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Abstract
In this paper, we present a new connection between representation theory of noncommutative
hypersurfaces and combinatorics. Let S be a graded (±1)-skew polynomial algebra in n
variables of degree 1 and f = x21 + · · · + x2n ∈ S. We prove that the stable category
CMZ(S/( f )) of graded maximal Cohen–Macaulay module over S/( f ) can be completely
computed using the four graphical operations. As a consequence, CMZ(S/( f )) is equivalent
to the derived category Db(mod k2

r
), and this r is obtained as the nullity of a certain matrix

over F2. Using the properties of Stanley–Reisner ideals, we also show that the number of
irreducible components of the point scheme of S that are isomorphic to P

1 is less than or
equal to

(r+1
2

)
.

Keywords Stable category · Cohen–Macaulay module · Noncommutative quadric
hypersurface · Adjacency matrix · Stanley–Reisner ideal
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1 Introduction

Triangulated categories play an increasingly important role in many areas of mathematics,
including representation theory, (commutative and noncommutative) algebraic geometry,
algebraic topology, and mathematical physics. In particular, there are two major classes of
triangulated categories, namely, the (bounded) derived categoriesDb(A) of abelian categories
A and the stable categories C of Frobenius categories C. For example, the derived categories
Db(coh X) of coherent sheaves on algebraic varieties X have been studied extensively in
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44 A. Higashitani, K. Ueyama

algebraic geometry, and the stable categories CM(A) of maximal Cohen–Macaulay modules
over (not necessary commutative) Gorenstein algebras A have been studied extensively in
representation theory of algebras. In this paper, we compute the stable categories CMZ(A)

of graded maximal Cohen–Macaulay modules over certain noncommutative quadric hyper-
surface rings A (in the sense of Smith and Van den Bergh [7]) using combinatorial methods.

Throughout let k be an algebraically closed field of characteristic not 2. It is well-known
that if A is the homogeneous coordinate ring of a smooth quadric hypersurface in P

n−1, then
A is isomorphic to k[x1, . . . , xn]/(x21 + · · ·+ x2n ), so we have an equivalence of triangulated
categories

CMZ(A) ∼=
{
CMZ(k[x1]/(x21 ))

∼= Db(mod k) if n is odd,
CMZ(k[x1, x2]/(x21 + x22 ))

∼= Db(mod k2) if n is even
(1)

by Knörrer’s periodicity theorem ([5, Theorem 3.1]). The main aim of this paper is to give a
skew generalization of this equivalence. More precisely, we consider the following setting.

Notation 1.1 For a symmetric matrix ε := (εi j ) ∈ Mn(k) such that εi i = 1 and εi j = ε j i =
±1, we fix the following notations:

(1) the standard graded algebra Sε := k〈x1, . . . , xn〉/(xi x j − εi j x j xi ), called a (±1)-skew
polynomial algebra in n variables,

(2) the point scheme Eε of Sε ,
(3) the central element fε := x21 + · · · + x2n ∈ Sε,
(4) Aε := Sε/( fε), and
(5) the graph Gε where V (Gε) = {1, . . . , n} and E(Gε) = {{i, j} | εi j = ε j i = 1, i �= j}.

In [9], the second author gave a classification theorem for CMZ(Aε)with n ≤ 5. After that,
in [6], Mori and the second author introduced graphical methods to compute CMZ(Aε). They
presented the four operations for Gε, called mutation, relative mutation, Knörrer reduction,
and two points reduction, and showed that CMZ(Aε) can be completely computed up to n ≤ 6
by using these four graphical operations (see [6, Section 6.4]). We first extend this result to
arbitrary n ∈ Z>0.

Theorem 1.2 Let Aε and Gε be as in Notation 1.1. By using mutation, relative mutation,
Knörrer reduction, and two points reduction finitely many times, Gε can be reduced to the
one-vertex graph, and there exists an equivalence of triangulated categories

CMZ(Aε) ∼= Db(mod k2
r
)

where r is the number of times we applied two points reduction.

Thus, we can completely compute CMZ(Aε) by purely combinatorial methods. Thanks to
this theorem, we obtain the following two consequences.

Theorem 1.3 Let Aε and Gε be as in Notation 1.1. Then we have an equivalence of triangu-
lated categories

CMZ(Aε) ∼= Db(mod k2
r
)

where

r = nullF2

⎛

⎜⎜⎜
⎝

1

M(Gε)
...

1
1 · · · 1 0

⎞

⎟⎟⎟
⎠
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Combinatorial study of stable categories of graded… 45

and M(Gε) is the adjacency matrix of Gε over F2. In particular, Aε has 2r indecomposable
non-projective graded maximal Cohen–Macaulay modules up to isomorphism and degree
shifts.

Theorem 1.4 Let Aε be as in Notation 1.1. Then Aε is a noncommutative graded isolated
singularity (in the sense of [8]).

It is easy to see that Theorem 1.3 is a generalization of (1). Moreover, Theorem 1.4
tells us that Aε is a homogeneous coordinate ring of a noncommutative “smooth” quadric
hupersurface (see [6,7] for details).

Let A be a graded algebra finitely generated in degree 1. A graded A-module M is called
a point module if M is cyclic and has Hilbert series HM (t) = (1− t)−1. If A is commutative,
these modules correspond to the closed points of the projective scheme Proj A. In [1], Artin,
Tate, and Van den Bergh introduced a scheme E whose closed points parameterize the iso-
morphism classes of point modules over A; so it is called the point scheme of A. Since then,
point schemes are an essential tool to study graded algebras in noncommutative algebraic
geometry.

In [9, Conjecture 1.3], it was conjectured that the structure of CMZ(Aε) is determined by
the number of irreducible components of the point scheme Eε of Sε that are isomorphic to P

1.
This is true if n ≤ 6 (see [6, Theorem 6.20]), but unfortunately, it is known to fail for n = 7
(see [6, Remark 6.21]). Using a similar approach to the proof of Theorem 1.2 and the point
of view of Stanley–Reisner ideals, we give a combinatorial proof of the following result.

Theorem 1.5 Let Aε be as in Notation 1.1 so that there is a non-negative integer r such that
CMZ(Aε) ∼= Db(mod k2

r
). Then the number �ε of irreducible components of Eε that are

isomorphic to P
1 is less than or equal to

(r+1
2

)
.

This theorem shows that the upper bound of �ε which appears in [9, Conjecture 1.3] holds
true for arbitrary n ∈ Z>0.

In short, the results and discussion in this paper establish a novel connection between
representation theory of noncommutative hypersurfaces and combinatorics.

2 Graphical methods to compute stable categories

2.1 Stable categories of gradedmaximal Cohen–Macaulaymodules

Throughout this paper, we continue to use Notation 1.1. It is well-known that Sε =
k〈x1, . . . , xn〉/(xi x j − εi j x j xi ) is a noetherian Koszul AS-regular algebra. Since fε =
x21 + · · · + x2n is a regular central element of Sε of degree 2, it follows that Aε = Sε/( fε) is a
noetherianKoszulAS-Gorenstein algebra.Afinitely generated graded Aε-module M is called
maximal Cohen–Macaulay if ExtiAε

(M, Aε) = 0 for all i �= 0. We denote by CMZ(Aε) the
category of (finitely generated) graded maximal Cohen–Macaulay Aε-modules with degree
preserving Aε-module homomorphisms.

The stable category of graded maximal Cohen–Macaulay modules, denoted by CMZ(Aε),
has the same objects as CMZ(Aε) and the morphism space is given by

HomCMZ(Aε)
(M, N ) = HomCMZ(Aε)

(M, N )/P(M, N )

where P(M, N ) consists of degree preserving Aε-module homomorphisms factoring through
a graded projective module. Since Aε is AS-Gorenstein, CMZ(Aε) is a Frobenius category
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46 A. Higashitani, K. Ueyama

andCMZ(Aε) is a triangulated categorywhose translation functor [1] is given by the cosyzygy
functor �−1 (see [3, Section 4], [7, Theorem 3.1]).

2.2 Twomutations and two reductions of graphs

A graph G consists of a set of vertices V (G) and a set of edges E(G) between two vertices.
In this paper, we always assume that V (G) is a finite set and G has neither loops nor multiple
edges. An edge between two vertices v,w ∈ V (G) is written by vw ∈ E(G).

Let G be a graph. A graph G ′ is the induced subgraph of G induced by V ′ ⊂ V (G) if
vw ∈ E(G ′) whenever v,w ∈ V ′ and vw ∈ E(G). For a subset W ⊂ V (G), we denote
by G\W the induced subgraph of G induced by V (G)\W . For a vertex v ∈ V (G), let
NG(v) = {u ∈ V (G) | uv ∈ E(G)}.

First, we recall the notion of two mutations, which preserve the stable category of graded
maximal Cohen–Macaulay modules.

Definition 2.1 (Mutation, [6, Definition 6.3]) Let G be a graph and v ∈ V (G). The mutation
μv(G) of G at v is the graph μv(G) where V (μv(G)) = V (G) and

E(μv(G)) = {vw | w ∈ V (G)\NG(v)} ∪ E(G\{v}).

Remark 2.2 The notion of mutation μv(G) is called switching on {v} in the context of
algebraic graph theory. See [4, Section 11.5]. Moreover, we see that applying the consec-
utive mutations μv1 , . . . , μvm for distinct vertices v1, . . . , vm corresponds to switching on
{v1, . . . , vm}. In particular, the resulting graph is independent of the choice of the order of
consecutive mutations.

Example 2.3 (1)

G =

1

2

3 4

5 �⇒ μ1(G) =

1

2

3 4

5

(2)

G =

1

2

3 4

5 �⇒ μ4(μ3(G)) =

1

2

3 4

5

Lemma 2.4 (Mutation Lemma, [6, Lemma 6.5]) If Gε′ = μv(Gε) for some v ∈ V (Gε),
then CMZ(Aε) ∼= CMZ(Aε′).

Definition 2.5 (Relative Mutation, [6, Definition 6.6]) Let u, v ∈ V (G) be distinct vertices.
Then the relative mutation μv←u(G) of G at v with respect to u is the graphμv←u(G)where
V (μv←u(G)) = V (G) and

E(μv←u(G)) = {vw | w ∈ NG(u)\NG(v)} ∪ {vw | w ∈ NG(v)\NG(u)} ∪ E(G\{v}).
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Example 2.6 (1)

G =

1
2

3
4

5

6
�⇒ μ1←2(G) =

1
2

3
4

5

6

(2)

G =

1
2

3
4

5

6
�⇒ μ2←4(μ2←3(G)) =

1
2

3
4

5

6

Lemma 2.7 (Relative Mutation Lemma, [6, Lemma 6.7]) Suppose that Gε contains an
isolated vertex u. If Gε′ = μv←w(Gε) for some distinct vertices v,w ∈ V (Gε) not equal to
u, then CMZ(Aε) ∼= CMZ(Aε′).

Next, we recall two ways to reduce the number of variables in computing the stable
category of graded maximal Cohen–Macaulay modules over Aε.

Definition 2.8 An isolated edge vw of a graph G is an edge vw ∈ E(G) such that NG(v) =
{w} and NG(w) = {v}.
Lemma 2.9 (Knörrer’s Reduction, [6, Lemma 6.17]) Suppose that vw is an isolated edge
in Gε. If Gε′ = Gε\{v,w}, then CMZ(Aε) ∼= CMZ(Aε′).

Lemma 2.10 (Two Points Reduction, [6, Lemma 6.18]) Suppose that v,w ∈ V (Gε) are
two distinct isolated vertices. If Gε′ = Gε\{v}, then CMZ(Aε) ∼= CMZ(Aε′) × CMZ(Aε′).

3 Proofs of Theorems 1.2, 1.3, and 1.4

In this section, we present proofs of Theorems 1.2, 1.3, and 1.4.

Lemma 3.1 Let G be a graph and v its vertex. Then there exists a sequence of mutations
μv1 , . . . , μvm such that v becomes an isolated vertex in μvm (μvm−1(· · · μv1(G) · · · )).
Proof Wemay apply the mutations at all u’s in NG(v). (See Example 2.3 (2) for an example.)

��
Given two non-negative integers a and b, let G(a, b) denote the graph on the set of vertices

{ui , u′
i | i = 1, . . . , a} ∪ {u′′

j | j = 1, . . . , b} with its set of edges {ui u′
i | i = 1, . . . , a}.

Namely, G(a, b) consists of a isolated edges and b isolated vertices.

Lemma 3.2 Let G be a graph with n vertices having at least one isolated vertex. Then there
exists a sequence of relative mutations μv1←w1 , . . . , μvk←wk such that

μvk←wk (μvk−1←wk−1(· · · μv1←w1(G) · · · )) = G(α, β),

where 2α + β = n and β > 0.
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48 A. Higashitani, K. Ueyama

Proof We prove the statement by induction on n. The statement is trivial in the case n = 1
since G is already equal to G(0, 1).

Suppose that n > 1. Take an isolated vertex v0 of G. We fix a vertex v in G with
v �= v0 and we let G ′ = G\{v}. By the hypothesis of induction, there exists a sequence of
relative mutations on G ′ such that G ′ can be transformed into G(α′, β ′) for some α′ ∈ Z≥0

and β ′ ∈ Z>0. Let G̃ be the graph after applying those relative mutations to G. Then
G̃\{v} = G(α′, β ′). Note that v0 is still an isolated vertex in G̃.

Let {ui , u′
i | i = 1, . . . , α′} ∪ {u′′

j | j = 1, . . . , β ′ − 1} ∪ {v0} denote the set of vertices
of G̃\{v} and let {ui u′

i | i = 1, . . . , α′} be the set of its edges. We let the set of edges of G̃
as follows:

{vui , ui u
′
i | i = 1, . . . , p} ∪ {vui , vu′

i , ui u
′
i | i = p + 1, . . . , q}

∪ {ui u
′
i | i = q + 1, . . . , α′} ∪ {vu′′

i | i = 1, . . . , r},
where 0 ≤ p ≤ q ≤ α′ and 0 ≤ r ≤ β ′ − 1. Then, by applying

μv←u′
1
, . . . , μv←u′

p︸ ︷︷ ︸
breaks vui for i = 1, ..., p

, μv←u p+1 , μv←u′
p+1

, . . . , μv←uq , μv←u′
q

︸ ︷︷ ︸
breaks vui and vu′

i for i = p+1, ..., q

, μu′′
2←u′′

1
, . . . , μu′′

r ←u′′
1︸ ︷︷ ︸

breaks vu′′
j for j = 2, ..., r if r≥2

,

G̃ eventually becomes the graph whose edge set is

{ui u
′
i | i = 1, . . . , α′} ∪ {vu′′

1} if r ≥ 1 or {ui u
′
i | i = 1, . . . , α′} if r = 0.

This is nothing but G(α′ + 1, β ′ − 1) if r ≥ 1 (i.e. β ′ ≥ 2) and G(α′, β ′ + 1) if r = 0. See
the figure below.

v v0

u1 u p u p+1 uq uq+1 uα′

· · · · · · · · · u′′
1 · · · u′′

r u′′
r+1 · · · u′′

β ′−1

u′
1 u′

p u′
p+1 u′

q u′
q+1 u′

α′

�

relative mutations

v v0

u1 u p u p+1 uq uq+1 uα′

· · · · · · · · · u′′
1 · · · u′′

r u′′
r+1 · · · u′′

β ′−1

u′
1 u′

p u′
p+1 u′

q u′
q+1 u′

α′

��
Using Lemmas 3.1 and 3.2, we can prove Theorem 1.2.

Proof of Theorem 1.2 By Lemma 3.1, we can transform Gε into a graph Gε′ having at least
one isolated vertex by usingmutations several times.Moreover, by Lemma 3.2, it follows that
Gε′ can be transformed into Gε′′ := G(α, β) with α ≥ 0, β > 0 by using relative mutations
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Combinatorial study of stable categories of graded… 49

several times. It is easy to see that Gε′′ can be reduced to the one-vertex graph by applying
Knörrer’s reductions α times and two points reductions (β − 1) times. Hence we see that
every Gε can be reduced to the one-vertex graph using two mutations and two reductions. In
addition, we have

CMZ(Aε) ∼= CMZ(Aε′) ∼= CMZ(Aε′′) ∼= CMZ(k[x]/(x2))×2β−1

∼= Db(mod k)×2β−1 ∼= Db(mod k2
β−1

).

��
For a matrix M with its entry in F2, let rankF2(M) (resp. nullF2(M)) denote the rank (resp.

the nullity) of M over F2, which is called the binary rank (resp. the binary nullity).
For a graph G, let M(G) denote the adjacency matrix of G. We denote by X(G) the

adjacency matrix of the graph whose vertex set is V (G)∪{v′}with its edge set E(G)∪{vv′ |
v ∈ V (G)}. Note that X(G) looks like as follows:

X(G) =

⎛

⎜⎜⎜
⎝

1

M(G)
...

1
1 · · · 1 0

⎞

⎟⎟⎟
⎠

.

In what follows, we will regard each entry of M(G) and X(G) as an element of F2.

Lemma 3.3 Work with the same situation and notation as in Lemma 3.2. Then we have

rankF2(X(G)) = 2α + 2.

Proof By definition of mutation, we can observe the following:

(Ei,n+1 + E)X(G)(En+1,i + E) =

⎛

⎜⎜⎜
⎝

1

M(μi (G))
...

1
1 · · · 1 0

⎞

⎟⎟⎟
⎠

,

where Ei, j is the matrix such that (i, j)-entry is 1 and the other entries are all 0, and E
is the identity matrix. (Note that this holds true without assuming that G has an isolated
vertex.) Since G has an isolated vertex, we may assume that n-th row (resp. n-th column) of

X(G) is
(
0 · · · 0 1

)
(resp.

⎛

⎜⎜⎜
⎝

0
...

0
1

⎞

⎟⎟⎟
⎠
). Then, by definition of relative mutation, we can observe

the following:

(Ei, j + Ei,n + E)X(G)(E j,i + En,i + E) =

⎛

⎜⎜⎜
⎝

1

M(μi← j (G))
...

1
1 · · · 1 0

⎞

⎟⎟⎟
⎠

.
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50 A. Higashitani, K. Ueyama

By Lemmas 3.1 and 3.2 together with the above observation, we see that there exists a
sequence of regular matrices P1, . . . , PN , Q1, . . . , QN such that

QN · · · Q1X(G)P1 · · · PN =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1

A ⊕ · · · ⊕ A︸ ︷︷ ︸
α

⊕O
...

1
1 · · · 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where A =
(
0 1
1 0

)
and O denotes the zero matrix of size n − 2α. We can easily see that

rankF2(X(G)) = rankF2(QN · · · Q1X(G)P1 · · · PN ) = 2α + 2, as required. ��

Remark 3.4 In [4, Theorem 8.10.2], an interpretation of the binary rank of the adjacency
matrix of a graph G was given in terms of a local operation for G, called a local complement.
A local complement seems to be related to a relative mutation, but it is not clear how they
are related.

Now we are ready to prove Theorems 1.3 and 1.4.

Proof of Theorem 1.3 By the proof of Theorem 1.2, it suffices to show that β − 1 =
nullF2(X(Gε)). Let n be the number of vertices of Gε. Then β = n − 2α. Therefore,

β − 1 = n − 2α − 1 = (n + 1) − (2α + 2) = n + 1 − rankF2(X(Gε)) (by Lemma 3.3)

= nullF2(X(Gε)).

By the proof of [6, Theorem 5.4], it follows that Aε has 2nullF2 (X(Gε)) (= #KerF2(X(Gε)))

indecomposable non-projective graded maximal Cohen–Macaulay modules up to isomor-
phism and degree shifts. ��

Proof of Theorem 1.4 Since Aε is finiteCohen–Macaulay representation type byTheorem1.3,
the result follows from [8, Theorem 3.4]. ��

Example 3.5 If

Gε =

1

2

3 4

5
,

then

nullF2

⎛

⎜⎜⎜⎜⎜⎜
⎝

0 1 0 1 1 1
1 0 1 0 0 1
0 1 0 1 0 1
1 0 1 0 0 1
1 0 0 0 0 1
1 1 1 1 1 0

⎞

⎟⎟⎟⎟⎟⎟
⎠

= 2,

so we have CMZ(Aε) ∼= Db(mod k4).

123



Combinatorial study of stable categories of graded… 51

On the other hand, by applying the mutation μ1, the relative mutations μ2←1 and μ4←1,
Gε becomes as follows:

1

2

3 4

5

Hence α = 1 and β = 3 in the sense of Lemma 3.2, i.e., μ4←1(μ2←1(μ1(Gε))) = G(1, 3).
This also shows CMZ(Aε) ∼= Db(mod k4).

4 Proof of Theorem 1.5

This section is devoted to the proof of Theorem 1.5.
For a graph G, let Iso(G) be the set of isolated vertices of G and let i(G) = # Iso(G).
For twographsG andG ′,wewriteG ∼ G ′ ifG canbe transformed intoG ′ byfinitelymany

mutations and relative mutations. By Lemmas 3.1 and 3.2, we know that G ∼ G(α, β) for
some α ∈ Z≥0 and β ∈ Z>0.Moreover, by Lemma 3.3, we also see that G(α, β) � G(α′, β ′)
if β �= β ′ and β, β ′ > 0. (Note that this is not true if β = 0 or β ′ = 0. For example,
G(2, 0) ∼ G(1, 2).)

Here, we see the following:

Lemma 4.1 Assume that G ∼ G(α, β) for α ∈ Z≥0 and β ∈ Z>0. Then we have i(G ′) ≤ β

for any graph G ′ with G ∼ G ′.

Proof If i(G ′) = 0, then the result is clear, so assume that i(G ′) ≥ 1. Notice that any relative
mutationμv←w keeps the isolated vertices unchanged when v is not an isolated vertex. Thus,
by Lemma 3.2, there is a sequence of relative mutations which transforms G ′ into G(α′, β ′)
with β ′ ≥ i(G ′). Therefore,

G(α, β) ∼ G ∼ G ′ ∼ G(α′, β ′) and β ′ ≥ i(G ′).

Suppose that i(G ′) > β. Then β ′ ≥ i(G ′) > β, a contradiction. ��
We recall the following useful lemma on the point scheme Eε .

Lemma 4.2 (cf. [9, Theorem 2.3]) Eε = ⋂
εi j ε jkεki =−1 V(xi x j xk) ⊂ P

n−1.

Let �ε denote the number of irreducible components of Eε that are isomorphic to P
1. For

the investigation of �ε , we will recall some fundamental facts on the Stanley–Reisner ideals
of simplicial complexes. Consult, e.g., [2, Section 5].

Let � be a simplicial complex on the vertex set V = {x1, . . . , xn}, i.e., � ⊂ 2V satisfies
“F ∈ �, F ′ ⊂ F �⇒ F ′ ∈ �”. A maximal F ∈ � is said to be a facet of �. We define the
Stanley–Reisner ideal I� ⊂ k[x1, . . . , xn] of � as follows:

I� =
⎛

⎝
∏

xi ∈F

xi | F ∈ 2V , F /∈ �

⎞

⎠ .

Clearly, I� is a squarefree monomial ideal. Conversely, every squarefree monomial ideal can
be realized as a Stanley–Reisner ideal I� for some �.
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52 A. Higashitani, K. Ueyama

For a facet F of �, let IF be the prime ideal generated by all variables xi with xi /∈ F ,
i.e., IF = (xi | xi ∈ V \F). It is known that

I� =
⋂

F : facet of �

IF . (2)

For the purpose of this section, for a graph G on the vertex set V := V (G) = {x1, . . . , xn}
with its edge set E := E(G), we consider the squarefree monomial ideal IG defined as
follows:

IG = (xi x j xk | xi x j /∈ E and xi xk /∈ E and x j xk /∈ E)

+ (xi x j xk | xi x j ∈ E and xi xk ∈ E and x j xk /∈ E).

In fact, we can easily see that V(IGε ) = Eε .
Let �G be the associated simplicial complex, i.e., I�G = IG . We write �(G) for the

number of facets of �G with cardinality 2. By the primary decomposition (2), we see that

�ε = �(Gε),

so we focus on the calculation of �(G). By definition of the Stanley–Reisner ideal, we have
the following:

�(G) = #{{xi , x j } ⊂ V | {xi , x j , xk} /∈ �G for any xk ∈ V \{xi , x j }}
= #{{xi , x j } ⊂ V | xi x j xk ∈ IG for any xk ∈ V \{xi , x j }}
= #{{xi , x j } ⊂ V | xi x j ∈ E,

“xi xk ∈ E and x j xk /∈ E” or “xi xk /∈ E and x j xk ∈ E” for any xk ∈ V \{xi , x j }}
+ #{{xi , x j } ⊂ V | xi x j /∈ E,

“xi xk ∈ E and x j xk ∈ E” or “xi xk /∈ E and x j xk /∈ E” for any xk ∈ V \{xi , x j }}.
Assume that G contains an isolated vertex x . In this case, xi x /∈ E and x j x /∈ E hold for

any {xi , x j } ⊂ V with xi x j ∈ E . On the other hand, the condition

xi x j /∈ E such that “xi xk ∈ E and x j xk ∈ E” or “xi xk /∈ E and x j xk /∈ E”
for any xk ∈ V \{xi , x j }

is equivalent to NG(xi ) = NG(x j ). Hence, in the case G contains an isolated vertex, we see
that

�(G) = #{{xi , x j } ⊂ V | NG(xi ) = NG(x j )}.
Notice that NG(u) = ∅ is equivalent to what u is an isolated vertex. Therefore, in the case
G contains an isolated vertex, we conclude that

�(G) = #{{xi , x j } ⊂ V | NG(xi ) = NG(x j ) �= ∅} +
(

i(G)

2

)
.

Let J (G) = {{xi , x j } ⊂ V | NG(xi ) = NG(x j ) �= ∅} and let j(G) = #J (G).

Example 4.3 If

Gε =

1
2

3
4

5

6
,
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then J (Gε) = {{1, 3}, {2, 4}} and Iso(Gε) = {5, 6}, so it follows that �ε = �(Gε) = 2+(2
2

) =
3. In fact, we can verify that

Eε =V(x1, x2, x5) ∪ V(x1, x2, x6) ∪ V(x1, x4, x5) ∪ V(x1, x4, x6)

∪ V(x2, x3, x5) ∪ V(x2, x3, x6) ∪ V(x3, x4, x5) ∪ V(x3, x4, x6)

∪ V(x1, x2, x3, x4) ∪ V(x1, x3, x5, x6) ∪ V(x2, x4, x5, x6) ⊂ P
5,

and so �ε = 3.

Lemma 4.4 Let G be a graph containing at least one isolated vertex. Assume that j(G) > 0.
Let {u1, u2} ∈ J (G) and let u2, . . . , um be all the vertices with NG(u1) = NG(ui ) for
i = 2, . . . , m. Let G ′ = μum←u1(· · · μu3←u1(μu2←u1(G)) · · · ). Then j(G ′) < j(G) and
�(G ′) ≥ �(G).

Proof Note that {ui , u j } ∈ J (G) for any 1 ≤ i < j ≤ m. It is easy to see that u2, . . . , um

become isolated vertices after applying μu2←u1 , . . . , μum←u1 . See below.

u1 u2 · · · um

◦ ◦ ◦ · · · ◦
︸ ︷︷ ︸

NG (u1)=···=NG (um ) �=∅

�
relative mutations

u1 u2 · · · um

◦ ◦ ◦ · · · ◦
︸ ︷︷ ︸

NG (u1) �=∅ (NG (u2)=···=NG (um )=∅)

Thus i(G ′) = i(G) + m − 1. Moreover, we also see that J (G ′) = J (G)\{{ui , u j } | 1 ≤
i < j ≤ m}. In fact, since only the adjacencies of ui ’s and the adjacencies of the vertices
in NG(u1) change after applying the above relative mutations, we only need to observe the
vertices of NG(u1), but we can easily see that {w,w′} ∈ J (G) if and only if {w,w′} ∈ J (G ′)
for any w,w′ ∈ NG(u1).

Therefore, we conclude that j(G ′) < j(G) and

�(G ′) = j(G ′) +
(

i(G ′)
2

)

= j(G) −
(

m
2

)
+

(
i(G) + m − 1

2

)

≥ j(G) +
(

i(G)

2

)
= �(G),

as required. (The inequality above follows from the inequality

(
a + b − 1

2

)
−

(
a

2

)
−

(
b

2

)
≥

0, which is true for any positive integers a, b.) ��
Example 4.5 Work with the same graph as in Example 4.3. Take {1, 3} ∈ J (Gε). Then 3 is
the only vertex i with NGε (1) = NGε (i). Apply the relative mutation μ3←1 to Gε . Then Gε

becomes

Gε′ =

1
2

3
4

5

6
.
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Since J (Gε′) = {{2, 4}}, we see j(Gε′) < j(Gε). Moreover, apply μ4←2 to Gε′ . Then Gε′
becomes G(1, 4). Hence �(Gε) ≤ �(Gε′) ≤ �(G(1, 4)) = (4

2

) = 6.

Now let us prove Theorem 1.5.

Proof of Theorem 1.5 By [6, Lemma 6.5], mutation does not change the point scheme, so we
may assume that Gε is a graph containing an isolated vertex by Lemma 3.1. It follows from
Lemma 3.2 that Gε ∼ G(α, β) for some α ∈ Z≥0 and β ∈ Z>0. By the proof of Theorem 1.2,
we see that r = β − 1. Thus our goal here is to prove that �ε ≤ (

β
2

)
. Applying Lemma 4.4

repeatedly, we can obtain a graph G ′ such that G ′ ∼ Gε, j(G ′) = 0, and �(G ′) ≥ �(Gε).
Since i(G ′) ≤ β by Lemma 4.1, we conclude by Lemma 4.4 that

�ε = �(Gε) ≤ �(G ′) =
(

i(G ′)
2

)
≤

(
β

2

)
,

as desired. ��
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