative estimates for
admissible solutions of Eq. (1.1), and give the proof of Theorem 1.1. We will need
to differentiate the Eq. (1.1), with respect to vector fields τ = (τ 1, . . . , τ n) with
τ i ∈ C2(�̄), i = 1, . . . , n. We introduce the linearized operators of the operator F
and Eq. (1.1),

Lv := Fi j [Di jv − Ak
i j Dkv], Lv := Lv − (Dpk B(·, u, Du))Dkv, (2.5)

for v ∈ C2(�), where Ak
i j = Dpk Ai j (·, u, Du). For convenience below we shall as

usual denote partial derivatives of functions on� by subscripts, that is ui = Di u, uτ =
Dτ u = τ i ui , ui j = Di j u, uiτ = ui jτ

j , uττ = ui jτ
iτ j , etc. Differentiating once we

now obtain,

Luτ = Fi j D̃xτ Ai j + D̃xτ B + Fi j (2τ k
i u jk + τ k

i j uk − Ak
i jτ

l
kul) − (Dpk B)τ l

kul .

(2.6)

where D̃xτ = τ · D̃x and D̃x = Dx + Du Dz . Differentiating twice, we then obtain

Luττ = −Fi j,kl Dτwi j Dτwkl + Fi j [τ kτ l D̃xk xl Ai j + Akl
i j ukτ ulτ + 2(D̃xτ Ak

i j )ukτ ]
+ (Dpk pl B)ukτ ulτ + τ kτ l D̃xk xl B + 2(D̃xτ Dpk B)ukτ

+ Fi j [4τ k
i u jkτ + (τ kτ l)i j ukl − 2As

i jτ
k
s ukτ ] − 2(Dps B)τ k

s ukτ , (2.7)

where Dp D̃x = D̃x Dp is used. Toderive the local andglobal estimates inTheorem1.1,
we only need τ to be a constant unit vector, in which case the last two terms in (2.6)
and (2.7) are not present. Setting

v1 = uττ + 1

2
c1|uτ |2, (2.8)

we then have from the concavity F2 and strict regularity (2.3),

Lv1 ≥ c0T |Duτ |2 − C(1 + T )(1 + |Duτ |) + λB |Duτ |2, (2.9)

where C is a constant depending on n, |A|C2 , |B|C2 and |u|1;� and λB is the minimum
eigenvalue of the matrix D2

p B. Invoking conditions F5+, or F5 and convexity of B

123



Oblique boundary value problems for augmented Hessian… 365

in p, we then have from the classical maximum principle, under the hypotheses of
Theorem 1.1,

sup
�

uττ ≤ sup
∂�

|uττ | + C, (2.10)

which implies a global upper bound for D2u, since τ can be any unit vector. To get
the corresponding local estimate, we fix a function ζ ∈ C2(Rn), satisfying 0 ≤ ζ ≤ 1
and define,

v = ζ 2v1 = ζ 2
(

uττ + 1

2
c1|uτ |2

)
. (2.11)

From the inequality (2.9) we obtain the corresponding inequality for v at a maximum
point, namely

Lv ≥ c0T ζ 2|Duτ |2 − C(1 + T )(1 + ζ 2|Duτ | + |uττ |) + λBζ 2|Duτ |2,
(2.12)

where C depends additionally on |ζ |2;�, so that extending (2.10), we have

sup
�

(ζ 2uττ ) ≤ sup
∂�

(ζ 2|uττ |) + C. (2.13)

The lower bounds follow from the concavity F2 since for a fixed matrix r0 ∈ �, for
example r0 = I , and positive matrix ai j

0 = Fri j (r0), we have

ai j
0 ui j = ai j

0 (wi j + Ai j )

≥ F(w) − F(r0) +
n∑

i=1

aii
0 + ai j

0 Ai j ≥ −C (2.14)

by virtue of (1.1). Taking τ to be an eigenvector of {ai j
0 }, we infer the full bound from

the upper bound (2.13). Hence we conclude the estimate

sup
�

(ζ 2|D2u|) ≤ sup
∂�

(ζ 2|D2u|) + C. (2.15)

Theorem 1.1 now follows by taking ζ ∈ C2
0 (�0) and ζ = 1 on �′.

The one-sided estimate (2.13) can be extended to non-constant vector fields τ when
F is orthogonally invariant. Moreover the relevant calculations will be critical for us
in the proof of tangential boundary estimates when G is nonlinear in p.

Lemma 2.1 Assume in addition to the hypotheses of Theorem 1.1 that the operator
F is orthogonally invariant. Then the estimate (2.13) holds for any vector field τ with
skew symmetric Jacobian, with the constant C depending additionally on |τ |1;�.

Proof First we note that the Jacobian Dτ = {τ i
j } will in fact be a constant skew sym-

metric matrix so that τ itself is an affinemapping. Consequently the second derivatives
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of τ in (2.6) and (2.7) will vanish. Our main concern now is to control the third deriva-
tives of u in the last line of (2.7) and for this we adapt the key identities in the proof
of Lemma 2.1 in [10], which follow by differentiating F(Pαr Pt

α), for r ∈ �, with
respect to α and setting α = 0, where Pα = exp(αDτ) is orthogonal by virtue of the
skew symmetry of Dτ . Thus taking ri j = wi j , we have

Fi jτ k
i w jk = 0 (2.16)

and

Fi j (τ k
i τ l

jwkl + τ k
i τ l

kw jl) + 2Fi j,klτ s
i w jsτ

t
kwlt = 0. (2.17)

Differentiating (2.16) with respect to τ , we have

Fi jτ k
i Dτw jk + Fi j,klτ s

i w js Dτwkl = 0. (2.18)

From (2.17) and (2.18), we then obtain

− Fi j,kl Dτwi j Dτwkl + 2Fi j [2(τ k
i )Dτw jk + τ k

i τ l
jwkl ]

= −Fi j,kl(Dτwi j + 2τ s
i w js)(Dτwkl + 2τ t

kwlt ) − 2Fi jτ k
i τ l

kw jl

≥ −2Fi jτ k
i τ l

kw jl (2.19)

by the concavity F2. Substituting into (2.7), using the definition wi j = ui j − Ai j and
following our previous argument for constant τ , we would obtain the upper bound
(2.13), with constant C replaced by C(1 + √

M2) where M2 = sup�|D2u|.
In order to get the full strength of Lemma 2.1, we need to control the last term

in (2.19). Note that this term is nonnegative if � = �n or in the special case when
|Dτ i | = τ0, i = 1, . . . , n, for a constant τ0, since

−Fi jτ k
i τ l

kw jl ≥ (τ0)
2Fi jwi j ≥ 0

from (1.10). In general we proceed by calculating

L(τ lτ k
l uk) = Fi j (2τ k

i τ l
ku jl − As

i jτ
k
s τ l

kul) − (Dps B)τ k
s τ l

kul + τ lτ k
l Luk .

(2.20)

Taking account of (2.6), (2.7), (2.19) and (2.20),we then obtain the differential inequal-
ity (2.12) with the function uττ in (2.11) replaced by the function

(uτ )τ = uττ + τ lτ k
l uk,

from which Lemma 2.1 follows. Note that in the process of obtaining the inequality
(2.12), there is a term c1ζ 2uτ Fi jτ k

i w jk which is identically equal to zero by using
(2.16). ��
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We remark that for the Monge–Ampère operator, in the form F(r) = log(det r),
we can take τ to be any C2 vector field in (2.13) with the constant C now depending
additionally on |τ |2;�. This follows from the identity Fikrk j = δi j .

2.2 Boundary second derivative estimates

To prove Theorem 1.2, we have to establish estimates for second derivatives on the
boundary ∂� under the boundary condition (1.2). First we will consider the non-
tangential estimates and as in [16], the geometric convexity hypotheses on the domain
� in Theorem 1.2 are crucial for this stage.We assume that the functions G(·, z, p) and
ν have been extended to �̄, to be constant along normals to ∂� in some neighbourhood
N of ∂�. Differentiating the boundary condition (1.2) with respect to a tangential
vector field τ we have

D̃xτ G + (Dpk G)ukτ = 0, on ∂�, (2.21)

and hence we have an estimate

|uτβ | ≤ C, on ∂�, (2.22)

for any unit tangential vector field τ , where β = DpG(·, u, Du) and the constant
C depends on G,� and |u|1;�. The estimation of the pure second order oblique
derivatives uββ is much more complicated. In general we can only obtain an estimate
from above in terms of the tangential derivatives on the boundary. Setting

M2 = sup
�

|D2u|, M ′
2 = sup

∂�

sup
|τ |=1,τ ·ν=0

|uττ |,

we formulate this as follows.

Lemma 2.2 Let u ∈ C3(�̄) be an admissible solution of the boundary value problem
(1.1)–(1.2) in a bounded C2 domain � ⊂ R

n, with boundary ∂� uniformly (�, A, G)-
convex with respect to u. Assume that F satisfies conditions F1–F5, A ∈ C1(�̄×R×
R

n), B > a0,∈ C1(�̄ × R × R
n), G ∈ C2(∂� × R × R

n) is oblique with respect u
satisfying (1.3), either F5+ holds or B is independent of p and either G is quasilinear
satisfying (1.17) or F6 holds. Then for any ε > 0,

sup
∂�

uββ ≤ εM2 + Cε(1 + M ′
2), (2.23)

where β = DpG(·, u, Du), and Cε is a constant depending on ε, F, A, B, G,�, β0
and |u|1;�. In the case when F6 holds, the estimate (2.23) holds without the dependence
on M ′

2.

For any function g ∈ C2(�̄ × R × R
n) and linearized operator L in (2.5), by

calculation we have
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Lg(·, u, Du) = Fi j (Dpk pl g)uiku jl + Fi j (Dxi x j − Ak
i j Dxk )g

+ (Dzg)Lu + (Dpk g)Luk + Fi j [2(D̃xi Dpk g)u jk

+ 2(D̃xi Dzg)u j − (Dzzg)ui u j ], (2.24)

where

Lu = Fi jδiku jk − Fi j Ak
i j uk, (2.25)

and

Luk = Fi j D̃xk Ai j + D̃xk B + (Dpl B)ukl . (2.26)

Plugging (2.25), (2.26) into (2.24), we obtain the differential inequality,

Lg ≥ Fi j (Dpk pl g)uiku jl − CT + Fi j β̃iku jk + (Dpk g)(Dpl B)ukl , (2.27)

in �, with

β̃ik := 2D̃xi Dpk g + (Dzg)δik,

where the constant C depends on n,�, |g|C2 , |A|C1 , |B|C1 and |u|1;�. Note that when
a0 is finite, (2.25) can be estimated directly from (1.10).

Proof of Lemma 2.2. For any fixed boundary point x0 ∈ ∂�, we consider the function

v̄ = G(·, u, Du) + a

2
|Du − Du(x0)|2, (2.28)

where G is the boundary function in (1.2), and a ≤ 1 is a positive constant. We
consider the quasilinear case of G, (1.17), namely G pp = 0. We also consider the case
when F5+ holds. By (2.27), Cauchy’s inequality and (2.26), we have

L v̄ ≥ −CT + Fi j β̃iku jk + (Dpk G)(Dpl B)ukl

+ aFi j uiku jk + a(uk − uk(x0))Luk

≥ −C(1 + a)T − 1

a
Fi j β̃ik β̃ jk

+ [Dpk G + a(uk − uk(x0))](Dpl B)ukl

≥ −[C

a
+ (ε1M2 + Cε1)]T , in �, (2.29)

for any ε1 > 0, where g is replaced by G in β̃ik , F5+ is used in the last inequality,
the constants C depend on n, �, |G|C2 , |A|C1 , |B|C1 and |u|1;�, and the constant Cε1

depends on ε1, F and B.
We shall construct a suitable upper barrier for v̄ at the point x0. We employ a

function of the form
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φ̄ = φ + b

2
|x − x0|2, in �ρ, (2.30)

with

φ = c(d − td2), (2.31)

where d = d(x) = dist(x, ∂�), �ρ = {x ∈ �| d(x) < ρ}, b, c, t and ρ are positive
constants to be determined. Then, by calculation, we have

1

2td − 1
Lφ = Fi j [c(−Di j d + Ak

i j Dkd + 2t

1 − 2td
Di d D j d)]

≥ Fi j [c(−Di j d + Ak
i j Dkd + 2t Di d D j d)], in �ρ, (2.32)

provided tρ ≤ 1/4. For convenience, we denote hi j = −Di j d + Ak
i j Dkd +2t Di d D j d

in (2.32). By the uniform (�, A, G)-convexity of ∂�, since |u| and |Du| are bounded
in �, there exists a small positive constant σ such that

K A[∂�](x, u, Du) + μ0ν(x) ⊗ ν(x) − 2σ I ∈ �, (2.33)

for all x ∈ ∂� satisfying G(x, u(x), Du(x)) ≥ 0. Reversing the projection onto the
tangent space of ∂�, we then have

− Dν(x) + Dp A(x, u, Du) · ν(x) + μ̃0ν(x) ⊗ ν(x) − 2σ I ∈ �, (2.34)

for all x ∈ ∂�, for a larger constant μ̃0, which implies (hi j − σδi j ) ∈ � for x ∈ ∂�

provided t ≥ μ̃0. By choosing ρ sufficiently small and then t sufficiently large, we
have (hi j − σδi j ) ∈ � in �+

ρ = �ρ ∩ {G(·, u, Du) > 0}. Note that the constants ρ

and t should be chosen under the restriction tρ ≤ 1/4. Then the constants ρ and t are
now fixed. Then, by the concavity F2, we have from (2.32),

1

2td − 1
Lφ ≥ Fi j [c(hi j )]

= cσT + Fi j [c(hi j − σδi j )]
≥ cσT + F(c(hi j − σδi j )) − F(wi j ) + Fi jwi j

≥ cσT + F(c(hi j − σδi j )) − B(·, u, Du), in �+
ρ , (2.35)

where (1.1) and (1.10) are used in the last inequality. By using F4 with sufficiently
large c, we have from (2.35)

Lφ ≤ −1

2
cσT , in �+

ρ , (2.36)

where 2td − 1 ≤ −1/2 in �+
ρ is used. Thus, we obtain, from (2.29),

Lφ̄ ≤
(

−1

2
cσ + Cb

)
T ≤ L v̄, in �+

ρ , (2.37)

provided c ≥ 2[C(b + 1
a ) + (ε1M2 + Cε1)]/σ .
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Next, we examine v̄ and φ̄ on the boundary of �ρ . For x ∈ ∂�, we have

|Du(x) − Du(x0)| ≤ C(sup
∂�

sup
|τ |=1,τ ·ν=0

|Dτ Du|)|x − x0|
≤ C(1 + M ′

2)|x − x0|, (2.38)

where the mixed derivative estimate (2.22) and the strict obliqueness (1.3) are used in
the second inequality, so the constant C depends also on β0. For x ∈ �ρ and x ′ the
closest point on ∂�, we then obtain,

|Du(x) − Du(x0)|2 ≤ 4(sup |Du|)M2d(x) + 2|Du(x ′) − Du(x0)|2
≤ C(1 + (M ′

2)
2 + M2)(|x − x0|2 + d), (2.39)

so that

v̄ ≤ 1

2
aC(1 + (M ′

2)
2 + M2)(|x − x0|2 + d) ≤ φ̄, on �̄ρ ∩ {G(·, u, Du) = 0},

(2.40)

by choosing b = aC(1+(M ′
2)

2+ M2) and c ≥ b. On the inner boundary, by choosing
c ≥ C/ρ, we have

v̄ ≤ φ̄, on ∂�ρ ∩ �. (2.41)

Now from (2.37), (2.40) and (2.41), by the comparison principle, we have

v̄ ≤ φ̄, in �+
ρ . (2.42)

Since v̄(x0) = φ̄(x0) = 0, we have

Dβ v̄(x0) ≤ Dβφ̄(x0), (2.43)

which implies

uββ(x0) ≤ β0c + C, (2.44)

where β0 := sup
∂�

(G p(·, u, Du) · ν) ≥ β0. We can fix the constant c so that

c ≤ 2[C(b + 1
a ) + (ε1M2 + Cε1)]

σ
+ b + C

ρ

≤ C[(ε1 + a)M2 + a(M ′
2)

2 + 1

a
] + Cε1,

(2.45)

where C now depends on F, A, B, G,�, β0 and |u|1;�, and Cε1 depends additionally
on ε1. For any ε > 0, taking a = 1

1+ε1M2
and ε1 = ε

β0C
for a further constant C in

(2.45), we then get
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uββ(x0) ≤ εM2 + Cε(1 + M ′
2) (2.46)

from (2.44) and (2.45). Since x0 is any boundary point, we can take the supremum
of (2.46) over ∂� to arrive at the desired estimate (2.23). Therefore, we have proved
Lemma 2.2 in the case when G is quasilinear and F5+ holds. While in the case G is
quasilinear and only F5 holds with B independent in p, the last term in the second line
of (2.29) does not appear. So we still arrive at the same estimate (2.23) and Lemma 2.2
is thus proved in the quasilinear case.

Next, we turn to the case that F satisfies F6. Here we may simply take a = 0 in
(2.28) and b = 0 in (2.30) so that from (2.27), F6 and Cauchy’s inequality

L v̄ ≥ Fi j (Dpk pl G)uiku jl − CT + (Dpk G)(Dpl B)ukl + 2Fi j β̃iku jk

≥ −(ε1M2 + Cε1)T , in �, (2.47)

for any ε1 > 0, where ε1 now comes from the use of both F5+ and F6, the constant C
depends on n, �, |G|C2 , |A|C1 , |B|C1 and |u|1;�, and the constant Cε1 depends also
on ε1 and F . We can then derive the desired estimate (2.23), without the dependence
on M ′

2, for both F5+ and B independent of p. ��
Remark 2.1 The proof of Lemma 2.2 readily gives us a local boundary estimate when
we only assume ∂� ∩ B is uniformly (�, A, G)-convex with respect to u for some
ball B = BR(x0) of radius R, centred at x0. Under the hypotheses of Lemma 2.2, with
� replaced by � ∩ B and ∂� replaced by ∂� ∩ B, we then obtain, in place of (2.23),

uββ(x0) ≤ εM2;�∩B + Cε(1 + R−2 + M ′
2;∂�∩B), (2.48)

where now Cε is a constant depending on ε, F, A, B, G,�, β0 and |u|1;�∩B , and

M2;�∩B = sup
�∩B

|D2u|, M ′
2;∂�∩B = sup

∂�∩B
sup

|τ |=1,τ ·ν=0
|uττ |.

It now remains to estimate the pure tangential derivatives on the boundary. In this
part, the strictly regular condition on the matrix A is crucial. We can formulate the
pure tangential derivative estimates as follows.

Lemma 2.3 Let u ∈ C2(�̄)∩C4(�) be an admissible solution of the boundary value
problem (1.1)–(1.2) in a C3 domain � ⊂ R

n. Assume that F, A and B satisfy the
hypothesis of Theorem 1.1 and G ∈ C2(∂� × R × R

n), with G oblique and concave
in p with respect to u satisfying (1.3), and either G is quasilinear or F is orthogonally
invariant or F also satisfies condition F6. Then for any tangential vector field τ ,
|τ | ≤ 1 and constant ε > 0, we have the estimate

M+
2 (τ ) ≤ εM2 + Cε, (2.49)

where M+
2 (τ ) = sup∂� uττ , and Cε is a constant depending on ε, F, A, B, G,�, β0

and |u|1;�.
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Proof As usual we extend ν and G smoothly to all of �̄ so that ν and G(·, z, p)

are constant along normals to ∂� in some neighbourhood of ∂�. Suppose that the
function

vτ = uττ + c1
2

|uτ |2 (2.50)

takes a maximum over ∂� and tangential vectors τ , such that |τ | ≤ 1, at a point
x0 ∈ ∂� and vector τ = τ0, where c1 is the constant in the strict regularity condition
(2.3). Without loss of generality, we may assume x0 = 0 and τ0 = e1. Setting

b = ν1

β · ν
, τ = e1 − bβ, (2.51)

we then have, at any point in ∂�,

v1 = vτ + b
(
2uβτ + c1uβuτ

)+ b2
(

uββ + c1
2

u2
β

)
, (2.52)

with v1(0) = vτ (0), b(0) = 0 and τ(0) = e1. From (2.21), uβτ = −D̃xτ G on ∂� so
that setting

g = 1

β · ν
(2uβτ + c1uβuτ ),

we have

|g − g(0)| ≤ C(1 + M2)|x |, on ∂�,

where C is a constant depending on G,�, β0 and |u|1;�. Accordingly, there exists a
further constant C1 depending on the same quantities, such that the function,

ṽ1 = v1 − g(0)ν1 − C1(1 + M2)|x |2 (2.53)

satisfies

ṽ1 ≤ |τ |2ṽ1(0)
≤ f ṽ1(0), on ∂�, (2.54)

where f is any non-negative function in C2(�̄) satisfying f ≥ |τ |2 on ∂�, f (0) = 1.
In the case when G is quasilinear, that is β = β(·, u), we may simply estimate

|τ |2 ≤ 1 − 2bβ1 + b2 sup |β|2
≤ 1 − 2

β1

β · ν
(0)ν1 + C1|x |2 := f. (2.55)

Now differentiating (1.2) twice in a tangential direction τ , with τ(0) = e1, we obtain
using the concavity of G and (2.22),
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Dβu11(0) ≥ −C1(1 + M2). (2.56)

Consequently for a sufficiently large constant K depending on the same quantities as
C1, the function

v = ṽ1 − f ṽ1(0) − K (1 + M2)φ (2.57)

must take an interior maximum in�, where φ ∈ C2(�̄) is a negative defining function
for � satisfying φ = 0 on ∂�, Dνφ = −1 on ∂�. This effectively reduces our
argument to the proof of Theorem 1.1. In the proof of Theorem 1.1, by replacing the
function v1 in (2.8) with the function v in (2.57), we obtain at a maximum point x0,
using (2.3),

u11(x0) ≤ C
√
1 + M2, (2.58)

where C depends additionally on A and K |φ|2;�. The estimate (2.49) then follows by
fixing φ and the constant C1 in (2.55) so that φ ≥ − ε

4K and f ≥ 1
2 in �. Instead of

adjusting φ we can alternatively maximize v in a sufficiently small strip �δ0 around
∂� and apply the interior estimate in Theorem 1.1.

When G is nonlinear in p, the coefficient β1 in the expansion (2.55) of |τ |2 depends
on Du and cannot be controlled by the argument above. For orthogonally invariant
F , this is overcome by using a first order approximation to the tangent vector e1 at 0.
Fixing the xn coordinate in the direction of ν at 0, we then replace e1 by the vector
field

ξ = e1 +
∑

1≤k<n

δkν1(0)(xnek − xken). (2.59)

Then in place of (2.51), we have

b = ξ · ν

β · ν
, τ = ξ − bβ,

so that, both b(0) = 0, δb(0) = 0. Accordingly we then have, in place of (2.53) and
(2.54),

ṽ1 := vξ − C1(1 + M2)|x |2 ≤ ṽ1(0)(1 + C1|x |2), on ∂�, (2.60)

where C1 again denotes constants depending on G,�, β0 and |u|1;�. Comparing
the forms of ṽ1 in (2.53) and (2.60), since b(0) = 0 and δb(0) = 0, here we can
avoid the term g(0)ν1 in (2.60). The inequality in (2.60) is obtained by estimating
|τ |2 = |ξ |2−2b(ξ ·β)+b2|β|2, with |ξ |2 ≤ 1+2δ1ν1(0)xn +∑1≤k<n(δkν1(0))2|x |2
on ∂�, −2b(ξ · β) + b2|β|2 ≤ C1|x |2 on ∂�, (since b(0) = 0 and δb(0) = 0), and
using ν(0) = en to estimate xn on ∂�. Since the vector field ξ has skew symmetric
Jacobian Dξ , we can then reduce to the argument of the proof of Lemma 2.1 when
F is orthogonally invariant. The reduction is achieved by replacing the function v in
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(2.11), (where uττ is replaced by (uτ )τ in the proof of Lemma 2.1), with the function
v in (2.57), (where ṽ1 is defined in (2.60), and f is any non-negative function in
C2(�̄) satisfying f ≥ 1+ C1|x |2 on ∂�). Combining (2.19) with (2.6) and (2.7), we
would then, following our argument above, arrive at the estimate (2.58) at an interior
maximumpoint x0,with e1 replaced by ξ and from there get the corresponding estimate
for uξξ (0) = u11(0) and conclude (2.49), as before.

Finally if F6 is satisfied, we first obtain from the formulae (2.24), (2.25) and (2.26),
the complementary inequality to (2.27)

Lg ≤ C(E2 + T + 1)
≤ C(εM2 + 1)(1 + T ),

(2.61)

for any ε > 0 and provided |D2u| ≥ Cε , where the term Fi j β̃iku jk in Lg is treated in
the same way as in (2.29). Here the constant C depends on �, |g|C2 , |A|C1 , |B|C1 and
|u|1;� while Cε depends on ε, F and |u|1;�. Now taking f = f (·, u, Du) satisfying
f ≥ |τ |2 on ∂�, f ≥ 1

2 ,∈ C2(�̄ ×R×R
n), we then obtain at the interior maximum

point x0 of the function v in (2.57), corresponding to (2.9),

Lv ≥ c0T |Du1|2 − C(1 + T )(1 + |Du1| + εM2
2 ) + λB |Du1|2, (2.62)

if |u11(x0)| ≥ Cε . A suitable function f for example is obtained by taking f =
|τ |2 + C1|x |2 in � with β · ν in (2.51) replaced by ζ(β · ν) where ζ ∈ C2(R) satisfies
ζ ′, ζ ′′ ≥ 0, ζ(t) = t for t ≥ 3β0/4, ζ(t) = β0/2 for t ≤ β0/4 and C1 is a large
enough constant, depending on G,�, β0 and |u|1;�, to ensure f ≥ 1

2 . Also using F6
in conjunction with (2.3), we only need take c1 = 0 in (2.50). By suitably adjusting
ε, we then infer the estimate (2.49). ��

With the local/global second derivative estimate in Theorem 1.1, and the boundary
estimates in (2.22), Lemmas 2.2 and 2.3, we are now ready to prove the global second
derivative estimate (1.18) in Theorem 1.2.

Proof of Theorem 1.2 In the quasilinear case we have by hypothesis that the sum of
any n − 1 eigenvalues of w = M[u] is nonnegative which implies that the quantities
M ′

2 and M+
2 are equivalent. Combining the estimates (2.22), (2.23) and (2.49), we

then get an estimate

sup
∂�

uξξ ≤ εM2 + Cε, (2.63)

for any constant unit vector ξ and constant ε > 0 where Cε depends on
ε, F, A, B, G,�, β0 and |u|1;�. Then using the concavity of F , as in the proof of
Theorem 1.1, or the above property of w, we get the full boundary estimate

sup
∂�

|D2u| ≤ εM2 + Cε (2.64)

and the desired estimate (1.18) follows from the global second derivative bound in
Theorem 1.1 with ε chosen sufficiently small. If F6 is satisfied, the term in M ′

2 does
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not occur in the estimate (2.23) and we obtain (2.64) directly from the concavity of
F , as in the proof of Theorem 1.1. This completes the proof of Theorem 1.2. ��
Remark 2.2 Using the equivalence of M ′

2 and M+
2 as above, we may replace M2 by

u11(0) in (2.56) and (2.57). Taking ε = 1 in our adjustment of φ in the proof of
Lemma 2.3, we then obtain, in the cases when G is quasilinear or F is orthogonally
invariant, a more precise version of the tangential estimate (2.49)

M+
2 (τ ) ≤ C(1 +√M2), (2.65)

where C is a constant depending on F, A, B, G,�, β0 and |u|1;�.

3 Gradient estimates

In this section, we prove various gradient estimates for admissible solutions u of the
oblique problem (1.1)–(1.2). We mainly consider the case when the oblique boundary
operator G is semilinear and in particular give the proof of Theorem 1.3. We also
derive corresponding local gradient estimates as well as an estimate for nonlinear
G. As mentioned in the introduction, our conditions on either the matrix A or the
operator F enable an analogue of uniform ellipticity. Accordingly we will employ
improvements of the methods for uniformly elliptic equations in [25] with a critical
adjustment used to supplement the tangential gradient terms in [25], which is similar to
that used for gradient estimates in the conformal geometry case in [19]. We also prove
a Hölder estimate for � = �k for k > n/2, from which we infer gradient estimates
under natural quadratic growth conditions.

3.1 Global gradient estimates

We consider the case of oblique semilinear G in (1.23) and normalise G by dividing
by β · ν ≥ β0, so that we can write

G(x, z, p) = ν · p + β ′ · p′ − ϕ(x, z), (3.1)

where now β ′ ∈ C2(∂�), ϕ ∈ C2(∂� ×R) and p′ = p − (p · ν)ν. For convenience,
we still use ϕ to denote its normalised form here. The boundary condition (1.2) can
thus be written in the form

G[u] = G(·, u, Du) = Dνu + β ′ · δu − ϕ(·, u) = 0, on ∂�. (3.2)

We begin with a preliminary calculation to estimate Lg from below, for g given by

g(x, u, Du) = akl(x)ukul + bk(x, u)uk + c(x, u), (3.3)

where {akl} is a nonnegative matrix function on�, b(x, u) = (b1(x, u), . . . , bn(x, u))

is a vector valued function on�×R, c(x, u) is a scalar function on�×R, akl ∈ C2(�̄),
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bk, c ∈ C2(�̄ × R), and u ∈ C3(�) is an admissible solution of (1.1). For this
estimation we may assume more general growth conditions than (1.22), namely

Dx A, Dx B, Dz A, Dz B = o(|p|3), Dz A ≥ o(|p|2)I, Dz B ≥ o(|p|2),
Dp A, Dp B = o(|p|2), (3.4)

as |p| → ∞, uniformly for x ∈ �, |z| ≤ M for any M > 0.
Now we calculate, using (2.24),

Lg = 2Fi j akluiku jl + ukulLakl + ul [Fi j Dxi x j bl − (Fi j Ak
i j + Dpk B)Dxk bl ]

+ [Fi j Dxi x j c − (Fi j Ak
i j + Dpk B)Dxk c] + (uk Dzbk + Dzc)Lu

+[(2aklul + bk)Luk + 2Fi j (2ul Di akl + D̃xi bk)u jk]
+ Fi j [2(uk D̃xi Dzbk + D̃xi Dzc)u j − (uk Dzzbk + Dzzc)ui u j ], (3.5)

where D̃xi = Dxi + ui Dz and, corresponding to (2.25) and (2.26),

Lu = Fi jδiku jk − (Fi j Ak
i j + Dpk B)uk (3.6)

and

Luk = Fi j D̃xk Ai j + D̃xk B. (3.7)

From the growth conditions (3.4), we then estimate

Lg ≥ 2Fi j akluiku jl + Fi j β̃iku jk − C(T + 1)(ω(|Du|)|Du|4 + 1), (3.8)

where

β̃ik = 2(2ul Di akl + D̃xi bk) + (ul Dzbl + Dzc)δik

and ω is a positive decreasing function on [0,∞) tending to 0 at infinity, depending
on A, B and M0 = sup� |u|, and C is a constant depending on akl , bk, c,�, A, B and
M0. For our approach here we will assume {akl} is positive definite so that {akl} ≥ a1 I
for some positive constant a1. By Cauchy’s inequality and the positivity of {akl}, we
then obtain

Lg ≥ a1E ′
2 − C(T + 1)(ω|Du|4 + 1), (3.9)

where E ′
2 = Fi j uiku jk .

In our proof of Theorem 1.3, we will specifically choose

g = |δu|2 + |G[u]|2, (3.10)

where ν and G given by (3.1) are appropriately extended to all of �̄. For our purposes
a convenient extension will be as usual to take ν constant along normals to ∂� in a
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sufficiently small strip {d < ρ} where the distance function d is C2 smooth and to
extend β ′ ∈ C2(�̄) and ϕ ∈ C2(�̄ × R) to vanish for d ≥ ρ so that g = |Du|2 for
d ≥ ρ. Using Cauchy’s inequality, we can estimate here

{akl} ≥ (1 + β ′
0)

−2 I, (3.11)

where β ′
0 = sup |β ′|, so that (3.9) holds with a1 = (1 + β ′

0)
−2 and C depending on

β ′, ϕ,�, A, B and M0, with � ∈ C3. By further use of Cauchy’s inequality, we also
obtain

a1
4

|Du|2 − |ϕ|2 ≤ g ≤ 2

a1
|Du|2 + 2|ϕ|2, (3.12)

so that the estimation of Du is equivalent to that of the function g.
With these preparations, we give the proofs of the global gradient estimates.

Proof of Theorem 1.3. We employ auxiliary functions of the form

v := g + M2
1 (αη − κφ), (3.13)

in �, where g is given by (3.10), η = e+(−)K (u0−u), for a constant u0 and a positive
constant K to be determined, φ ∈ C2(�̄) is a negative defining function for � sat-
isfying φ = 0 on ∂� and Dνφ = −1 on ∂�, M1 = sup

�

|Du|, α and κ are positive

constants to be determined. We assume the function v attains its maximum over �̄ at
some point x0. If x0 ∈ ∂�, then we have Dβv(x0) ≤ 0, where β = ν + β ′. From the
construction of g, we have on ∂�,

g = |δu|2, and Dg = D(|δu|2). (3.14)

Then we have on ∂�,

Dβv = Dβ |δu|2 + M2
1 (αDβη − κ Dβφ)

≥ 2δku Dβδku + κ M2
1 − αKη|ϕ|(·, u)M2

1 , (3.15)

using (3.14) and the boundary condition (3.2). Next by tangential differentiation of
(3.2), as in (2.21), we have

Dβδku = δxk ϕ + (Dzϕ)δku − (δkβi )Di u − βiνk(Diνl)Dlu − βi (Diνk)Dνu.

(3.16)

Plugging (3.16) into (3.15), by Cauchy’s inequality and the fact that |δu| ≤ |Du|, we
then have at x0,

Dβv ≥ −C(1 + |Du|2) + M2
1 [κ − αKη|ϕ|(·, u)]

≥ 1

2
κ M2

1 − C, (3.17)
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provided κ is chosen large enough so that κ ≥ C(1+αK sup
∂�

η), where C is a constant

depending onβ, ϕ,� and M0.With the constant κ fixed, from (3.17) and Dβv(x0) ≤ 0,
we obtain

M2
1 ≤ 2C

κ
. (3.18)

We next consider the case that the maximum of v occurs at a point x0 ∈ �. We
now take the constant α sufficiently small and fix the defining function φ such that

α ≤ a1/16 sup
�

η, φ ≥ −a1/16κ in �. (3.19)

Taking (3.12) into account, these restrictions in (3.19) will enable us to proceed from
estimating Du(x0) to an estimate for M1. Note that these conditions ultimately depend
on the independent choice of the constant K . Since Dv(x0) = 0 and D2v(x0) ≤ 0,
we have

Lv = Fi j Di jv − (Fi j Ak
i j + Dpk B)Dkv = Fi j Di jv ≤ 0, at x0, (3.20)

where L is the linearized operator defined in (2.5). Our estimations then reduce to
getting an appropriate lower bound for Lη and for this we separate cases (i) and (ii)
in Theorem 1.3.

Case (i): A uniformly regular.
Here we take the “+” sign in η, that is η = eK (u0−u), and for convenience set

u0 = M+
0 = sup� u so that η ≥ 1. Our estimation of Lη is motivated by the barrier

constructions in [11,13,17,18] for regular A, where the constant u0 is replaced by an
admissible function ū. In particular the reader is referred to Section 2 in [13] for the
extension to general operators. First by Taylor’s formula, we have

L(u0 − u) = Fi j [−wi j − Ai j (·, u, 0)

+ Ai j (·, u, 0) − Ai j (·, u, Du) + Ak
i j (·, u, Du)uk] + (Dpk B)uk

= 1

2
Fi j Akl

i j (·, u, p̂)ukul − Fi j (wi j + Ai j (·, u, 0)) + (Dpk B)uk,

(3.21)

where p̂ = θ Du with θ ∈ (0, 1). Since A is uniformly regular, we can estimate

1

2
Fi j Akl

i j (·, u, p̂)ukul ≥ λ0

2
|Du|2T − λ̄0

2
Fi j ui u j . (3.22)

From (3.21), (3.22), we have

Lη = Kη[L(u0 − u) + K Fi j ui u j ]

≥ Kη[λ0
2

|Du|2T + (K − λ̄0

2
)Fi j ui u j
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− Fi j (wi j + Ai j (·, u, 0)) + (Dpk B)uk]
≥ Kη[λ0

2
|Du|2T + K

2
Fi j ui u j − Fi jwi j − μT + (Dpk B)uk], (3.23)

by choosing K ≥ λ̄0, whereμ is a constant depending on A. At this point we introduce
a more general condition than the concavity F2 which also includes the homogeneous
case. Namely we assume for any constant a > a0, there exist non-negative constants
μ0 and μ1 such that

r · Fr ≤ F + μ0 + μ1T (3.24)

whenever F ≥ a. From (1.9), we see that F2 implies (3.24), with μ0 =
max{0,−F(μI )} and μ1 = μ for any μ > 0. Note that when a0 > −∞, then
(3.24), with μ0 = max{0,−a0} and μ1 = 0, is immediate from (1.10). Using (3.24)
in (3.23) we thus obtain

Lη ≥ Kη

[
λ0

2
|Du|2T + K

2
Fi j ui u j − μ(1 + T ) − B + (Dpk B)uk

]
, (3.25)

where now μ depends on A, μ0 and μ1.
Assuming now F5, with b = ∞, so thatT ≥ δ0 for B ≥ b0 > a0 and supplement-

ing the growth conditions (3.4) by

B − p · Bp ≤ o(|p|2), (3.26)

we then have from (3.25), with ω sufficiently small,

Lη ≥ KηT

[
λ0

2
|Du|2 − ω|Du|2 − C

]

≥ Kλ0

4
T |Du|2 (3.27)

provided |Du| ≥ C1 for some sufficiently large constant C1, depending on F , A, B
and M0. Combining (3.9), (3.27), and also choosing K ≥ 4

λ0
, we then obtain

Lv ≥ αM2
1 |Du|2T − CT (ω|Du|4 + κ M2

1ω|Du|2 + 1). (3.28)

On the other hand if F5+ is satisfied, with b = ∞, and “o” is weakened to “O” in
(3.26), that is

B − p · Bp ≤ O(|p|2), (3.29)

then we have from (3.25),

Lη ≥ Kη

[(
λ0

2
|Du|2 − μ

)
T + K

2
Fi j ui u j − C(1 + |Du|2)

]
, (3.30)
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andwe arrive again at the inequality (3.28),with large enough K , by using the positivity
of Fr to estimate

Fi j ui u j ≥ δ1|Du|2

for some positive constant δ1 when |r | ≤ C and F(r) ≥ b0.
Now since v ismaximised at x0 andω can bemade arbitrarily small for large enough

|Du|, we must have |Du(x0)| ≤ C , noting that α and κ are now fixed by our choice
of K above. From (3.12), (3.13) and our restrictions (3.19) on α and φ, we obtain

v ≤ C + a1
8

M2
1 , in �,

so that again using (3.12), we conclude M1 ≤ C , where C now depends on
F, A, B,�, b0, β, ϕ and M0. This completes the proof of case (i) in Theorem 1.3,
with conditions (1.22) and F2 weakened to (3.4) and (3.24), and also with (3.26)
weakened to (3.29) if F5+ is satisfied, with b = ∞. Note though that this latter
condition is incompatible with F2.

Case (ii): F7 holds, β = ν.
We take the “−” sign inη so that η = eK (u−u0) and set u0 = M−

0 = inf
�

u. Assuming

growth conditions,

p · Ap ≤ O(|p|2)I, p · Bp ≤ O(|p|2), (3.31)

as |p| → ∞, uniformly for x ∈ �, |z| ≤ M for any M > 0, we then have from (3.6),
in place of (3.23),

Lη = Kη[L(u − u0) + K Fi j ui u j ]
= Kη[K Fi j ui u j + Fi j ui j − (Fi j Ak

i j + Bpk )uk]
≥ Kη[K Fi j ui u j + Fi j ui j − μ(T + 1)(1 + |Du|2)], (3.32)

where μ is a constant depending on M0. At this stage, anticipating our use of F7,
we can fix the constant K so that K ≥ 2n(1 + 2μ)/min{δ0, δ1}. In order to get a
lower bound for Lη, similar to (3.27), at the point x0 ∈ � where v, given by (3.13), is
maximised, we also need to impose our key restrictions in the hypotheses of case (ii)
of Theorem 1.3, namely F is orthogonally invariant, β = ν, that is β ′ = 0, and

A = o(|p|2), (3.33)

as |p| → ∞, uniformly for x ∈ �, |z| ≤ M for any M > 0.
By choosing coordinates, we can assume the augmented Hessian M[u] = D2u −

A = {wi j } is diagonal at x0. Then we have, at x0,

uii = wi i + Aii , ∀ i, and ui j = Ai j , for i �= j. (3.34)

From now on, all the calculations will be made at the maximum point x0. Since
Dv(x0) = 0, we have
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vi = gi + M2
1 (αKηui − κφi ) = 0, for i = 1, . . . , n, (3.35)

that is

gi = M2
1 (−αKηui + κφi ), for i = 1, . . . , n. (3.36)

On the other hand, we have

gi = Di [|δu|2 + (Dνu − ϕ)2]
= Di [|Du|2 − 2ϕDνu + ϕ2]
= 2(uk − ϕνk)uki − 2ϕuk Diνk + 2(ϕ − Dνu)D̃xi ϕ, (3.37)

for i = 1, . . . , n, where D̃x = Dx + Du Dz and in accordance with our extension of
G to �, ϕ = 0 for d ≥ ρ. Combining (3.36), (3.37) and (3.34), we have

(ui − ϕνi )wi i = 1

2
M2

1 (−αKηui + κφi ) + ϕuk Diνk − (ϕ − Dνu)D̃xi ϕ

−(ui − ϕνi )Aii −
∑
k �=i

(uk − ϕνk)Aki , (3.38)

for i = 1, . . . , n. Without loss of generality, we can further choose our coordinates so
that

u1(x0) ≥ 1√
n
|Du(x0)|. (3.39)

By assuming

u1(x0) > 2max{sup
�

|ϕ|, κ sup
�

(|Dφ|/αK )}, (3.40)

we also have

u1

u1 − ϕν1
≥ 2

3
, (3.41)

at x0. From (3.38), (3.40) and (3.41), we then obtain

w11 = 1

u1 − ϕν1

[
1

2
M2

1 (−αKηu1 + κφ1) + ϕuk D1νk

−(ϕ − Dνu)D̃x1ϕ −
∑
k>1

(uk − ϕνk)Ak1

]
− A11

≤ 1

u1 − ϕν1

[
−1

4
αKηM2

1u1 + |ϕuk D1νk |

+|(ϕ − Dνu)D̃x1ϕ| + |
∑
k>1

(uk − ϕνk)Ak1|
]

+ |A11|
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≤ − 1

6
αKηM2

1 + C

(
|ϕD1νk | + |D̃x1ϕ| +

∑
k>1

|Ak1|
)

+ |A11|

≤ − 1

6
αK M2

1 + C(ω|Du|2 + 1), (3.42)

at x0, whereω = ω(|Du|) approaches 0 as |Du| → ∞ and the growth condition (3.33)
is used in the last inequality. It then follows thatw11(x0) < 0 provided |Du(x0)| ≥ C1
for some constantC1, depending on F, A, B,�, ϕ and M0. Sincew11 is the eigenvalue
of M[u] corresponding to the eigenvector e1 and the matrix Fr is diagonal at M[u],
by virtue of the orthogonal invariance of F , we then obtain from F7 and (3.39) that

Fi j ui u j ≥ F11u2
1 ≥ 1

n
(δ0 + δ1T )|Du|2, (3.43)

at x0. From our choice of K we then obtain, from (3.32) and (3.43),

Lη ≥ Kη[2(1 + T )|Du|2 + Fi j ui j ], (3.44)

at x0. Note that if Fi jwi j ≥ 0, as in (1.10), then we can absorb the term Fi j ui j in
the last term in (3.32) so that it is not present in (3.44). Furthermore if F is positive
homogeneous of degree one, we can replace p · Bp in (3.31) by p · Bp − B.

Assuming also the growth conditions (3.4), we now combine (3.44) with (3.9), with
a1 = 1, and in general, (when Fi jwi j may be unbounded from below), use Cauchy’s
inequality to control the term Fi j ui j . Accordingly we obtain, at the maximum point
x0,

0 ≥ Lv ≥ αM2
1 K [2(1 + T )|Du|2 − αM2

1 KηT ]
− C(1 + T )(ω|Du|4 + κ M2

1ω|Du|2 + 1)

≥ (1 + T )[αM2
1 |Du|2 − C(ω|Du|4 + κ M2

1ω|Du|2 + 1)], (3.45)

provided, taking account of (3.12) and (3.13), we further restrict α so that αKη ≤ 1
16 .

As in case (i), since ω can be made arbitrarily small for large enough |Du| and, α and
κ are fixed by our choice of K above, we obtain an estimate |Du(x0)| ≤ C and hence
M1 ≤ C , where C depends on F, A, B,�, b0, ϕ and M0. This completes the proof
of case (ii) in Theorem 1.3, with conditions (1.22) weakened to (3.4) and (3.31). ��
Remark 3.1 When β = ν, so that ai j = δi j in (3.3), we can further weaken the general
growth conditions (3.4), in both cases of the above proof, to

p · Dx A + |p|2Dz A ≥ o(|p|4)I, p · Dx B + |p|2Dz B ≥ o(|p|4),
Dx A, Dx B = o(|p|4), Dz A, Dz B = o(|p|3), Dp A, Dp B = o(|p|3), (3.46)

as |p| → ∞, uniformly for x ∈ �, |z| ≤ M for any M > 0, while if also ϕ = 0 so
that g = |Du|2, we need only assume, in place of (3.4),

p · Dx A + |p|2Dz A ≥ o(|p|4)I, p · Dx B + |p|2Dz B ≥ o(|p|4). (3.47)
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Discarding the boundary condition (3.2) so that g = |Du|2 and κ = 0 in (3.13), we
then have a global gradient estimate for admissible solutions u ∈ C3(�) ∩ C1(�̄) in
terms of the gradient on the boundary, namely

sup
�

|Du| ≤ C(1 + sup
∂�

|Du|), (3.48)

where C is a constant depending on F, A, B,�, b0 and |u|0;�. The estimate (3.48)
thus holds when F , A and B satisfy the hypotheses of Theorem 1.3, but more generally
we can replace (1.22) by (3.47) with cases (i) and (ii) replaced respectively by

(i’) A is uniformly regular, F satisfies (3.24) and either (a) F5, with b = ∞, and
(3.26), or (b) F5+, with b = ∞ and (3.29);

(ii’) F is orthogonally invariant satisfying F7, A and B satisfy (3.31) and (3.33).

Using our barrier constructions in Section 2 of [13] in the proof of case (i’) also enables
some alternative conditions to uniform regularity which would include the case when
A is independent of p.

Remark 3.2 From the estimate (3.48) in Remark 3.1, we can infer, under the same
hypotheses, a global gradient bound for admissible solutions u ∈ C3(�) ∩ C1(�̄) of
the boundary value problem (1.1)–(1.2) for nonlinear G, when G is uniformly concave
in p, that is

Dpi p j G(x, z, p)ξiξ j ≤ −σ0|ξ |2, (3.49)

for all x ∈ ∂�, |z| ≤ M , p ∈ R
n , any unit vector ξ , and some positive constant σ0,

depending on the constant M . By virtue of the global bound (3.48), we only need to
estimate Du on ∂�. Using Taylor’s expansion, with θ ∈ (0, 1), we have on ∂�,

0 = G(x, u, Du) = G(x, u, 0) + Dpi G(x, u, 0)Di u

+ 1

2
Dpi p j G(x, u, θ Du)Di u D j u

≤ G(x, u, 0) + Dpi G(x, u, 0)Di u − 1

2
σ0|Du|2, (3.50)

which leads to

|Du| ≤ C, on ∂�, (3.51)

and hence

|Du| ≤ C, on �, (3.52)

where C depends on F, A, B,�, b0, σ0 and |u|0;�.
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Remark 3.3 We remark that it is not necessary to restrict β = ν in case (ii) of Theo-
rem 1.3 and we can assume more generally

|β − ν| = |β ′| < 1/
√

n. (3.53)

Replacing ν by β in (3.37), we still obtain w11(x0) < 0, if |Du(x0)| ≥ C1, under
condition (3.53), where now C1 depends also on sup∂� |β − ν|.

3.2 Local gradient estimates

In this subsection we prove local and interior versions of Theorem 1.3 and unlike the
global gradient estimates in the previous section we will need the full strength of the
growth conditions in (1.22) with respect to the p variables. The local estimates will
also provide us with estimates in terms of moduli of continuity of solutions under
weaker growth conditions analogous to the uniformly elliptic case in [25]. For the
latter estimates we also need to assume in case (ii) a complementary condition to
(3.24), namely that there exist non-negative constants μ0, μ1 and μ2 such that for any
r ∈ �,

− r · Fr ≤ μ0 + μ1T (r) + μ2|F(r)|. (3.54)

Clearly (3.54) is satisfied trivially for positive homogeneous F or if F2 and either
a0 > −∞ or F4 are satisfied by (1.10).

We summarise the results in the following theorem, where for convenience we use
balls rather than the domains �0 and �′ in Theorem 1.1.

Theorem 3.1 Let u ∈ C3(�) be an admissible solution of equation (1.1) in � and
assume that F satisfies F1 and F3, A, B ∈ C1(�̄ × R × R

n), satisfy (1.22), b0 :=
inf
�

B(·, u, Du) > a0 together with one of the following further conditions:

(i) A is uniformly regular, F satisfies (3.24) and either (a)F5, with b = ∞, and
(3.26), or (b) F5+, with b = ∞ ;

(ii) F is orthogonally invariant satisfying F7 and A satisfies (3.33).

Then for any y ∈ �̄, 0 < R < 1 and ball BR = BR(y), we have the estimate

|Du(y)| ≤ C

(
1

R
+ sup

∂�∩BR

|Du|
)

, (3.55)

for u ∈ C1(�̄ ∩ BR), where C is a constant depending on F, A, B,�, b0 and
|u|0;�∩BR . Furthermore if y ∈ ∂�, ∂� ∩ BR ∈ C3 and G[u] = 0 on ∂�, for an
oblique semilinear boundary operator G, given by (1.23), with ϕ ∈ C2(∂�∩ BR ×R),
β ∈ C2(∂� ∩ BR) in case (i) and β = ν in case (ii), then we have the estimate

|Du(y)| ≤ C

R
, (3.56)
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for u ∈ C2(�̄ ∩ BR), where C depends additionally on β and ϕ. If “o” is extended to
“O” in (1.22) and (3.33), then there exists a positive constant θ depending on the same
quantities as C, such that the estimates (3.55) and (3.56) continue to hold provided
osc

�∩BR
u < θ and F satisfies (3.54) in case (ii) with C depending additionally on μ0,

μ1 and μ2.

Proof Theorem 3.1 follows by modification of the proof of Theorem 1.3. First we fix
a function ζ ∈ C0(B̄R) ∩ C2(S), satisfying 0 ≤ ζ ≤ 1, where S = Sζ ⊂ BR , denotes
the support of ζ . From (1.22), (3.9) and Cauchy’s inequality, we now obtain in place
of (3.9),

L(ζ 2g) =ζ 2Lg + (Lζ 2)g + 2Fi j Diζ
2D j g

≥ a1ζ
2E ′

2 − Cζ 2(T + 1)(ω|Du|4 + 1) − C(T + 1)(|Du|2 + 1)[|Dζ |2
+ (|Du| + 1)ζ |Dζ | + ζ |D2ζ |]

≥ a1ζ
2E ′

2 − C(T + 1)(|Du|2 + 1)(ωζ 2|Du|2 + ζ |Du||Dζ |
+ |Dζ |2 + |D2ζ | + 1), (3.57)

in � ∩ S, where ω = ω(|Du|) is a positive decreasing function on [0,∞) tending to
0 at infinity. With g defined by (3.10), we consider now in place of (3.13), auxiliary
functions of the form

v := ζ 2g + M̃2
1 (αη − κφ), (3.58)

where M̃1 = sup
�∩BR

ζ |Du|, α, κ, η and φ are as before, except that � is replaced by

� ∩ BR , in the definitions of M+
0 and M−

0 . For the estimate (3.55), which is the local
version of the estimate (3.48) in Remark 3.1, we take as there g = |Du|2, κ = 0 and
choose

ζ(x) = 1 − |x − y|2
R2 , (3.59)

so that

ζ(y) = 1, |Dζ | ≤ c/R, |D2ζ | ≤ c/R2, (3.60)

for some constant c, and

L(ζ 2g) ≥ a1ζ
2E ′

2 − C(T + 1)

(
ωζ 2|Du|4 + 1

R
ζ |Du|3

)
(3.61)

at themaximumpoint x0 of v in�∩S, provided ζ(x0)|Du(x0)| > 1/R and |Du(x0)| >

1. For the estimate (3.56), we need to first take R sufficiently small so that there exists
a cut-off function ζ ∈ C0(B̄R) ∩ C2(Sζ ), 0 ≤ ζ ≤ 1 satisfying (3.60) together with
the boundary condition
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Dβζ = 0 on ∂� ∩ Sζ . (3.62)

We show how to construct such a function ζ from the function (3.59) at the end of the
proof.

From the property (3.62), we now obtain in place of (3.15),

Dβv = 2ζ(Dβζ )g + Dβ |δu|2 + M̃2
1 (αDβη − κ Dβφ)

≥ 2ζ 2(δku)Dβδku + κ M̃2
1 − αKη|ϕ|(·, u)M̃2

1 , (3.63)

on ∂� ∩ S. With these modifications, the estimates (3.55) and (3.56) follow from the
proof of Theorem 1.3, with M1 replaced by M̃1. In case (ii), we obtain in place of the
estimate (3.42),

ζ 2w11 ≤ −1

6
αK M2

1 + C[ζ 2(ω|Du|2 + 1) + 1

R
ζ |Du|], (3.64)

so that we obtain again w11(x0) < 0 provided ζ(x0)|Du(x0)| > C1/R, for some
constant C1, depending on F, A, B,�, ϕ and M0.

If we replace “o” by “O” in the structure conditions (1.22), we obtain (3.61) with
ω = 1. Similarly if we replace “o” by “O” in (3.33), we obtain (3.64) with ω = 1.
Accordingly we may still arrive at our desired gradient estimates, (3.55) and (3.56),
if α can be chosen sufficiently large, in which case we can still satisfy (3.19) for α,
provided η is replaced by η − 1 in (3.58) and

osc
�∩BR

u = M+
0 − M−

0 ≤ θ := 1

K
log
(
1 + a1

16α

)
. (3.65)

Note that in case (ii), we cannot satisfy the further restriction αKη ≤ 1
16 , for large α,

so here we use condition (3.54) to control the term Fi j ui j in (3.44). We remark that
when A is regular such a control can be alternatively achieved through a barrier [13].

To end the proof of Theorem3.1,we give the key construction of the cut-off function
at boundary.

Construction of cut-off function at boundary. We fix a point y ∈ ∂�, which we may
take to be the origin, and a coordinate system so that ν(0) = en . Suppose that in
some ball Bρ = Bρ(0), � ∩ Bρ = {xn > h(x ′)}, ∂� ∩ Bρ = {xn = h(x ′)}, where
h ∈ C3(B̄ ′

ρ), B ′
ρ = {|x ′| < ρ} and x ′ = (x1, . . . , xn−1). By taking ρ sufficiently

small, we can assume,

χ(x) := βn(x) −
n−1∑
i=1

βi (x)Di h(x ′) ≥ 1 − δ (3.66)

for any fixed δ > 0, since βn(0) = 1, Dh(0) = 0. Now we consider a coordinate
transformation x → x̃ = ψ(x), where
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x̃i = xi − βi (x)x̃n, i = 1, . . . , n − 1,

x̃n = 1

χ(x)
(xn − h(x ′)). (3.67)

Again with ρ sufficiently small, we have ψ(0) = 0, ψ(∂� ∩ Bρ) = {x̃n = 0},
Dψ(0) = I and det Dψ > 0, so that in particular ψ is invertible in Bρ . Furthermore,
if ζ ∈ C1(�̄ ∩ Bρ), ζ̃ = ζ ◦ ψ−1 ∈ C1(ψ(�̄ ∩ Bρ)), we obtain by calculation

Dx̃n ζ̃ ◦ ψ =
n∑

i=1

∂ζ

∂xi

∂xi

∂ x̃n

=
n−1∑
i=1

βi (x)
∂ζ

∂xi
+ (χ(x) +

n−1∑
i=1

βi (x)Di h(x ′)) ∂ζ

∂xn

=
n−1∑
i=1

βi (x)
∂ζ

∂xi
+ βn(x)

∂ζ

∂xn
= Dβζ, on ∂� ∩ Bρ. (3.68)

Hence if ζ̃ ∈ C1
0(ψ(�̄∩Bρ)) satisfies Dx̃n ζ̃ (x̃ ′, 0) = 0, we have Dβζ = 0 on ∂�∩Bρ .

With the help of (3.68), a boundary cut-off function ζ ∈ C0(B̄R) ∩ C2(Sζ ), 0 ≤
ζ ≤ 1 satisfying (3.60) and (3.62) can be constructed. For a fixed point y ∈ ∂�, which
we may take to be the origin, we make the coordinate transformation x → x̃ = ψ(x)

as in (3.67). In the x̃-coordinate system, we can choose the function

ζ̃ = 1 − |x̃ |2
R̃2

, (3.69)

in BR̃ ⊂ ψ(Bρ), with ζ̃ vanishing outside BR̃ . Then for R = C R̃ ≤ ρ, where C
depends on � and β, the function ζ = ζ̃ ◦ ψ is the desired cut-off function satisfying
the above properties (3.60) and (3.62). The estimate (3.56) for all 0 < R < 1, then
follows immediately. ��
Remark 3.4 Note that when β = ν, (3.10) is similar to the corresponding function
used for the gradient estimate of Neumann problems in [19], (andmore recently for the
k-Hessian equations in [30]). In our proof, we use the auxiliary functions (3.13) and
(3.58), which are modifications of the auxiliary functions used in Section 3 of [25] for
uniformly elliptic equations and for interior gradient bounds for k-Hessian equations
in [39]. We remark that we can use alternative functions; in particular functions of the
form v = g exp (αη − κφ) and v = ζ 2g exp (αη − κφ), with appropriately chosen
positive constants α and κ , in place of (3.13) and (3.58) respectively.

Remark 3.5 If we assume the matrix A satisfies the following condition

Dz A(x, z, p) ≥ c|p|2 I, (3.70)

as |p| → ∞, x ∈ �, |z| ≤ M , p ∈ R
n for any M > 0 and for some c > 0, we can

dispense with the uniformly regular assumption on A in Theorem 1.3 and Theorem 3.1
and the proof is much simpler. More generally we can replace the exponent 2 on the
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right hand side of (3.70) by m for 0 ≤ m ≤ 2 provided the powers of |p| in the growth
conditions (1.22) are reduced by 2− m. When the constant c is sufficiently large, “o”
in (1.22) can be weakened to “O”.

Remark 3.6 Using the cut-off function ζ constructed in the proof of Theorem 3.1,
we can also extend the global second derivative estimates in Theorem 1.2 to local
estimates in the case of semilinear boundary operators G. As in Remark 2.1 we need
only assume ∂� ∩ B is uniformly (�, A, G)-convex with respect to u for some ball
B = BR(y) of radius R, centred at y ∈ �̄. Under the hypotheses of Theorem 1.2,
with � replaced by � ∩ B and ∂� replaced by ∂� ∩ B, we then obtain for semilinear
G, in place of (1.18),

|D2u(y)| ≤ C(1 + R−2), (3.71)

where C is now a constant depending on F, A, B, G,�, β0 and |u|1;�∩B . A more
detailed argument is presented in [15], where we consider local boundary regularity
for appropriate classes of weak solutions.

Remark 3.7 We remark that the uniformly regular definition (1.20) (1.21) of thematrix
A, can also be equivalently formulated as follows, namely

λ(x, u, p) = inf|ξ |=|η|=1,
ξ ·η=0

Akl
i j (x, u, p)ξiξ jηkηl ≥ λ0 > 0, (3.72)

and

�(x, u, p) = sup
|ξ |=|η|=1

|Akl
i j (x, u, p)ξiξ jηkηl | ≤ μ0λ(x, u, p), (3.73)

for x ∈ �, |u| ≤ M , for positive constants λ0 and μ0, depending on M . Then the
estimates (1.24), (3.55) and (3.56) also hold for A satisfying (3.72), (3.73), F and B
satisfying (i) of Theorems 1.3 and 3.1.

3.3 Hölder estimates

In this subsection, we will prove a Hölder estimate for admissible functions u of the
augmented Hessian equation (1.1) in the cones �k for k > n/2, when A ≥ O(|p|2)I .
For M[u] ∈ �k for n/2 < k ≤ n, we have

Fk(M[u]) > 0, in �, (3.74)

where the operator Fk = (Sk)
1
k . Here the condition A ≥ O(|p|2)I is interpreted as

the natural quadratic structure condition from below, namely

A(x, z, p) ≥ −μ0(1 + |p|2)I, (3.75)
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for all x ∈ �, |z| ≤ M , p ∈ R
n , and some positive constant μ0 depending on the

constant M . The one-sided quadratic condition (3.75) has already been used for the
gradient estimate in the Monge–Ampère case, for the Dirichlet problem in [17] and
the Neumann and oblique problems in [16].

Lemma 3.1 Let u ∈ C2(�) satisfy M[u] ∈ �k for n/2 < k ≤ n where the matrix A
satisfies (3.75). Then for any ball BR = BR(y), with centre y ∈ �̄, x ∈ �R := BR ∩�

and α = 2 − n/k, we have the estimate

|u(x) − u(y)| ≤ C |x − y|α
(

R−α osc
�R

u + 1

)
, (3.76)

provided one of the following holds:

(i) BR ⊂ �, u ∈ C0(�̄R) and the constant C depends on n, k, μ0, osc
�R

u and diam

�;
(ii) � ∈ C2 is convex, u ∈ C1(�̄R)and C depends additionally on�and inf

BR∩∂�
Dνu;

(iii) u ∈ C0(�̄R) ∩ C0,α(B̄R ∩ ∂�) and C depends additionally on [u]α;BR∩∂�.

Proof First we consider the interior case (i). For any ball BR = BR(y) ⊂ �, we need
to compare the following two functions in BR ,

v(x) = eK (u(x)−u(y)) + a

2
|x − y|2 − 1, (3.77)

and

�(x) = c|x − y|α, α = 2 − n

k
, (3.78)

where n/2 < k ≤ n, K , a and c are positive constants to be determined. By direct
calculation, we first observe that

Fk(D2�) = 0, for x �= y. (3.79)

Denoting �̃ = � + ε
2 |x − y|2 for some positive constant ε < 1, then the perturbation

function �̃ of � satisfies D2�̃ ∈ �k in BR . Fixing a constant ρ < min{R, 1}, it is
readily checked that Fk(D2�̃) is a strictly decreasing function with respect to |x − y|
for x ∈ BR\Bρ , and hence

Fk(D2�̃) < Fk(D2�̃)|x∈∂ Bρ ≤ C(n, k, c)

(
ε

ρn(k−1)/k

) 1
k

, for x ∈ BR\Bρ,

(3.80)

where Bρ := Bρ(y), C(n, k, c) is a positive constant depending on n, k and c. By
introducing

Si j
k := Si j

k (D2�̃) = ∂Sk(D2�̃)

∂�̃i j
, and Fi j

k := Fi j
k (D2�̃) = ∂ Fk(D2�̃)

∂�̃i j
, (3.81)
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we have

Si j
k = k Fk−1

k (D2�̃)Fi j
k . (3.82)

We also denoteTSk = trace(Si j
k ) = (n − k +1)Sk−1. Since D2�̃ ∈ �k in BR , we have

{Fi j
k } > 0 and {Si j

k } > 0 in BR .
For our desired comparison of the functions v in (3.77) and � in (3.78) on BR , we

shall first compare them on BR\Bρ for a fixed ρ, and then send ρ to 0 in the end.
For convenience of later discussion, we now introduce some notation and fix some
constants in advance. We denote

ωR = osc
BR

u, K̃M = K eKωR , K̃m = K e−KωR , (3.83)

and

δ(n, k) =
{
1/(n − k + 1), n/2 < k < n,

1/n, k = n.
(3.84)

We can fix the constant K large such that K > μ0/δ(n, k), and fix the constant a such
that a > 1 + μ0 K̃M . For fixed K , by choosing

c ≥ R
n
k

[
R−2(eKωR − 1) + a

2

]
,

we have v − � ≤ 0 on ∂ BR . Now the constant c has been fixed as well. For fixed ρ

and c, by choosing ε sufficiently small such that the quantity on the right hand side of
(3.80) is sufficiently small, we can have

Fk(D2�̃) < K̃m inf
�

Fk(M[u]), for x ∈ BR\Bρ, (3.85)

where K̃m is the constant defined in (3.83). If v −� attains its maximum over BR\Bρ

at a point x0 ∈ BR\Bρ , then we have D(v − �) = 0 and D2(v − �) ≤ 0 at x0,
namely

ui (x0) = K̃ −1[−a + αc|x0 − y|− n
k ][(x0)i − yi ], for i = 1, . . . , n, (3.86)

and

Si j
k Di j (v − �) ≤ 0, at x0, (3.87)

where K̃ = K eK (u(x0)−u(y)). Without loss of generality, by rotation of the coordinates,
we can assume x0 − y = ((x0)1 − y1, 0, . . . , 0). From (3.86), we have Du(x0) =
(u1(x0), 0, . . . , 0). By calculation, we have

D2�(x0) = αc|x0 − y|− n
k diag

(
1 − n

k
, 1, . . . , 1

)
, (3.88)
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which has a negative eigenvalue�11(x0)when n/2 < k < n and has a null eigenvalue
�11(x0)when k = n. Correspondingly, for small ε, the perturbedHessian D2�̃(x0) =
D2�(x0)+ ε I is diagonal, and has a negative eigenvalue �̃11(x0) when n/2 < k < n
and has a least positive eigenvalue �̃11(x0) when k = n. Note also that the matrices
{Fi j

k } and {Si j
k } are diagonal at x0. From the properties of the k-Hessian operator and

the Monge–Ampère operator, we have

S11
k ≥ δ(n, k)TSk , (3.89)

where δ(n, k) is defined in (3.84).
By our choices of the constants K and a, from wi j = ui j − Ai j , (3.75), (3.85),

(3.82), (3.89), and the concavity and homogeneity of Fk , we have, at x0,

Si j
k Di j (v − �) = Si j

k [K K̃ ui u j + K̃ Ai j + (a − ε)δi j + K̃wi j − �̃i j ]
≥ K K̃ S11

k u2
1 + Si j

k [−μ0 K̃ (1 + |Du|2)δi j + (a − ε)δi j ]
+k Fk−1

k (D2�̃)Fi j
k [K̃wi j − �̃i j ]

≥ K̃m(K δ(k, n) − μ0)TSk |Du|2 + (a − ε − μ0 K̃M )TSk

+k Fk−1
k (D2�̃)[K̃m Fk(M[u]) − Fk(D2�̃)]

> 0. (3.90)

The contradiction from (3.87) and (3.90) shows that v − � must take its maximum
over BR\Bρ at the boundary ∂ BR or ∂ Bρ . Therefore, we have

v − � ≤ max{0, sup
Bρ

(v − �)}, for x ∈ BR\Bρ. (3.91)

We observe that we can choose ε as small as we want in (3.90). Letting ε → 0 in
(3.90), the inequality (3.91) can hold for ρ as small as we want. Sending ρ → 0 and
using the forms of v in (3.77) and � in (3.78), the right hand side of (3.91) tends to 0.
Correspondingly, we have from (3.91),

v ≤ �, for x ∈ B̄R, (3.92)

namely

u(x) − u(y) ≤ 1

K
log(1 + c|x − y|α), for x ∈ B̄R, (3.93)

and hence assertion (i) follows by controlling c from above, for example by estimating,
c ≤ R−αωR K̃M + a

α
.

Remark 3.8 In the above argument, we use the perturbation �̃ = c|x − y|α + ε
2 |x − y|2

of the function � = c|x − y|α . We remark that there are alternative perturbations
that can be used here. For instance, we can choose a perturbation in the form, �̃ =
c(|x − y|2 + ε2)

α
2 for small ε.
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If we consider admissible functions u of equation (1.1) in the cones �k for k > n/2
satisfying various boundary conditions, we can also have similar comparison in (3.93)
locally near the boundary. For the Neumann case (ii), we suppose BR intersects ∂�,
with �R convex and Dνu > −κ on ∂� ∩ BR , where κ is a nonnegative constant.
Defining ũ = u − κφ, where φ is a negative defining function of �, as in Sects. 3.1
and 3.2, satisfying φ < 0 in �, φ = 0 on ∂� and Dνφ = −1 on ∂�, then we have
Dν ũ > 0 on ∂� ∩ BR . Using ũ in place of u in (3.77), we then compare the replaced
function v in (3.77) and the function � in (3.78) on �̄R . Similar to the interior case,
we begin with our discussion on (BR\Bρ) ∩ � for a fixed ρ < min{R, 1}, where
Bρ := Bρ(y). If the maximum of v − � takes its maximum over (BR\Bρ) ∩ � at
a point x0 ∈ (BR\Bρ) ∩ �, by choosing a larger constant a depending additionally
on κ , |φ|2;�, we can obtain the same inequality as in (3.90) and get a contradiction
with (3.87). Therefore, the possibilities that maximum point x0 of v − � occurs are
on (BR\Bρ) ∩ ∂�, ∂ BR ∩ � or ∂ Bρ ∩ �. If x0 ∈ (BR\Bρ) ∩ ∂�, from the convexity
of �R , we have (x0 − y) · ν(x0) ≤ 0. Then we have, at x0,

0 ≥ Dν(v − �)(x0)
= K eK (ũ(x0)−ũ(y))Dν ũ(x0) + [a − αc|x0 − y|− n

k ](x0 − y) · ν(x0)
> 0, (3.94)

by using Dν ũ > 0 on ∂�, and choosing the constant c large such that c ≥ a R
n
k /α.

Then (3.94) leads to a contradiction and excludes the case that the maximum of v −�

occurs at (BR\Bρ) ∩ ∂�. By fixing the defining function φ such that φ > −1/κ , we
have κ(φ(x) − φ(y)) > −1 for x ∈ ∂ BR ∩ � and y ∈ ∂�. With this property of the
defining function, now by choosing c larger again such that

c ≥ R
n
k

⎡
⎣R−2

⎛
⎝e

K

(
ωR+κ osc

�R
φ

)
− 1

⎞
⎠+ a

2

⎤
⎦ ,

we have v − � ≤ 0 on ∂ BR ∩ �. Similarly to (3.91) of the interior case, with μ0 and
K appropriately adjusted, we now have

v − � ≤ max

{
0, sup

Bρ∩�

(v − �)

}
, for x ∈ (BR\Bρ) ∩ �. (3.95)

Therefore, by successively passing ε and ρ to 0, the same inequality (3.93) holds on
�̄R and hence assertion (ii) is proved.

Finally for Dirichlet boundary values, as in case (iii), we suppose again that BR

intersects ∂� and u ∈ C0(�̄R) ∩ C0,α(B̄R ∩ ∂�) so that

|u(x) − u(y)| ≤ κ|x − y|α, (3.96)

for all x, y ∈ BR ∩ ∂� for some non-negative constant κ = [u]α;BR∩∂�. Assume first
that the centre y ∈ ∂�. Then proceeding as in the previous case we need to compare
v and � on (BR\Bρ) ∩ ∂�. Accordingly we now obtain
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v − � = eK (u(x)−u(y)) − 1 + a

2
|x − y|2 − c|x − y|α

≤ κK eKω′
R |x − y|α + a

2
|x − y|2 − c|x − y|α

≤ 0, for x ∈ (BR\Bρ) ∩ ∂�, (3.97)

by taking c larger such that

c ≥ κK eKω′
R + a

2
R2−α,

where ω′
R = osc

∂�∩BR
u. With K and c also chosen as in case (i), with BR replaced by

�R , we arrive again at (3.93) on �̄R .
The general case, y ∈ �, in case (iii), now follows by combining the case, y ∈ ∂�

with the interior estimate, (3.76) in case (i), as in Theorem 8.29 in [7]. ��
For convex domains, Lemma 3.1 extends the gradient bound, Lemma 3.2 in [16],

for the case k = n. More generally it provides a modulus of continuity estimate for
solutions of (1.1) that are admissible in �k for k > n/2. Combining with the local
gradient estimate in Theorem 3.1, the estimate (3.55) can hold by extending “o” to
“O” in (1.22) and (3.33). For a convex domain �, the estimate (3.56) can still hold
for the semilinear Neumann problems in case (ii) of Theorem 3.1 by extending “o” to
“O” in (1.22) and (3.33).

4 Existence and applications

In this section, we present some existence results for classical solutions based on our
first and second derivative a priori estimates for admissible solutions for the oblique
boundary value problem (1.1)–(1.2). We also give various examples of equations and
boundary conditions satisfying our conditions and also show that our theory can be
extended to embrace C1,1 solutions of degenerate equations.

4.1 Existence theorems

We assume that u and ū in C2(�)∩C1(�̄) are respectively an admissible subsolution
and supersolutionof the boundaryvalue problem (1.1)–(1.2), satisfying the inequalities
(1.25) and (1.26), with F satisfying F1 and G oblique. Under the assumptions A,
B and G are non-decreasing in z, with at least one of them strictly increasing, if
u ∈ C2(�) ∩ C1(�̄) is an admissible solution of the problem (1.1)–(1.2), by the
comparison principle, we have

u ≤ u ≤ ū, in �̄. (4.1)

For our purposes here we note that the comparison principle, as formulated in Lemma
3.1 in [16], extends automatically to operators F satisfying F1. Then (4.1) provides
the solution bound and the interval I = [u, ū] for the convexity definition (1.16).
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With the a priori estimates up to second order, we can formulate existence results
for the classical admissible solutions of the oblique boundary value problems (1.1)–
(1.2). We consider first the case when the matrix A is strictly regular and the boundary
operator G is semilinear.

Theorem 4.1 Assume that F satisfies conditions F1–F4 in the cone � ⊂ Pn−1, �

is a bounded C3,1 domain in R
n, A ∈ C2(�̄ × R × R

n) is strictly regular in �̄,
B > a0,∈ C2(�̄ × R × R

n), G is semilinear and oblique, with β ∈ C2,1(∂�),
ϕ ∈ C2,1(∂� × R), u and ū, ∈ C2(�) ∩ C1(�̄) are respectively an admissible
subsolution and a supersolution of the oblique boundary value problem (1.1)–(1.2)
with � uniformly (�, A, G)-convex with respect to the intervalI = [u, ū]. Assume also
that A, B and ϕ are non-decreasing in z, with at least one of them strictly increasing,
and that A and B satisfy the quadratic growth conditions (1.22), with B ≥ O(1) if
a0 = −∞. Assume either F5+ holds or B is independent of p. Then if one of the
following further conditions is satisfied:

(i) A is uniformly regular, F satisfies F5, with b = ∞ and B − p · Dp B ≤ o(|p|2)
in (1.22);

(ii) β = ν, F is orthogonally invariant and satisfies F7 and either (a) A = o(|p|2)
in (1.22) or (b) � ⊂ �k with k > n/2 and � is convex,

(iii) � = �n and A satisfies (3.75) in place of (1.22),

there exists a unique admissible solution u ∈ C3,α(�̄) of the boundary value problem
(1.1)–(1.2), for any α < 1.

Proof First we note that the uniqueness follows directly from the comparison princi-
ple, using ourmonotonicity condtions on A, B andG. To prove the existence assertion,
under the assumptions of Theorem 4.1, we have solution bounds (4.1), gradient esti-
mates (1.24) from Sect. 3 and second derivative estimates (1.18) by Theorem 1.2. Note
that the gradient estimate when � = �k with k > n/2 and � is convex in case (ii)
is obtained by combining the local gradient estimate in Theorem 3.1 and the Hölder
estimate in Lemma 3.1; (see the last paragraph of Sect. 3). From the uniformly elliptic
theory [25,26,35], we can then derive a global second derivative Hölder estimate

|u|2,α;� ≤ C, (4.2)

for admissible solutions u ∈ C4(�)∩C3(�̄) of the semilinear oblique boundary value
problem (1.1)–(1.2) forα ∈ (0, 1).With theC2,α estimate, by choosing the subsolution
u as an initial solution, we can employ the classical method of continuity, Theorem
17.22 and Theorem 17.28, in [7] to derive the existence of an admissible solution
u ∈ C2,α(�̄). In order to preserve our subsolution and supersolution inequalities and
guarantee the uniform a priori estimates, we initially assume that A, B ∈ C2,γ (�̄ ×
R×R

n) and u ∈ C4,γ (�̄) for some γ ∈ (0, 1) and consider the family of problems:

F[u] = B(·, u, Du) + (1 − σ){F[u] − B(·, u, Du)}, in �,

G[u] = (1 − σ)G[u], on ∂�,
(4.3)

for 0 ≤ σ ≤ 1. Then any admissible solution u ∈ C2,α(�̄) of (4.3) satisfies u ∈
C4,γ (�)∩C3,γ (�̄) and the estimates (4.1), (4.2) uniformly in σ . Note that for this we
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only need the boundary data ∂� ∈ C3,γ , β, ϕ ∈ C2,γ . Since u is the unique solution of
(4.3) at σ = 0, we then obtain the existence of a unique solution u ∈ C4(�) ∩ C3(�̄)

at σ = 1.
To prove Theorem 4.1 as stated, we then need to suitably approximate A, B and u.

Accordinglywe let A(m), B(m) ∈ C2,γ (�̄×R×R
n),m = 1, 2, . . ., satisfy Dα A(m) →

Dα A, Dα B(m) → Dα B, locally uniformly in �̄×R×R
n for anymulti-index |α| ≤ 2.

To approximate u, we assume initially u, ū ∈ C2(�̄) and let u(m) ∈ C4,γ (�̄) satisfy
Dαu(m) → Dαu uniformly in� for all |α| ≤ 2, together with u(m) ≤ u and Dβu(m) ≥
Dβu on ∂� for all m = 1, 2, . . .. We now consider the approximating boundary value
problems:

F (m)[u] := F[D2u − A(m)(·, u, Du)] = B(m)(·, u, Du) in �, G[u] = 0 on ∂�.

(4.4)

From the definition of (�, A, G)-convexity, we see that�will be uniformly (�, A, G)-
convex with respect to an interval Iδ = [u − δ, ū + δ] for some δ > 0. Assuming first
that either A or B is strictly increasing with respect to z, we then have, (using condition
F5 in the first case), that u −δ and ū +δ are respectively an admissible subsolution and
a supersolution of the oblique boundary value problem (4.4) for m sufficiently large
and we thus obtain the estimate (4.2) for admissible solutions u ∈ C4(�) ∩ C3(�̄) of
(4.4) for m sufficiently large, with constants α and C independent of m. Furthermore
it also follows that u(m) − δ ∈ C4,γ is an admissible subsolution of (4.4) for m
sufficiently large so we also obtain the existence of a unique admissible solution
u(m) ∈ C4,γ (�)∩ C3,γ (�̄) of (4.4) satisfying, by virtue of the linear Schauder theory
[7, Chapter 6] and (4.2), the estimates

|u(m)|3,α;� ≤ C,

for any α < 1, and constant C independent of m. Letting m → ∞, we then establish
Theorem 4.1 in the cases where A or B are strictly increasing, and u ∈ C2(�̄).

For the remaining casewhenϕ is strictly increasingwith respect to z, or equivalently
G is strictly decreasing with respect to z, we use the uniform ellipticity of F with
respect to u, ū and the strict monotonicity of G to construct admissible subsolutions
v and supersolutions v̄ of (4.4) in the form

v = u − δ + δ′eK x1 , v̄ = ū + δ − δ′eK x1 ,

for sufficiently large constant K , small δ′ satisfying 0 < δ′eK x1 < δ/2 and sufficiently
largem. Clearly v(m) = u(m)−δ+δ′eK x1 ∈ C4,γ (�̄) is also an admissible subsolution
for sufficiently largem sowe are able to establish Theorem 4.1 also in this case. Finally
to remove our conditions u, ū ∈ C2(�̄), wemay replace� by a parallel approximating
domain�ε = {x ∈ �| dist(x, ∂�) > ε} for ε > 0 sufficiently small, with G extended
to ∂�ε ×R×R

n to be constant along normals to ∂�. Letting ε → 0, we then obtain
Theorem 4.1 it its full generality. ��

123



396 F. Jiang, N. S. Trudinger

With the above existence result for general operators, the existence for semilinear
oblique problem (1.1)–(1.2) of the k-Hessian andHessian quotient equations,F = Fk,l

for 0 ≤ l < k ≤ n, k > 1 in Theorem 1.4, is just a special case. The conditions in
cases (i), (ii) in Theorem 1.4 agree with those in (i), (ii) in Theorem 4.1, respectively.
For case (iii) of Theorem 1.4, the gradient estimate follows from Lemma 3.2 in [16],
while second derivative estimate is from Theorem 1.2. In the special case when k = 1,
equation (1.1) reduces to a quasilinear Poisson equation, as the matrix A can then be
absorbed in the scalar B and considerably more general results for arbitrary smooth
domains � follow from the classical Schauder theory [7]. In particular we need only
assume the quadratic growth, B = O(|p|2) as |p| → ∞, uniformly for x ∈ �, |z| ≤
M for any M > 0, and under reduced smoothness hypotheses, B ∈ C0,α(�̄×R×R

n),
∂� ∈ C1,α , β ∈ C1,α(∂�), ϕ ∈ C1,α(∂� × R), we infer the existence of a unique
classical solution u ∈ C2,α(�̄) of the semilinear oblique problem (1.1)–(1.2).

Using Lemma 4.1 in [16] and the nonlinear case in Theorem 1.2, we can extend
Theorem 4.1 to cover nonlinear boundary operators in the case where � is the positive
cone �n . For this we also need to assume that G is uniformly oblique in the sense that

G p(x, z, p) · ν ≥ β0, |G p(x, z, p)| ≤ σ0, on ∂�, (4.5)

for all x ∈ �, |z| ≤ M , p ∈ R
n and positive constants β0 and σ0, depending on

the constant M . The following existence result, which is proved similarly to Theo-
rem 4.1, extends the Monge–Ampère case, Theorem 4.2 in [16] as well as case (iii) in
Theorem 1.4.

Theorem 4.2 Assume that F satisfies conditions F1–F4 and F6 in the positive cone
�n, � is a bounded C3,1 domain in R

n, A ∈ C2(�̄ ×R×R
n) is strictly regular in �̄,

B > a0,∈ C2(�̄×R×R
n), G ∈ C2,1(∂�×R×R

n) is concave with respect to p and
uniformly oblique in the sense of (4.5), u and ū, ∈ C2(�) ∩ C1(�̄) are respectively
an admissible subsolution and a supersolution of the oblique boundary value problem
(1.1)–(1.2) with � uniformly (A, G)-convex with respect to the interval I = [u, ū].
Assume also that A, B and −G are non-decreasing in z, with at least one of them
strictly increasing and A satisfies the quadratic growth condition (3.75). Assume either
F5+ holds or B is independent of p. Then there exists a unique admissible solution
u ∈ C3,α(�̄) of the boundary value problem (1.1)–(1.2), for any α < 1.

Remark 4.1 Without the monotonicity, subsolution and supersolution hypotheses in
Theorems 4.1 and 4.2 we can still obtain the existence of possibly non-unique, admis-
sible solutions of the oblique boundary value problem (1.1)–(1.2), using topological
fixed point theorems, (cf. Theorem 11.6 in [7]), or degree theory, (as in [47]), instead
of the method of continuity, provided we have a priori bounds for solutions of appro-
priate families such as (4.3), so that their ranges lie in fixed intervals I, where ∂� is
uniformly (�, A, G)-convex. Note also that the monotonicity conditions themselves
may be relaxed somewhat to get the inequality (4.1). In particular we can strengthen
the sub and super solution properties of u and ū so that D2u ≥ A(x, z, Du(x)) and

F[D2u − A(x, z, Du(x))] ≥ B(x, z, Du(x)), in �,

G(x, z, Du(x)) ≥ 0, on ∂�,
(4.6)
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whenever z < u(x), with one of the inequalities in (4.6) strict, and

F[D2ū − A(x, z, Dū(x))] ≤ B(x, z, Dū(x)), in �,

G(x, z, Dū(x)) ≤ 0, on ∂�,
(4.7)

whenever z > ū(x), D2ū ≥ A(x, z, Dū(x)), with one of (4.7) strict. As a special case,
if u = −K , ū = K for some constant K , we get |u| ≤ K ; (see also [16], Sect. 3).
Under this more general hypothesis we can then infer the existence of admissible
solutions in Theorems 4.1 and 4.2.

Remark 4.2 By further approximating G and � in the proof of Theorems 4.1 and 4.2,
we need only assume G ∈ C2(∂� × R × R

n) and ∂� ∈ C3, (in accordance with
the smoothness hypotheses of Theorems 1.2 and 1.3), to obtain admissible solutions
u ∈ C3,α(�) ∩ C2,α(�̄), for all α < 1.

We can also avoid approximating A and B in the proof of Theorems 4.1 and 4.2
by using the linear L p regularity theory, ([7], Chapter 9), which implies, under our
smoothness hypotheses on A and B, that a C2,α solution of (1.1)–(1.2) lies in the
Sobolev space W 4,p

loc (�), for any p < ∞. Then we may carry out the derivation of
the estimate (4.2) by applying the Aleksandrov-Bakel’man maximum principle to our
differential inequalities, rather than the classical comparison arguments. Moreover
through this approach or by further refinement of our approximation arguments, we
need only assume A, B ∈ C1,1(�̄ × R × R

n), (with our convexity conditions on A
holding a.e.), G ∈ C1,1(∂� × R × R

n) and ∂� ∈ C2,1 to obtain the estimate (4.2)
and thereby the existence of a unique admissible solution u ∈ C3,α(�) ∩ C2,α(�̄),
for all α < 1.

4.2 Examples

In this subsection, we present various examples of operators F , matrix functions A
and associated oblique boundary operators G which satisfy our hypotheses.

Examples for F . As already indicated in Sect. 1, our main examples are the k-
Hessian operators and their quotients Fk,l (0 ≤ l < k ≤ n), as considered in
Theorem 1.4. For 0 ≤ l < k ≤ n, Fk,l satisfy F1–F5, F7 in �k with a0 = 0. We
remark that b in F5 can be a positive constant or +∞. For l = 0, the corresponding
k-Hessian operators Fk , 2 ≤ k ≤ n satisfy F1–F4, F5+ and F7 in �k with a0 = 0. In
this case the operators Fk only satisfy F5+ for finite b but not infinite b. Note that the

normalised Monge–Ampère operator in the form (det)
1
n is also covered by Fk when

k = n. Another well known concave form of the Monge–Ampère operator is log(det),
which satisfies F1–F4, F5+ in K + with a0 = −∞. As stated in the introduction, the
k-Hessian operators Fk (k = 1, . . . , n) and the Hessian quotients Fn,l (1 ≤ l ≤ n −1)
satisfy F6 in the positive cone K +. More generally, if F is an operator satisfying F1,
F2, F3, F5+, with finite a0, then F6 holds in K +, since

E2 ≤ r · Fr |r |
≤ (F(r) − a0)|r |
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≤ (b − a0)|r |
≤ o(|r |)T , as |r | → ∞, (4.8)

for −∞ < a0 < F(r) ≤ b < ∞, where the property of K + is used in the first
inequality, (1.10) is used in the second inequality, and F5+ is used in the last two lines.
Such a property was observed by Urbas [47,50] for orthogonally invariant F . Note
that (4.8) here holds for non-orthogonally invariant F as well.

Also as mentioned in the introduction, when a0 is finite, both conditions F4 and
F5, (with a = a0), follow from F1, F2 and F3. To show F5, (independently of F4), we
may simply estimate, using F2 and (1.10), for r0 ∈ � and F(r) < b,

T (r) ≥ r0 · Fr/|r0|
≥ (F(r0) − F(r) + r · Fr )/|r0|
≥ (F(r0) − b)/|r0| ≥ δ0, (4.9)

for some constant δ0, depending on F and b, if F(r0) is sufficiently large. To show
F4, we first note from (1.10) that F(tr) is nondecreasing in t for t > 0 so if the
point r lies on the ray from the vertex 0 through r0 ∈ �, we have F(tr) ≥ F(r0)
for all t ≥ |r0|/|r |. Otherwise we consider the plane spanned by the straight lines
joining r and r0 ∈ � to the vertex of �. Letting a0 = 0 without loss of generality,
and using F2, it then follows that for given ε ∈ (0, 1), there exists some t > 0, such
that F(tr) > (1 − ε)F(r0) and hence F4 follows by choosing r0 so that F(r0) is
sufficiently large. Note also that for these arguments, we only need F nondecreasing
in �.

Instead of the elementary symmetric functions Sk , we may also consider functions
Pk , which are products of k sums of eigenvalues, namely

Pk[r ] := Pk(λ(r)) =
∏

i1<···<ik

k∑
s=1

λis (r), k = 1, . . . , n, (4.10)

defined in the cones

Pk = {r ∈ S
n |

k∑
s=1

λis (r) > 0}, (4.11)

where i1, . . . , ik ⊂ {1, . . . , n}, λ(r) = (λ1(r), . . . , λn(r)) denote the eigenvalues
of the matrix r ∈ Pk . In differential geometry, there is a large amount of literature
dealing with k-convex hypersurfaces, where the notion k-convexity of a hypersurface,
originating from [33,34], is that the sum of any k-principal curvatures at each point is
positive. Clearly the associated operators in (4.10) interpolate between the Laplacian,
k = n, and the Monge–Ampère operator, k = 1. We then obtain another group of
examples satisfying the hypotheses of Theorem 1.2, namely the normalised functions

F̃k := (Pk)
1

Ck
n , Ck

n = n!
k!(n − k)! , 1 ≤ k ≤ n, (4.12)
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which are homogeneous of degree one and satisfy F1–F5 in Pk with a0 = 0. Note
that the associated operators also interpolate between the Laplacian F̃n = F1 and
the normalised Monge–Ampère operator F̃1 = Fn and that the concavity F2 follows
from the arithmetic-geometric mean inequality, similarly to the Monge–Ampère case,
k = 1, (or as a consequence by virtue of the general property that concave functions
of linear functions are also concave). For 1 ≤ k ≤ n − 1, the functions F̃k also satisfy
v in Pk and F6 in the positive cone K +. Using the property that at most k − 1 of
λ1(r), . . . , λn(r) can be negative, we also see that F̃k satisfies F7 in Pk . Furthermore
from Theorems 1.2 and 1.3, it follows that we can substitute F̃k for Fk and Pk for �k

in cases (i) and (ii)(a) of Theorem 1.4. In the next subsection we will also introduce
degenerate versions of these operators.

We also have further examples originating from geometric applications, given by
functions,

Fk,−α[r ] := Fk,−α(λ(r)) =
⎧⎨
⎩
∑

i1<···<ik

[
k∑

s=1

λis (r)

]−α
⎫⎬
⎭

− 1
α

, α > 0, (4.13)

also defined in the cone Pk for k = 1, . . . , n. When α = k = 1, Fk,−α coincides with
the Hessian quotient Fn,n−1 and if κ = (κ1, . . . , κn) denotes the principal curvatures
of a hypersurface in R

n+1, then F1,−1[κ] is its harmonic curvature while F1,−2[κ]
is the inverse of the length of the second fundamental form; see [6]. The associated
operators are homogeneous and satisfy F1–F5 and F7 in Pk with a0 = 0 and either
finite or infinite b in F5.

The operators in the above examples are all orthogonally invariant. We also have
examples of operators F which are not orthogonally invariant. For instance, let us
consider a set V = {Q1, . . . , Qm}, where Qi , i = 1, . . . , m are nonsingular matrices
and m > 1 is a finite integer. We can define an operator of the form

Fk,V [r ] = min
Q∈V

Fk(Qr Q−1), for k = 1, . . . , n, (4.14)

in the cone �k,V = {r ∈ S
n | Fj (Qr Q−1) > 0, ∀Q ∈ V, j = 1, . . . , k}. Then

the operator in (4.14) provides an example, which is non-orthogonally invariant, but
still satisfies our assumptions F1-F5+ and F7. Note that since Fk,V is a concave
function in r , it has first and second order derivatives almost everywhere in �k,V

so that the differential inequalities in (1.4), (1.5), as well as condition F5+, hold
in this sense. We can also consider the case of infinite V and replace Fk by other
functions. The resultingBellman type augmentedHessian operators can then be treated
by smooth approximation as in the k = 1 case, (see for example [7]); and we would
obtain the existence of C2,α(�̄) solutions, for some α > 0 in Theorems 1.4 and
4.1. More generally if we drop the smoothness condition F ∈ C2(�), then we still
obtain existence of C2,α(�̄) solutions, for some α > 0, in Theorems 1.4, 4.1 and
Remarks 4.1, 4.2. Here we need the more general C2,α(�̄) estimate for concave fully
nonlinear uniformly elliptic equations from [35]; see also [15].
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Examples for A. Examples of strictly regular matrix functions arising in optimal
transportation and geometric optics can be found for example in [11,28,31,42,45].
Typically there is not a natural association with oblique boundary operators, except
for those coming from the second boundary value problem to prescribe the images of
the associated mappings, so that second derivative estimates may depend on gradient
restrictions in accordance with Remark 1.2. Moreover the relevant equations typically
involve constraints so that we are also in the situation of Remark 1.3. Both these
situations will be further examined in ensuing work. However we will give some
examples satisfying our hypotheses, where oblique boundary operators arise naturally
through our domain convexity conditions.

Our first examples extend those coming from the conformal deformations of man-
ifolds with boundary; (as for example in [3,19,22]). We introduce a class of matrix
functions of the form

A(x, z, p) = 1

2
akl(x, z)pk pl I − a0(x, z)p ⊗ p, (4.15)

where akl , a0 ∈ C2(�̄×R) and the matrix {akl} > 0 in �̄×R. Clearly for any vectors
ξ, η ∈ R

n , we have

Akl
i j ξiξ jηkηl = (astδskδtlδi j − 2a0δikδ jl)ξiξ jηkηl

= |ξ |2aklηkηl − 2a0(ξ · η)2

≥ λ1|ξ |2|η|2 − 2a0(ξ · η)2, (4.16)

where λ1 > 0 denotes the minimum eigenvalue of {akl}, so that A is strictly regular
in �̄. Moreover A is uniformly regular, with (1.21) satisfied with λ0 = inf λ1, λ̄0 =
2 sup a+

0 , where the infimum and supremum are taken over � × (−M, M). For A
given by (4.15), the corresponding A-curvature matrix on ∂� for (1.15) is given by

K A[∂�](x, z, p) = −δν(x) + akl(x, z)pkνl(x)(I − ν(x) ⊗ ν(x)), (4.17)

where ν is the unit inner normal to ∂� and δ denotes the tangential gradient. Conse-
quently the quasilinear boundary operator G, given by (1.17) with βk = aklνl , will
be oblique, satisfying β · ν ≥ λ0 on ∂� and � is uniformly (�, A, G)-convex with
respect to u if and only if

− δν + ϕ(·, u)(I − ν ⊗ ν) + μ0ν(x) ⊗ ν(x) ∈ �, (4.18)

for some constant μ0 > 0, possibly depending on u. Accordingly our uniform con-
vexity condition is independent of the gradient variables. In the orthogonally invariant
case, letting

�̃ = λ(�) = {λ ∈ R
n | λ1, . . . , λn are eigenvalues of some r ∈ �}

denote the corresponding cone to � in Rn , (4.18) is equivalent to (κ̃, μ0) ∈ �̃, where
κ̃i = κi +ϕ, i = 1, . . . , n−1, and κ = (κ1, . . . , κn−1) denotes the principal curvatures
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of ∂�. In particular for the cones�k , (4.18) is equivalent to κ̃ ∈ �̃k−1, that is S j (κ̃) > 0
for 1 ≤ j ≤ k − 1.
Conformal geometry.The application to conformal geometry concerns the special case
ai j = δi j , a0 = 1 in (4.15), that is

A(p) = 1

2
|p|2 I − p ⊗ p, (4.19)

with the associated semilinear Neumann condition,

Dνu = ϕ(x, u), on ∂�, (4.20)

and is related to the fully nonlinear Yamabe problem with boundary, where Ag̃ =
e2u M[u] is the Schouten tensor of the conformal deformation g̃ = e−2u g0 and g0
denotes the standard metric on R

n . If F is positive homogenous of degree one, sat-
isfying F3 with a0 = 0, ϕ̃ is a positive function on � and h̃ a function on ∂�, then
the problem of finding a conformal metric g̃ on � such that F(Ag̃) = ϕ̃, with mean
curvature h̃ on ∂�, is equivalent to solving the semilinear Neumann problem,

F[u] := F(M[u]) = ϕ̃e−2u, in �,

Dνu = h̃e−u − h0, on ∂�,
(4.21)

where h0 denotes the mean curvature of ∂� with respect to g0. With �, ϕ̃ and h̃
sufficiently smooth, (4.21) satisfies the hypotheses of the second derivative estimate,
Theorem 1.2, if F also satisfies F1 and F2 and � satisfies (4.18) with ϕ = h̃e−u − h0.
Note that our restriction r ≤ trace(r)I on � implies that h̃ > 0. However (4.18)
does provide some relaxation of the umbilic condition in [19] and related papers,
possibly depending on solution upper bounds, and can be extended to more general
Riemannianmanifoldswith boundary, (taking account ofRemarks 2.1 and 3.6), aswell
as to more general boundary curvatures [43]. In particular for the cones, �2 and Pn−1,
the convexity condition (4.18) is equivalent to h̃ > 0, since δ · ν = (1 − n)h0 so no
geometric conditions are needed. Note that for the local gradient bound, Theorem 3.1,
we only need F to satisfy F1 to fulfil the hypotheses of case (i) (and no geometric
restrictions on �). Such bounds are already established for the special case (4.19) in
[3,19]. Since the functions B and ϕ are not monotone increasing in z we would need
though a priori solution bounds to get existence and this is still an unresolved issue in
the non-umbilic case; (see [23] for recent L∞ estimates in the umbilic case).

Optimal transportation and geometric optics. In optimal transportation problems, the
matrix A is generated by a cost function c ∈ C2(D), whereD is a domain inRn ×R

n ,
through the relation

A(x, p) = cxx (x, Y (x, p)), (4.22)
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where the mapping Y ∈ C1(U), for some domain U ⊂ R
n ×R

n , is given as the unique
solution of

cx (x, Y ) = p. (4.23)

Here we assume conditions A1, A2 as in [31,45] to guarantee the unique solvability
of Y from (4.23). The strict regularity was introduced as condition A3 in [31]; (see
also [40]). More generally the matrices A arise from prescribed Jacobian equations
[41] where now the mapping Y ∈ C1(U) is given for a domain U ⊂ R

n × R × R
n

satisfying detYp �= 0 in U and the matrix A is given by

A(x, z, p) = Y −1
p (Yx + Yz ⊗ p). (4.24)

Mappings Y in geometric optics can also be unified through a notion of generating
function [42], which extends that of a cost function to permit the z dependence in
Y and provides symmetric matrices in (4.24). For further information and particular
examples of strictly regular matrices A, the reader is referred to [11,28,31,42,45]
and the references therein. As mentioned above in most of these examples there are
not natural relationships with semilinear oblique boundary operators so that the sit-
uation in Remarks 1.2 and 1.3 is applicable. The natural boundary condition is the
prescription of the image �∗ of the mapping T := Y (·, u, Du) on �, which implies
a boundary condition which is oblique with respect to admissible functions [41,45].
Once the obliqueness is estimated we are in the situation of Theorem 1.2 and more-
over our domain convexity conditions there originate from those used in the optimal
transportation and more generally; (see [28,41,45]).

Accordingly we just mention here some examples which fit simply with our
hypotheses. First the logarithm cost function, given by c(x, y) = 1

2 log |x − y| for
x �= y, also generates our example (4.19), [45]. From geometric optics we have the
example coming from the reflection of a parallel beam to a flat target [28,42],

A(x, z, p) = 1

2z
(|p|2 − 1)I (4.25)

for z > 0. Here there is a constraint, namely u > 0, which is readily handled by taking
a logarithm or assuming the subsolution u > 0 in �̄. Then for a semilinear Neumann
boundary condition of the form

Dνu = uϕ(·, u), (4.26)

we obtain again that � is uniformly (�, A, G)-convex with respect to u if and only if
(4.18) holds.

Admissible functions. Quadratic functions of the form u0 = c0 + 1
2ε|x − x0|2, will be

admissible for the matrices (4.15) and for arbitrary constants c0, points x0 ∈ � and
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sufficiently small ε. In general for matrices A arising in optimal transportation and
geometric optics the existence of admissible functions is proved in [11].

Nonlinear boundary operators. The capillarity type operators, given by

G(x, z, p) = p · ν − θ(x)

√
1 + |p|2 − ϕ(x, z), (4.27)

would satisfy our hypotheses for 0 < θ < 1 on ∂�. Furthermore for A in the form
(4.15) with {ai j } = I , condition (4.18) would at least imply that that � is uniformly
(�, A, G)-convex with respect to u. Note that here and quite generally we cannot
have ϕ(·, u) ≥ 0 everywhere on ∂� for an admissible function so the basic capillarity
condition is ruled out by our concavity condition which requires θ > 0.

4.3 Degenerate equations

In this subsection, we consider the extension of our results to degenerate elliptic
equations and in particular apply the classical existence results, Theorems 4.1 and
4.2, to yield the existence of C1,1 admissible solutions for the oblique boundary value
problems. We shall use the following assumption, in place of F1, to describe the
degenerate ellipticity:

F1− F is non-decreasing in �, namely

Fr := Fri j =
{

∂ F

∂ri j

}
≥ 0, in �, (4.28)

and T (r) := trace(Fr ) > 0 in �.

Then for � ⊂ �1, using an elliptic regularisation as in [37], we define for a constant
ε ≥ 0, F1(r) = trace(r) > 0, approximating operators and cones,

Fε(r) = F(r + εF1(r)I ), �ε = {r ∈ S
n | r + εF1(r)I ∈ �}. (4.29)

Clearly Fε satisfies the ellipticity condition F1 in the cone �ε , for ε > 0 and is also
uniformly elliptic there with

εT (r + εF1(r)I )I ≤ Fε
r ≤ (1 + ε)T (r + εF1(r)I )I. (4.30)

Moreover if F also satisfies any of conditions F2 to F5+ or F7, then Fε satisfies
the same condition in �ε with relevant constants independent of ε, as ε tends to 0.
Consequently we may replace F by Fε and the operator F by Fε , for sufficiently
small ε ≥ 0 in the quasilinear boundary operator cases of our Hessian and gradient
estimates in Sects. 2 and 3. To get the lower second derivative bounds in Theorem 1.1
we can simply use T ε(r) := trace(Fε

r ) > 0 in �ε , while for the lower tangential
bounds in Theorem 1.2 we now have, from our restriction � ∈ Pn−1 in the quasilinear
case,
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M[u] ≤ (1 + nε)F1[u]I,

so that we arrive again at an estimate of the form (2.64). Note that we only need
sufficiently small ε for the quasilinear case of Theorem 1.2. Clearly we could have
assumed the weaker condition F1− at the outset for our derivative estimates in Sects. 2
and 3 but it is not feasible then to consider solutionswith smooth second derivatives. By
approximation we now obtain from Theorem 4.1 the following extension to C1,1(�̄)

solvability of degenerate equations. Here a function u ∈ C1,1(�) is admissible if
M[u] ∈ � almost everywhere in � and is a solution of Eq. (1.1) if it is a solution
almost everywhere in �.

Corollary 4.1 In the hypotheses of Theorem 4.1 assume that condition F1 is weakened
to condition F1−, ∂� ∈ C3, β ∈ C2(∂�), ϕ ∈ C2(∂� ×R) with the subsolution and
supersolution conditions strengthened so that at least one of the inequalities (1.25)
holds strictly in �. Then there exists an admissible solution u ∈ C1,1(�̄) of the
boundary value problem, (1.1)–(1.2).

Proof Assume first that F[ū] < B(·, u, Du) in � so that assuming, initially that
u, ū ∈ C2(�̄), (as in the proof of Theorem 4.1), ū will be a supersolution of (1.1)–
(1.2), with B replaced by B − δ, for some sufficiently small positive constant δ. We
claim then that ū and u are respectively supersolution and admissible subsolution of
the boundary value problem (1.1)–(1.2) for F replaced by Fε for sufficiently small ε,
depending on ū and δ. To prove this we first define the sets

�′
ε = {x ∈ �̄ | M[ū](x) + εF1(M[ū](x))I ∈ �ε}, Kε = {x ∈ �̄′

ε | Fε[ū] ≥ a},

where a is constant satisfying a0 < a < B(·, ū, Dū) in �. Then Kε is a decreasing
family of compact subsets of �̄ approaching K0 as ε approaches zero. Consequently
Kε ⊂ �′

0 for sufficiently small ε. By the concavity F2, (and assuming initially u ∈
C2(�̄) as in the proof of Theorem 4.1), we then have, in Kε ,

Fε[ū] ≤ F[ū] + εF1[ū]T (M[ū]) ≤ B(·, ū, Dū), (4.31)

for sufficiently small ε depending on ū and δ. ClearlyFε[ū] ≤ B(·, ū, Dū) in�′
ε −Kε

so that ū is a supersolution of the equation, Fε = B, for sufficiently small ε. Next
it follows immediately from the degenerate ellipticity F1−, that u is an admissible
subsolution, for any ε ≥ 0, so that our claim is proved.

From Theorem 4.1, (Remark 4.2), and Theorems 1.1, 1.2 and 1.3, there exists a
unique solution uε ∈ C2(�̄) of the problem (1.1)–(1.2) with F = Fε for sufficiently
small positive ε, together with the a priori estimates

|uε |2;� ≤ C (4.32)

with constant C independent of ε. Hence there exists a subsequence uεk and a function
u ∈ C1,1(�̄) such that

uεk → u in C1,α(�̄), ∀α ∈ (0, 1), as εk → 0. (4.33)
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From the stability property of viscosity solutions [4,5], it is readily seen that u ∈
C1,1(�̄) is an admissible solution of the problem (1.1)–(1.2).

Finally in the case that u is a strict subsolution of (1.1), we replace B by B + δ for
sufficiently small positive δ and let δ → 0. ��

To illustrate the application of Corollary 4.1, we consider the degenerate elliptic
operators Mk , given by functions

mk(r) = min

{
k∑

s=1

λis (r)

}
, (4.34)

for k = 1, . . . , n, i1, . . . , ik ⊂ {1, . . . , n}, in the cones Pk introduced in (4.11).
Namely,Mk[u] := mk(M[u]). As for the examples (4.14), the functionsmk for k < n
are notC2 butwill still satisfy conditions F1−, F2, F3, F4, F5 andF7,witha0 = 0, inPk

almost everywhere. As wellmk is positive homogeneous of degree one. The functions
mk are also related to our examples (4.13) since mk = Fk,−∞ = lim

α→∞ Fk,−α . More

explicitly the normalised functions F̃k,−α := (Ck
n )

1
α Fk,−α are monotone decreasing

in α and satisfy the inequalities

mk ≤ F̃k,−α ≤ (Ck
n )

1
α mk (4.35)

in Pk . We also note that when k = n, Mn is the Poisson operator F1.
By suitable approximation of the “minimum” function we then obtain from Corol-

lary 4.1 the following analogue of Theorem 1.4.

Corollary 4.2 Let F = Mk , for some k = 1, . . . , n − 1, � a bounded C3 domain
in R

n, A ∈ C2(�̄ × R × R
n) strictly regular in �̄, B > 0,∈ C2(�̄ × R × R

n),
G semilinear and oblique with β ∈ C2(∂�), ϕ ∈ C2(∂� × R) satisfying (1.23).
Assume that u and ū, ∈ C2(�) ∩ C1(�̄) are respectively an admissible subsolution
of (1.1)–(1.2) and supersolution of (1.1)–(1.2), with at least one of them strict, and �

is uniformly (Pk, A, G)-convex with respect to the interval I = [u, ū]. Assume also
that A, B and ϕ are non-decreasing in z, with at least one of them strictly increasing,
A satisfies the quadratic growth conditions (1.22) and B is independent of p. Then if
one of the following further conditions is satisfied:

(i) A is uniformly regular;
(ii) β = ν and A = o(|p|2) in (1.22);
(iii) k = 1 and A ≥ O(|p|2)I in place of (1.22),

there exists an admissible solution u ∈ C1,1(�̄) of the boundary value problem (1.1)–
(1.2).

We remark that we may also prove Corollary 4.2 directly from Theorem 4.1 by
approximatingmk by Fk,−α for largeα. Furthermore the functionm1 satisfies condition
F6 in Sn since, from its orthogonal invariance, we have

E2 = [m1(r)]2 ≤ max{a2, b2} ≤ o(|r |)T , as |r | → ∞, (4.36)
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for r ∈ S
n , a ≤ m1(r) ≤ b and using T = 1. Clearly, m1 satisfies F6 in the positive

cone K +. In this case we obtain, by approximation by F1,−α , from Theorem 4.2
the following existence of C1,1 admissible solutions for the oblique boundary value
problem (1.1)–(1.2) with F = M1 and nonlinear G.
Corollary 4.3 Let F = M1, � a bounded C3 domain in R

n, A ∈ C2(�̄ × R × R
n)

strictly regular in �̄, B > 0,∈ C2(�̄ ×R×R
n), G ∈ C2(∂� ×R×R

n) is concave
with respect to p and uniformly oblique in the sense of (4.5). Assume that u and
ū, ∈ C2(�) ∩ C1(�̄) are respectively an admissible subsolution of (1.1)–(1.2) and
supersolution of (1.1)–(1.2) with at least one of them strict and � is uniformly (A, G)-
convex with respect to the interval I = [u, ū]. Assume also that A, B and −G are
non-decreasing in z, with at least one of them strictly increasing, A satisfies the
quadratic growth conditions (3.75) and B is independent of p. Then there exists an
admissible solution u ∈ C1,1(�̄) of the boundary value problem (1.1)–(1.2).

Proof First we note that the approximations Fε defined in (4.29) do not satisfy F6 for
ε > 0. Turning to the approximations F1,−α , with α ≥ 1, we have

E2 =
∑n

i=1[λi (r)]1−α∑n
i=1[λi (r)]−1−α

T ≤ n[m1(r)]2T ≤ n1+ 2
α [F1,−α(r)]2T , (4.37)

by (4.35), so that F6 is satisfied in �n for F1,−α(r) ≤ b < ∞. Now we apply
Theorem 4.2 to the normalised functions F̃1,−α and as α → ∞, we conclude the
existence of an admissible solution u ∈ C1,1(�̄) of the boundary value problem
(1.1)–(1.2), similarly to the proof of Corollary 4.1. For this we also observe that
from the inequalities (4.35) we have automatically that u and ū are respectively an

admissible subsolution and supersolution of (1.1)–(1.2), with F = F̃1,−α , for (n
1
α −

1)m1(M[ū]) ≤ δ. ��
Note that if we use the functions F1,−α , instead of their normalisations, in the proof

of Corollary 4.3 we can cover the case that u is an admissible strict subsolution of
(1.1)–(1.2), without having to modify B. Using the approximations Fk,−α in the proof
of Corollary 4.2, we can similarly adjust the proof of Corollary 4.2.

We remark that the functions F1,−α , with 0 < α < 1, also satisfy F6 in �n for
F1,−α(r) ≤ b < ∞, since by a simple modification of (4.37) we have

E2 ≤ n|r |1−α[m1(r)]1+αT ≤ n2+ 1
α |r |1−α[F1,−α(r)]1+αT ≤ o(|r |)T , (4.38)

as |r | → ∞.
Also the solutions in Corollaries 4.1, 4.2 and 4.3 will be unique if either A or B

are strictly increasing, in which case the strictness of the subsolution or supersolu-
tion condition is not explicitly needed in their hypotheses. When only ϕ or −G is
strictly increasing we need to utilize appropriate barrier constructions, as considered
in Section 2 of [13], to prove uniqueness. In particular if u ∈ C2(�̄) is a strict admis-
sible subsolution of (1.1), the uniqueness, along with the more general comparison
principles, follows from Part (ii) of Lemma 2.1 in [13].
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To conclude this section we also point out that our estimates and techniques also
embrace degenerate elliptic equations where B ≥ a0 > −∞, with weakly admissible
solutions u ∈ C1,1(�) now satisfying M[u] ∈ �̄, a.e. in �, using property F5 with
a = a0, (which as shown in Sect. 4.2 is also a consequence of conditions F1−, F2 and
F3). As remarked in Sect. 1, we can also assume a0 = 0 in this case and, as shown
there, concave one-homogeneous functions F will be typical examples. In particular
the constants C in the estimates (1.14), (1.18), (1.24), (2.23), (2.49) and (3.55) will not
depend on a lower bound for B(·, u, Du), (provided in the caseswhere F5+ is assumed,
we also assume a = a0 > −∞). Our resultant existence results, Corollaries 4.1,
4.2 and 4.3 now extend similarly, under the strictness of the subsolution u, in their
hypotheses and as above, the resultant C1,1 solutions are unique. Note that in the
totally degenerate case, B = 0 in �, an admissible function will furnish a suitable
strict subsolution, (after subtraction of a sufficiently large constant), when −G is
strictly increasing. More details of these arguments, as well as extensions to u and
ū ∈ C1,1, will be provided in conjunction with our treatment of weak solutions in
[15].

4.4 Final remarks

The oblique boundary value problem (1.1)–(1.2) for augmented Hessian equations is
natural in the classical theory of fully nonlinear elliptic equations. In this paper and its
sequel [13], we have treated this problem in a very general setting. Through a priori
estimates, we have established the classical existence theorems under appropriate
domain convexity hypotheses for both (i) strictly regular A and semilinear or concave
G, and (ii) regular A and uniformly concave G. Our emphasis in this paper is the case
(i), since the case (ii) is already known in the context of the second boundary value
problems of Monge–Ampère equations [49,50] and optimal transportation equations
[45,51]. In case (i), the boundary conditions can be any oblique conditions, including
the special case of the Neumann problem, while the operators embrace a large class
including the Monge–Ampère operator, k-Hessian operators and their quotients, as
well as degenerate and non-orthogonally invariant operators.

In part II [13] we treat the case of regular matrices A which includes the basic
Hessian equation case, where A = 0 or more generally where A is independent of the
gradient variables.A fundamental tool here is the extension of our barrier constructions
forMonge–Ampère operators in [11,17] to general operators; (see Remarks in Section
2 of [16]). In general as indicated by the Pogorelov example [47,52], we cannot
expect second derivative estimates for arbitrary linear oblique boundary conditions
and moreover the strict regularity of A is critical for our second derivative estimates
in Sect. 2. We remark though that our methods in this paper, as further developed
in [13], also show that the strict regularity can be replaced by not so natural, strong
monotonicity conditions with respect to the solution variable on either the matrix A
or the boundary function ϕ, that is either Az or ϕz is sufficiently large, and the latter
would include the case when A = 0, in agreement with the Monge–Ampère case
in [46,47,52]. For Monge–Ampère type operators, we are able to derive the second
derivative bound for semilinear Neumann boundary value problem when A is just
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regular, under additional assumption of the existence of an admissible supersolution
ū, satisfying det(M[ū]) ≤ B(·, ū, Dū) in � and Dν ū = ϕ(·, ū) on ∂�; (see Jiang
et al. [16]). This is an extension of the fundamental result in [27] for the standard
Monge–Ampère operator, (although the supersolution hypothesis is not needed in [27]
and more generally when Dpx A = 0 and Dpz A = 0 [16]). For the semilinear oblique
problem for standard k-Hessian equations, the known results due to Trudinger [36] and
Urbas [47], where the second derivative estimates for Neumann problem in balls, and
for oblique problem in general domains in dimension two respectively were studied.
Recently the Neumann problem for the standard k-Hessian equation has been studied
in uniformly convex domains in [29]. However, it would be reasonable to expect there
are corresponding second derivative estimates for admissible solutions of theNeumann
problem for k-Hessian equations in uniformly (k−1)-convexdomains.More generally,
the second derivative estimate for admissible solutions of the Neumann problem of the
augmented k-Hessian equations, with only regular A, in uniformly (�k, A, G)-convex
domains is still an open problem.

In Sect. 3, we have established the gradient estimate for augmented Hessian
equations in the cones �k when k > n/2 under structure conditions for A and B
corresponding to the natural conditions of Ladyzhenskaya and Ural’tseva for quasi-
linear elliptic equations [7,21]. The gradient estimate under natural conditions is also
known for k = 1 and is a special case of the uniformly elliptic case [7,25]. There-
fore, it would be interesting to prove gradient estimates, (interior and global), for
both oblique and Dirichlet boundary value problems under natural conditions for the
remaining cases for operators in the cones �k when 2 ≤ k ≤ n/2, and in particular
for the basic Hessian operators Fk when 2 ≤ k ≤ n/2, which also enjoy L p gradient
estimates for p < nk/(n − k) [44]. In [14], we apply our gradient estimates here
and general barrier constructions in Section 2 of [13] to study the classical Dirichlet
problem for general augmented Hessian equations with only regular matrix functions
A. Here as well as our conditions on F in case (ii) of Theorem 1.1, for global second
derivative estimates we also need to assume orthogonal invariance and the existence
of an appropriate subsolution, as in our previous papers [17,18]. Our barrier construc-
tions in [13] also permit some relaxation of the conditions on F in the regular case, as
already indicated in Remark 3.2.

As pointed out in Remark 1.2, our domain convexity conditions require some rela-
tionship between the matrix A and the boundary operator G. If we drop these from
our hypotheses, we can still infer the existence of classical solutions of the Eq. (1.1)
which are globally Lipschitz continuous and satisfy the boundary condition (1.2) in a
weak viscosity sense [4] so that our domain convexity conditions become conditions
for boundary regularity. This situation is further amplified in [15], with extensions
as well to strong solutions in the degenerate cases. Further investigations involve the
examination of the sharpness of our boundary convexity conditions for global second
derivative bounds. A preliminary result here for the conformal geometry application is
already given in [24]. When these degenerate we would still expect to have regularity
in the umbilic case, as in [3,19], which would embrace for example the case h̃ = 0 in
(4.21).
NoteAs indicated above, this paper is the first in a series of papers on oblique boundary
value problems for augmentedHessian equations and its original versionwas posted in
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late 2015 [12]. Its immediate sequel [13] and their application to the Dirichlet problem
[14] were originally planned in 2015 as part of the present paper but separated in order
not to delay for too long the propagation of the main result, Theorem 1.2 and its
ramifications.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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