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Abstract
We consider the dynamics of transcendental self-maps of the punctured plane, ℂ∗ = ℂ⧵{0} . 
We prove that the escaping set I(f ) is either connected, or has infinitely many components. 
We also show that I(f ) ∪ {0,∞} is either connected, or has exactly two components, one 
containing 0 and the other ∞ . This gives a trichotomy regarding the connectivity of the 
sets I(f ) and I(f ) ∪ {0,∞} , and we give examples of functions for which each case arises. 
Finally, whereas Baker domains of transcendental entire functions are simply connected, 
we show that Baker domains can be doubly connected in ℂ∗ by constructing the first such 
example. We also prove that if f has a doubly connected Baker domain, then its closure 
contains both 0 and ∞ , and hence I(f ) ∪ {0,∞} is connected.
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1 Introduction

Let S be the complex plane, ℂ , or the punctured plane, ℂ∗ ∶= ℂ⧵{0} , and suppose that 
f ∶ S → S is a holomorphic function such that ℂ̂⧵S consists of essential singularities 
of  f, where ℂ̂ ∶= ℂ ∪ {∞} is the Riemann sphere. When S = ℂ , f is a transcendental 
entire function, and when S = ℂ

∗ , we say that f is a transcendental self-map of ℂ∗ . This 
paper concerns the iteration of this second class of functions, first studied by Råd-
ström [27]. We define the Fatou set of f by

and we define the Julia set of f as its complement in S, that is, J(f ) ∶= S⧵F(f ) . We use the 
term Fatou component to refer to each connected component of F(f ) . For more background 
and definitions, we refer to [5].

For a transcendental entire function f, the escaping set of f is defined by

Eremenko [12] was the first to study this set in full generality. He showed that I(f ) ≠ � , 
J(f ) = �I(f ) , and that the components of I(f ) are all unbounded. He conjectured that, in 
fact, all the components of I(f ) are unbounded. Although significant progress has been 
made on this important conjecture, it remains open, and has motivated much research on 
transcendental dynamics in recent years.

It is straightforward to see that Eremenko’s conjecture holds whenever I(f ) is con-
nected. Because of this property and the relation between I(f ) and J(f ) discussed 
above, it is natural to study the connectivity of this set. Rippon and Stallard [31, Corol-
lary 5.1  (a)] (see also [33, Theorem 1.3]) showed that either I(f ) is connected, or has 
infinitely many components. There exist several examples of transcendental entire func-
tions with a connected escaping set; for example, this is the case for the exponential 
function [29]. Furthermore, for many functions I(f ) is a spider’s web, that is, a con-
nected set that separates every point of ℂ from ∞ ; see, for example, [13]. Rippon and 
Stallard [31] also proved that I(f ) ∪ {∞} is a connected subset of ℂ̂ ; note that this does 
not rule out the possibility that I(f ) has a bounded component.

Now, suppose that f is a transcendental self-map of ℂ∗ . Many authors have studied 
the dynamics of these maps, and shown that there are many similarities with the dynam-
ics of transcendental entire functions, though also striking differences. In line with these 
studies, our principal goal in this paper is to generalise the results mentioned above to 
the escaping set of f, which in this setting is defined as

where �(z, f ) ∶=
⋂

n∈ℕ {f
k(z) ∶ k ⩾ n} , and the closure is taken in ℂ̂ . This set was studied 

extensively in [20] where, in analogy with Eremenko’s results, it was shown that I(f ) ≠ � , 
J(f ) = �I(f ) and all the components of I(f ) are unbounded in ℂ∗ ; in other words, their clo-
sure in ℂ̂ meets {0,∞}.

Note that, unlike the escaping set of a transcendental entire function, the escaping 
set of a transcendental self-map of ℂ∗ can be partitioned in a natural way into uncount-
ably many non-empty disjoint sets that are completely invariant; recall that a set X is 
completely invariant when z ∈ X if and only if f (z) ∈ X . Set ℕ0 ∶= ℕ ∪ {0} . For every 
z ∈ I(f ) , we define the essential itinerary of z as the sequence e = (en)n∈ℕ0

∈ {0,∞}ℕ0 
given by, for n ∈ ℕ0,

F(f ) ∶= {z ∈ S ∶ {f n}n∈ℕ is a normal family in an open neighbourhood of z},

I(f ) ∶= {z ∈ ℂ ∶ f n(z) → ∞ as n → ∞}.

I(f ) ∶= {z ∈ ℂ
∗ ∶ 𝜔(z, f ) ⊆ {0,∞}},
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For each e ∈ {0,∞}ℕ0 , the set of escaping points whose essential itinerary is eventually a 
shift �k(e) of e (here � is the Bernoulli shift that removes the first symbol of a sequence and 
moves all the other symbols one position to the left) is

We call Ie(f ) the little escaping set with essential itinerary e, using the terminology from 
[22]. In the particular cases where e is the constant sequence 0 and ∞ , we denote the set 
Ie(f ) by I0(f ) and I∞(f ) , respectively.

Martí-Pete  [20] showed that for each e ∈ {0,∞}ℕ0 , we have Ie(f ) ≠ � , J(f ) = �Ie(f ) 
and all components of Ie(f ) are unbounded. Note that, although there are uncount-
ably many non-empty disjoint subsets Ie(f ) ⊆ I(f ) , several components of different sets 
Ie(f ) may lie in the same component of I(f ) (this is the case, for example, when I(f ) is 
connected).

Our first result concerns the connectivity of these sets.

Theorem 1.1 Let f be a transcendental self-map of ℂ∗ . The set I(f ) is either connected or 
has infinitely many components. Similarly, for each e ∈ {0,∞}ℕ0 , the set Ie(f ) is either con-
nected or has infinitely many components.

Remark For a transcendental entire function f, it is an open question whether I(f ) necessar-
ily has uncountably many components if it is disconnected, although it can be shown that 
the intersection of I(f ) with the complement of any disc that meets the Julia set must have 
uncountably many components (see [34, Theorem 1.1 and Theorem 1.2]). This is also an 
open question in our setting.

Our second result concerns the connectivity of the union of these sets with the set of 
essential singularities {0,∞} , considered as a subset of ℂ̂.

Theorem  1.2 Let f be a transcendental self-map of ℂ∗ . The set I(f ) ∪ {0,∞} is either 
connected or it consists of two components I0(f ) and I∞(f ) that contain 0 and ∞ , respec-
tively. Similarly, for each e ∈ {0,∞}ℕ0 , the set Ie(f ) ∪ {0,∞} is either connected or it con-
sists of two components I0

e
(f ) and I∞

e
(f ) that contain 0 and ∞ , respectively. Furthermore, 

I0(f ) ∩ Ie(f ) ≠ � and I∞(f ) ∩ Ie(f ) ≠ � for all e ∈ {0,∞}ℕ0.

Remark Note that it is easy to deduce the same connectedness properties for the fast 
escaping set A(f ) and the little fast escaping sets Ae(f ) , for e ∈ {0,∞}ℕ0 , instead of I(f ) 
and Ie(f ) , respectively, where f is a transcendental self-map of ℂ∗ . However, the definitions 
of these sets are complicated, and so we refer to [20, Definition 1.2] for more details.

It follows from the previous two theorems that there are three possibilities regarding the 
connectivity of the sets I(f ) and I(f ) ∪ {0,∞} , namely: 

 (I1) I(f ) ∪ {0,∞} and I(f ) are both connected;
 (I2) I(f ) ∪ {0,∞} is connected and I(f ) has infinitely many components;
 (I3) I(f ) ∪ {0,∞} has two components and I(f ) has infinitely many components.

en ∶=

{
0, if |f n(z)| ⩽ 1,

∞, if |f n(z)| > 1.

Ie(f ) ∶= {z ∈ I(f ) ∶ there exist �, k ⩾ 0, |f n+�(z)| > 1 ⇔ en+k = ∞ for all n ⩾ 0}.
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In Sect. 4, we give several examples to show that all three cases are attained, as well as 
to illustrate different properties of these sets; some of the examples have appeared before 
in the literature, but others are new. In [11], we proved that the function from [21, Exam-
ple 3.3] has the property that its escaping set is a ℂ∗-spider’s web, that is, a connected set 
which separates every point of ℂ∗ from {0,∞} , and hence is an example of type (I1) (see 
Example 1). When I(f ) is disconnected, the set I(f ) ∪ {0,∞} can be connected or discon-
nected. We give a function f such that ℝ⧵{0} ⊆ I(f ) and iℝ⧵{0} ⊆ ℂ

∗⧵I(f ) , and hence f is 
of type (I2) (see Example 2 and Fig. 1). On the other hand, to show that I(f ) ∪ {0,∞} is 
disconnected, that is, f is a function of type (I3), it suffices to find a continuum in ℂ∗⧵I(f ) 
that separates 0 from ∞ . We discuss two different examples of situations in which this hap-
pens. First, observe that this is the case when f has a doubly connected Fatou component 
in ℂ∗⧵I(f ) ; the function in Example 3 has a doubly connected basin of attraction. Another 
situation in which I(f ) ∪ {0,∞} is disconnected is when f has an invariant curve around the 
origin; the functions in Example 4 all satisfy that the unit circle is invariant. Finally, we 
give an example of a function f for which I∞(f ) is connected, but not a spider’s web (see 
Example 5).

We emphasise that although I(f ) and J(f ) satisfy similar properties, the connectivity 
of I(f ) is independent of that of J(f ) . Recall that if f is a transcendental entire function, 
then J(f ) is either connected or has uncountably many components [4] and J(f ) ∪ {∞} is 
connected if and only if  f  has no multiply connected Fatou components [19]. The func-
tion f (z) = sin z is an example for which J(f ) is connected [9] (and, in fact, a spider’s 
web [26]) and I(f ) is disconnected as ℝ ⊆ ℂ⧵I(f ) . On the other hand, for Fatou’s func-
tion f (z) = z + 1 + e−z we know that J(f ) is disconnected (it is an uncountable union of 
disjoint curves), but I(f ) is connected (in fact, it is a spider’s web [13]). For transcendental 
self-maps of ℂ∗ , Baker and Domínguez [3, Section 3] proved a similar trichotomy to our 
cases (I1), (I2) and (I3) but for J(f ) , and gave examples of functions of each case: 

 (J1) J(f ) ∪ {0,∞} and J(f ) are both connected;
 (J2) J(f ) ∪ {0,∞} is connected and J(f ) has uncountably many components;
 (J3) J(f ) ∪ {0,∞} has two components and J(f ) has uncountably many components.

Observe that, for example, the functions in the complex Arnol’d standard family for which 
J(f ) = ℂ

∗ are of type (I3) and (J1) (see Example 4).

Remarks 

(1) Many authors [23, 25, 35] have studied the connectivity of other dynamically meaning-
ful sets, such as the sets of bounded or unbounded orbits, for transcendental entire func-
tions. It would be interesting to study the connectivity of these sets for transcendental 
self-maps of ℂ∗.

(2) In [22] it was shown that many properties of the dynamics of transcendental self-maps 
of ℂ∗ carry over to quasiregular maps of punctured Euclidean space. It is natural to ask 
if the connectivity results of this paper can also be transferred into this wider setting.

Let f be a transcendental entire function or a transcendental self-map of ℂ∗ . Sup-
pose that U is a Fatou component of f, and let Un be the Fatou component containing 
f n(U) for n ∈ ℕ0 . If U ⊆ Up for some minimal p ∈ ℕ , then we say that U is periodic of 
period p. If U is not periodic, but Uk is periodic for some k ∈ ℕ , then we say that U is 
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preperiodic. Otherwise we say that U is a wandering domain. If U is periodic and meets 
I(f ) , in which case U is contained in I(f ) , then we say that U is a Baker domain. In order 
to prove Theorem 1.2, we need a result concerning escaping points on the boundaries 
of Fatou components, which may be of independent interest. Observe first that Baker 
domains and escaping wandering domains are the only two types of Fatou components 
that lie in I(f ) . Recall that for entire functions, Rippon and Stallard [31, Theorem 1.1] 
proved that the boundaries of escaping wandering domains always contain escaping 
points; the problem of whether the boundaries of Baker domains always contain escap-
ing points remains open (see [7, 33]). Suppose that f is a transcendental self-map of ℂ∗ . 
We consider the following subset of Ie(f ),

which has the property that if a Fatou component U meets Ĩe(f ) , then U ⊆ �Ie(f ) (see 
Lemma 3.1). We call Ĩe(f ) the immediate little escaping set with essential itinerary e, in 
analogy to the term immediate basin of attraction. Observe that, in general, these sets are 
not completely invariant. Moreover, Ie(f ) = Ĩe(f ) if and only if the sequence e only has one 
symbol. The result we need to prove Theorem 1.2 is the following.

Theorem 1.3 Let f be a transcendental self-map of ℂ∗ , and let U be a wandering domain 
of f such that U ⊆ �Ie(f ) for some e ∈ {0,∞}ℕ0 . Then

Moreover, the set �U⧵̃Ie(f ) has zero harmonic measure relative to U. In particular, the set 
�U⧵Ie(f ) has zero harmonic measure relative to U.

One of the striking differences between the iteration of transcendental entire func-
tions and that of transcendental self-maps of ℂ∗ lies in the nature of their multiply con-
nected Fatou components. Baker [2] proved that all Fatou components of transcendental 
self-maps of ℂ∗ are either simply or doubly connected, and that there is at most one 
doubly connected Fatou component. Baker and Domínguez  [3] showed that if U is a 
doubly connected periodic Fatou component that is bounded away from 0 and ∞ , then 
U must be a Herman ring, that is, a doubly connected domain on which the function is 
conjugated to an irrational rotation. However, there is no such restriction if U is a dou-
bly connected periodic Fatou component that is unbounded in ℂ∗ . The first example of a 
doubly connected Fatou component in ℂ∗ was given by Baker [2, Theorem 1.2], and was 
the basin of attraction of an attracting fixed point (see also Example 3).

For transcendental entire functions, Baker  [1, Theorem  3.1] proved that Baker 
domains are all simply connected. We construct a transcendental self-map of ℂ∗ with a 
doubly connected Baker domain; we are not aware of any previous such example.

Theorem 1.4 There exists a transcendental self-map of ℂ∗ that has a doubly connected 
Baker domain.

Observe that every Baker domain U in ℂ∗ contains a simply connected absorbing 
set H, that is, f (H) ⊆ H and for every compact set K ⊆ U , there exists n ∈ ℕ0 such that 
f n(K) ⊆ H (see Lemma 5.2).

�Ie(f ) ∶= {z ∈ I(f ) ∶ there exists � ⩾ 0, |f n+�(z)| > 1 ⇔ en+� = ∞ for all n ⩾ 0},

�U ∩ Ĩe(f ) ≠ �.
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Finally, we prove a connection between the fact that a transcendental self-map  f of 
ℂ

∗ has a doubly connected Baker domain and the connectivity of I(f ) ∪ {0,∞} . Namely, 
if f has a doubly connected Baker domain, then f cannot be of type (I3).

Theorem 1.5 Let f be a transcendental self-map of ℂ∗ , and suppose that f has a doubly 
connected Baker domain U. Then the closure of U in ℂ̂ contains both 0 and ∞ and, in par-
ticular, I(f ) ∪ {0,∞} is connected.

To prove Theorem 1.5, we show that if f has a doubly connected Baker domain U, 
then ind(f ) = 0 (see Lemma 5.3); recall that the index of f, ind(f ) , is the index (or wind-
ing number) of the image of any positively oriented simple closed curve separating 0 
and ∞ with respect to 0.

Structure We prove Theorems 1.1 and 1.2 in Sects. 2 and 3, respectively. Theorem 1.3 is 
used in the proof of Theorem 1.2, and is also proved in Sect. 3. We prove some basic facts 
about the set �Ie(f ) ⊆ Ie(f ) in the beginning of Sect.  3. Examples of functions satisfying 
properties  (I1), (I2) and (I3) are given in Sect. 4. Finally, the study of doubly connected 
Baker domains is in Sect. 5, where we prove Theorems 1.4 and 1.5.

Notation We denote the open ball centred at a ∈ ℂ and of radius r > 0 by

If X ⊆ ℂ
∗ , we denote by X and X̂ the closure of X in ℂ∗ and ℂ̂ , respectively. We always 

use �X to refer to the boundary of X in ℂ∗ . Recall that we say that X is unbounded in ℂ∗ if 
X̂ ∩ {0,∞} ≠ �.

2  Connectivity of the escaping set

In this section we prove Theorem 1.1. We begin by giving a more general result, which 
is a version of [31, Theorem 5.2].

Theorem  2.1 Let f be a transcendental self-map of ℂ∗ , and suppose that E ⊆ ℂ
∗ is a 

completely invariant set such that J(f ) = E ∩ J(f ) . If E is not connected, then it has infi-
nitely many components.

Remark Note that in ℂ∗ we only have two cases for the connectivity of the set E above, 
whereas for entire functions [31, Theorem 5.2] there is the possibility that E has two com-
ponents, in which case one of the components must be a singleton consisting of the only 
possible exceptional point. Picard’s theorem implies that holomorphic self-maps of ℂ∗ do 
not have any exceptional points.

The proof of Theorem  2.1 is based on the following key property of the Julia set, 
which is known as the blowing-up property (see [27, Theorem 4.1]).

Lemma 2.2 Let f be a transcendental self-map of ℂ∗ . If U ⊆ ℂ
∗ is an open set which meets 

J(f ) and K ⊆ ℂ
∗ is a compact set, then there exists n0 = n0(K) ∈ ℕ such that f n(U) ⊇ K for 

all n ⩾ n0.

D(a, r) ∶= {z ∈ ℂ ∶ |z − a| < r}.
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We now prove Theorem 2.1. We suppose that E ⊆ ℂ
∗ is a completely invariant and dis-

connected set with the property that J(f ) = E ∩ J(f ) , and we need to show that E has infi-
nitely many components.

Proof of  Theorem  2.1 Suppose, by way of contradiction, that the set E is not connected 
but consists of finitely many components E1,E2,…Em , with m > 1 . Without loss of 
generality, since J(f ) = E ∩ J(f ) , there exists z1 ∈ E1 ∩ J(f ) . The fact that E has finitely 
many components implies that there exists a positive number r sufficiently small that 
D(z1, r) ∩ (E⧵E1) = �.

By Lemma 2.2, there exists N ∈ ℕ such that f N(D(z1, r)) ∩ Ej ≠ � , for each j ∈ {1, 2} . 
Since the set E is completely invariant, in particular, f −n(E) ⊆ E  for all n ∈ ℕ , and this 
implies that f N(E1) ∩ Ej ≠ � , for j ∈ {1, 2} . However, we know that f N(E1) ⊆ E is a con-
nected set. This contradiction completes the proof.   ◻

Now we are able to prove Theorem 1.1.

Proof of Theorem 1.1 Suppose that e ∈ {0,∞}ℕ0 . By [20, Theorem 1.1], Ie(f ) ∩ J(f ) ≠ � 
and, by Lemma 2.2 and the complete invariance of J(f ) , we have J(f ) = Ie(f ) ∩ J(f ) . Then, 
the result for Ie(f ) follows from Theorem 2.1 by taking E = Ie(f ) . The result for I(f ) follows 
similarly.   ◻

3  Connectivity of the escaping set union zero and infinity

To match the notation used in [20], observe that, for e ∈ {0,∞}ℕ0 , the little escaping set 
with essential itinerary e, Ie(f ) , can be written as the union

where, for � ∈ ℕ0 and k ∈ ℕ0,

Then, the set �Ie(f ) ⊆ Ie(f ) from the introduction, which consists of the points whose essen-
tial itinerary eventually coincides with e, can be written as

Observe that f n (̃Ie(f )) = Ĩ�n(e)(f ) , for n ∈ ℕ . Observe also that Ĩe(f ) = Ĩe� (f ) if and only if 
there exists n ∈ ℕ such that �n(e) = �n(e�) ; otherwise Ĩe(f ) ∩ Ĩe� (f ) = � . Finally, note that

and each little escaping set Ie(f ) contains the immediate little escaping sets Ĩ�n(e)(f ) for 
n ∈ ℕ0 (and all their preimages under f ).

The reason why we are interested in this subset of Ie(f ) is that it is the natural set in 
which an escaping Fatou component lies. Note that in [21, p. 3] it was observed that if a 

Ie(f ) =
⋃

�∈ℕ0

⋃

k∈ℕ0

I−�,k
e

(f ),

I−�,k
e

(f ) ∶= {z ∈ I(f ) ∶ |f n+�(z)| > 1 ⇔ en+k = ∞ for all n ∈ ℕ0}.

Ĩe(f ) =
⋃

�∈ℕ0

I−�,�
e

(f ).

I(f ) =
⋃

e∈{0,∞}ℕ0

Ie(f ) =
⋃

e∈{0,∞}ℕ0

Ĩe(f ),
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Fatou component U satisfies that U ∩ Ie(f ) ≠ � , then U ⊆ Ie(f ) , but the following lemma 
gives more precise information.

Lemma 3.1 Let f be a transcendental self-map of ℂ∗ , and suppose that U is a Fatou com-
ponent of f. If U ∩ Ĩe(f ) ≠ � for some e ∈ {0,∞}ℕ0 , then U ⊆ �Ie(f ).

Proof Choose z ∈ U and let e ∈ {0,∞}ℕ0 be such that z ∈ Ĩe(f ) . Suppose to the contrary 
that U ∩ (ℂ∗⧵̃Ie(f )) ≠ � . Then, we can find a point z� ∈ U ∩ �Ĩe(f ) . It is easy to see that the 
family of iterates of f is not equicontinuous on any neigbhourhood of z′ , contradicting the 
Arzelà-Ascoli theorem; this proves the lemma.   ◻

Next, we prove Theorem 1.3, which says that if f is a transcendental self-map of ℂ∗ and 
U is a wandering domain of f such that U ⊆ �Ie(f ) , then �U⧵̃Ie(f ) has zero harmonic measure 
relative to U. To that end, we require the following lemma (see [24, Lemma 4.1]), which is 
a generalisation of [31, Theorem 1.1]. Here d(z, w) denotes the spherical distance between 
two points z,w ∈ ℂ̂ . If G ⊆ ℂ

∗ is a domain and E ⊆ 𝜕G is a Borel set, then �(z,E,G) 
denotes the harmonic measure of E relative to G at a point z ∈ G (see [18] for a precise 
definition). If �(z,E,G) = 0 for some z ∈ G and hence all z ∈ G , then we say that E has 
harmonic measure zero relative to G.

Lemma 3.2 Let (Gn)n∈ℕ0
 be a sequence of disjoint simply connected domains in ℂ̂ . Sup-

pose that, for each n ∈ ℕ , gn ∶ Gn−1 → Gn is analytic in Gn−1 , continuous in Gn−1 , and 
satisfies gn(𝜕Gn−1) ⊆ 𝜕Gn . Set

Suppose that there exist � ∈ ℂ̂ , � ∈ (0, 1) and z0 ∈ G0 such that

Suppose finally that c > 1 , and let

Then H has harmonic measure zero relative to G0.

We now prove Theorem 1.3.

Proof of Theorem 1.3 Suppose that f is a transcendental self-map of ℂ∗ with a wandering 
domain U ⊆ �Ie(f ) for some e ∈ {0,∞}ℕ0 . It suffices to prove that �U⧵̃Ie(f ) has zero har-
monic measure relative to U. For n ∈ ℕ0 , let Un be the Fatou component containing f n(U).

By a result of Baker [2], there is at most one value N ∈ ℕ0 such that UN is doubly con-
nected, and Un is simply connected for all n ≠ N . It follows from [28, Theorem 4.3.8] that 
if n ∈ ℕ and E ⊆ 𝜕Un has zero harmonic measure relative to Un , then f −n(E) ∩ �U has zero 
harmonic measure relative to U, regardless of whether U is simply or doubly connected. 
We can assume, therefore, that Un is simply connected for n ∈ ℕ0.

Suppose that there is a sequence (nk)k∈ℕ ⊆ ℕ such that enk = ∞ for all k ∈ ℕ ; other-
wise the sequence e is eventually the constant sequence 0 and the argument below can be 
applied with � = 0 . We apply Lemma 3.2 with � = ∞ , G0 = U and, for k ∈ ℕ , Gk = Unk

 
and gk = f nk−nk−1 , where n0 = 0 , so that hk = f nk . We obtain a subset H ⊆ 𝜕U , of harmonic 

hn ∶= gn◦⋯◦g2◦g1, for n ∈ ℕ.

d(hn(z0), 𝜉) < 𝜌, for n ∈ ℕ.

H ∶= {z ∈ �G0 ∶ d(hn(z), �) ⩾ c� for infinitely many values of n ∈ ℕ}.
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measure zero relative to U, such that 𝜕U⧵�Ie(f ) ⊆ H ; recall that if the essential itineraries of 
two points disagree on an infinite sequence, then the two points cannot lie in the same set 
Ĩe(f ) for e ∈ {0,∞}ℕ0 . In particular, the set �U⧵̃Ie(f ) , and hence also the subset �U⧵Ie(f ) , 
has zero harmonic measure relative to U as required.   ◻

If f is a transcendental self-map of ℂ∗ , then there exists a transcendental entire func-
tion  f̃  such that exp ◦ f̃ ≡ f◦ exp ; the function f̃  is called a lift of  f. If U  is a wandering 
domain of f, then every component V of exp−1(U) is a wandering domain of  f̃  by [21, 
Lemma 2.4], and since exp−1 I(f ) ⊆ I(f̃ ) , we have V ⊆ I(f̃ ) . In this case, [31, Theorem 1.1] 
implies that the set �V  intersects I(f̃ ) , but Theorem  1.3 gives more precise information, 
namely that �V  contains points z such that |Re f̃ n(z)| → +∞ as n → ∞ ; see the following 
corollary.

Corollary 3.3 Let f̃  be a transcendental entire function that is a lift of a transcendental 
self-map f of ℂ∗ . Suppose that U ⊆ �Ie(f ) is a wandering domain of f and V is a component 
of exp−1(U) . Then, apart possibly from a set of harmonic measure zero relative to V, points 
z ∈ �V  satisfy that, for any R > 0,

• Re f̃ n(z) > R , if en = ∞ , and
• Re f̃ n(z) < −R , if en = 0,

for all sufficiently large values of n ∈ ℕ0.

At this point we require some properties of the fast escaping sets Ae(f ) ⊆ Ie(f ) , for 
e ∈ {0,∞}ℕ0 , however their exact definition, which is quite complicated, is not impor-
tant for the matter of this paper. So we refer to [20, Definition 1.1] and in the following 
lemma we summarise the properties that we need (see [20, Theorem  1.1,  Theorem  1.3 
and Theorem 1.5]).

Lemma 3.4 Let f be a transcendental self-map of ℂ∗ . For each e ∈ {0,∞}ℕ0 , there exists 
a set Ae(f ) ⊆ Ie(f ) such that

(1) Ae(f ) ∩ J(f ) ≠ �;
(2) J(f ) = �Ae(f );
(3) all the components of Ae(f ) are unbounded in ℂ∗.

Let A(f ) be the union of all Ae(f ) for e ∈ {0,∞}ℕ0 . Then, A(f ) ∩ J(f ) ≠ � , J(f ) = �A(f ) and 
all the components of A(f) are unbounded in ℂ∗.

The next lemma is similar to [31, Lemma 4.1]. Here, we use the properties of the fast 
escaping set, and obtain that, in our setting, �G ∩ I(f ) consists of uncountably many points.

Lemma 3.5 Let f be a transcendental self-map of ℂ∗ . If G ⊆ ℂ
∗ is a domain that is 

bounded in ℂ∗ and such that G ∩ J(f ) ≠ � , then �G ∩ Ie(f ) ≠ � for all e ∈ {0,∞}ℕ0 . In par-
ticular, �G contains uncountably many points of I(f ).

Proof Let f be a transcendental self-map of ℂ∗ and suppose that G ⊆ ℂ
∗ is a domain that 

is bounded in ℂ∗ and such that G ∩ J(f ) ≠ � . Lemma  3.4(2) implies that G  intersects 
every set Ae(f ) for e ∈ {0,∞}ℕ0 . But, by Lemma 3.4(3), the components of Ae(f ) are all 
unbounded and G is a bounded domain, so �G ∩ Ae(f ) ≠ � for all e ∈ {0,∞}ℕ0 . Hence, 
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�G ∩ Ie(f ) ≠ � for all e ∈ {0,∞}ℕ0 , as required. The last part of Lemma 3.5 holds because 
there are uncountably many disjoint sets Ae(f ) for e ∈ {0,∞}ℕ0 . Note that this follows from 
Lemma 3.4(1) and the fact that the set of sequences e ∈ {0,∞}ℕ0 for which the sets Ie(f ) 
are disjoint is uncountable (see [20, Remark 3.1(2)]).   ◻

We now give two corollaries of Theorem 1.3, and prove Theorem 1.2. These three 
results are the analogues in ℂ∗ of [31, Theorem 4.1]. However, note that they concern 
Ie(f ) instead of the whole of I(f ) , so in some sense they are more precise, as a compo-
nent of I(f ) may comprise components of several Ie(f ).

Corollary 3.6 Let f be a transcendental self-map of ℂ∗ , and suppose that e ∈ {0,∞}ℕ0 . 
Then, any component of Ie(f ) that is bounded in ℂ∗ meets J(f ).

Proof Suppose to the contrary that G is a component of Ie(f ) , with e ∈ {0,∞}ℕ0 , that is 
bounded in ℂ∗ and does not meet J(f ) . Let U be the Fatou component containing G. By 
Lemma 3.1, U ⊆ Ie(f ) , and so U = G . Since G is bounded in ℂ∗ , G must be a wandering 
domain. Theorem 1.3 then implies that �G contains points in Ie(f ) , contradicting the fact 
that G is a component of Ie(f ) .   ◻

Corollary 3.7 Let f be a transcendental self-map of ℂ∗ . If G ⊆ ℂ
∗ is a domain bounded 

in ℂ∗ such that G ∩ Ie(f ) ≠ � for some e ∈ {0,∞}ℕ0 , then �G ∩ Ie(f ) ≠ �.

Proof Suppose, by way of contradiction, that G ⊆ ℂ
∗ is a domain that is bounded in ℂ∗ , 

G ∩ Ie(f ) ≠ � and �G ∩ Ie(f ) = � . Let G′ ⊆ G be a component of Ie(f ) . By Corollary 3.6, 
G� ∩ J(f ) ≠ � . Then, it follows from Lemma 3.5 that �G ∩ Ie(f ) ≠ � . This proves the corol-
lary.   ◻

We finish this section by proving Theorem 1.2, which says that for a transcenden-
tal self-map f of ℂ∗ , the set I(f ) ∪ {0,∞} is either connected or it has two connected 
components, one containing 0 and one containing ∞ . In other words, we prove that 
I(f ) ∪ {0,∞} does not have any component that is bounded in ℂ∗.

Proof of Theorem 1.2 Suppose to the contrary that G ⊆ ℂ
∗ is a component of Ie(f ) ∪ {0,∞} 

that does not meet {0,∞} . Then, there exist three disjoint open sets H,H0,H∞ ⊆ �ℂ with

In particular, the set H is bounded away from 0 and ∞ and H ∩ Ie(f ) ≠ � . Then, by Corol-
lary 3.7, �H ∩ Ie(f ) ≠ � , which is a contradiction.

Observe that if I(f ) ∪ {0,∞} has two components I0(f ) and I∞(f ) containing the points 
0 and ∞ , respectively, then

This follows from the fact that for every e ∈ {0,∞}ℕ0 , by Lemma 3.4, the set Ae(f ) is non-
empty and, by Picard’s theorem, Ae(f ) meets both sets H0 and H∞ . Therefore Theorem 1.2 
is proved.   ◻

Ie(f ) ∪ {0,∞} ⊆ H ∪ H0 ∪ H∞ and 0 ∈ H0, ∞ ∈ H∞, G ⊆ H.

I0(f ) ∩ Ie(f ) ≠ � and I∞(f ) ∩ Ie(f ) ≠ �, for all e ∈ {0,∞}ℕ0 .
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4  Examples

In this section we give examples of transcendental self-maps of ℂ∗ to show that all three 
cases (I1), (I2) and (I3) regarding the connectivity of I(f ) and I(f ) ∪ {0,∞} are possible. 
Recall from the introduction that these are 

 (I1) I(f ) ∪ {0,∞} and I(f ) are both connected;
 (I2) I(f ) ∪ {0,∞} is connected and I(f ) has infinitely many components;
 (I3) I(f ) ∪ {0,∞} has two components and I(f ) has infinitely many components.

Note that every transcendental self-map f of ℂ∗ is of the form

where g, h are non-constant entire functions and n = ind(f ) ∈ ℤ.
In the first example, we give a transcendental self-map of ℂ∗ of type (I1), that is, a func-

tion f for which I(f ) is connected, and hence also I(f ) ∪ {0,∞} is connected.

Example 1 In [21, Example 3.3], it was proved that for sufficiently large values of 𝜆 > 0 , 
the function

has an invariant Baker domain in which points escape to ∞ . This was the first explicit 
example of a transcendental self-map of ℂ∗ with a Baker domain. Later, in [11, Theo-
rem 1.5], we showed that for this family of functions, provided that 𝜆 > 0 is large enough, 
I(f ) has the structure of a ℂ∗-spider’s web; recall that a connected set X ⊆ ℂ

∗ is called 
a ℂ∗-spider’s web if it separates every point of the punctured plane from {0,∞} .  △

The second example we give is a transcendental self-map f of ℂ∗ that satisfies prop-
erty (I2), that is, with a disconnected I(f ) , but I(f ) ∪ {0,∞} being connected.

Example 2 Consider the function

Note that if z ∈ ℝ⧵{0} , then the term in the main exponential is positive and so the main 
exponential term is greater than one. Hence ℝ⧵{0} ⊆ I(f ) and, by Theorem  1.2, the set 
I(f ) ∪ {0,∞} is connected (see Fig. 1).

It remains to show that I(f ) is not connected for this map. We consider the dynamics on 
the imaginary axis (minus the origin). Observe that

so we need to consider the action of f̂  on the real line (see Fig. 2).
Note that f̂  has a unique attracting fixed point on the positive real line at a point 

y0 ≈ 1.087 , and it is bounded on the real line. We can deduce that f has two attracting fixed 
points at ±y0i , and that {0 + iy ∶ y > 0} and {0 + iy ∶ y < 0} each lie in an attracting Fatou 
component. Hence the imaginary axis separates I(f ) , and the result follows.  △

f (z) = zn exp(g(z) + h(1∕z)),

f (z) ∶= �z exp(e−z∕z) = �z exp

(
e−z − 1

z
+

1

z

)

f (z) ∶= 2z exp
(
z2 + e−1∕z

4)
.

f (iy) = 2iy exp
(
−y2 + e−1∕y

4)
=∶ if̂ (y),
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Next, we give examples of transcendental self-maps f of ℂ∗ satisfying property  (I3). 
Recall that, for such maps, I(f ) ∪ {0,∞} is disconnected, and hence also I(f ) is discon-
nected. We give two different situations in which this happens.

First, observe that if f has a doubly connected Fatou component in ℂ∗⧵I(f ) , then f is of 
type (I3). One class of functions with a doubly connected Fatou component is that of the 
so-called functions of disjoint type. We say that a transcendental self-map f of ℂ∗ is of dis-
joint type if F(f ) is connected and consists of the immediate basin of attraction of a fixed 
point, which is doubly connected in ℂ∗ (see [15, Definition 3.10]). In the next example, we 
give a disjoint-type transcendental self-map of ℂ∗ , which satisfies the additional property 
that each component of I(f ) is contained in a single set Ie(f ) for some e ∈ {0,∞}ℕ0.

Fig. 1  An illustration of the dynamics of the function f from Example 2. Escaping points are coloured in 
grey, and yellow points lie in the basins of attraction of two attracting fixed points ±iy0 (red dots), which 
contain the two halves of the imaginary axis (color figure online)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

Fig. 2  An illustration of the function f̂  which describes the restriction of the function from Example 2 to 
the imaginary axis
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Example 3 The function defined by

is a transcendental self-map of ℂ∗ of disjoint type (see [15, Example 3.12]) and hence satisfies 
(I3). Indeed, it can be shown that there exists a round annulus A separating 0 from ∞ that maps 
compactly inside itself, and this implies that f  has an attracting fixed point � ∈ A (see Fig. 3).

Since  f  has finite order as a transcendental self-map of ℂ∗ (see [15, Definition  4.1]), 
it follows from [15, Theorem 1.7] that each component X of I(f ) is a curve that joins a 
finite point to either 0 or ∞ and is contained in a single little escaping set Ie(f ) for some 
e ∈ {0,∞}ℕ0 . This contrasts with the situation where I(f ) is connected, and hence all sets 
Ie(f ) lie in the same component of I(f ) ; note that there are uncountably many non-empty 
disjoint sets Ie(f ) for e ∈ {0,∞}ℕ0 . △

Other examples of functions with doubly connected Fatou components in the com-
plement of I(f ) , such as Herman rings, were given by Baker and Domínguez; see the 
exposition in [3, Section 5].

Next, we give a different situation in which I(f ) ∪ {0,∞} is disconnected, and hence 
f is of type (I3). This is the case when f has a forward invariant closed curve around the 
origin. Note that a transcendental self-map of ℂ∗ can only have one such curve. In the 
next example we study a well-known family with this property.

Example 4 The complex Arnol’d standard family is given by

and the iteration of this family of transcendental self-maps of ℂ∗ was originally studied by 
Fagella [14]. Since f𝛼,𝛽(𝜕�) ⊆ 𝜕� , we have that �� ∩ I(f�,�) = � . Thus, for any 0 ⩽ 𝛼 < 2𝜋 
and � ⩾ 0 , the function f�,� satisfies property (I3) (see Fig. 4). Note that for some param-
eters J(f�,�) = ℂ

∗ , but otherwise f�,� can have a Herman ring, or other types of Fatou com-
ponents.  △

f (z) ∶= exp(0.3(z + 1∕z))

f𝛼,𝛽(z) ∶= zei𝛼e𝛽(z−1∕z)∕2, for 0 ⩽ 𝛼 < 2𝜋 and 𝛽 ⩾ 0,

Fig. 3  An illustration of the dynamics of the function f from Example 3. Escaping points are coloured in 
grey, and yellow points lie in the basin of attraction of an attracting fixed point (red dot) in ℝ , which is dou-
bly connected. In the right, a zoom of the origin (color figure online)
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Remark Note that in the previous two examples, the set I(f ) ∪ {0,∞} is disconnected by 
a Jordan curve separating 0 from ∞ . One might ask if this is necessarily the case when 
I(f ) ∪ {0,∞} is disconnected; we do not provide an answer to this question. Observe that 
if f is a transcendental self-map f of ℂ∗ , unless f has a Herman ring, there is at most one 
invariant curve that separates 0 from ∞.

It is natural to ask if the set Ie(f ) can be connected for some e ∈ {0,∞}ℕ0 . Our goal in 
the next example is to answer this question in the affirmative by showing that there is a 
transcendental self-map f of ℂ∗ such that I∞(f ) is connected. We will also show that for 
this function, I(f ) is connected, and hence f is of type  (I1). Observe that the set Ie(f ) is 
never a ℂ∗-spider’s web for any e ∈ {0,∞}ℕ0 . Indeed, there are infinitely many sequences 
e� ∈ {0,∞}ℕ0⧵{e} for which Ae� (f ) ∩ Ie(f ) = � (as Ie� (f ) ∩ Ie(f ) ≠ � if and only if 
�m(e�) = �n(e) for some m, n ∈ ℕ ) and, it follows from Lemma 3.4(3) that all the compo-
nents of Ae� (f ) are unbounded in ℂ∗.

We first prove the following general proposition that will be used in the example; this is 
based on the proof in [32] that the escaping set of the map z ↦ cosh2 z is connected. Recall 
that if f is a transcendental entire function or a transcendental self-map of ℂ∗ , we say that a 
set X is backward invariant under f  if f −1(X) ⊆ X.

Proposition 4.1 Let f be a transcendental entire function such that J(f ) = ℂ , or a tran-
scendental self-map of ℂ∗ such that J(f ) = ℂ

∗ . Furthermore, suppose that f has no asymp-
totic values and only finitely many critical values. If X is a backward invariant set under f 
and E ⊆ X is path-connected, not a singleton, and has the property that E meets every 
component of f −1(E) , then X is connected.

Proof We consider only the case of a transcendental entire function; the other case is 
almost identical. Observe that since E is path-connected and f has no asymptotic values 
and only finitely many critical values, every component of f −1(E) is path-connected. 
Since E meets every component of f −1(E) , then E ∪ f −1(E) is path-connected. Since X is 

Fig. 4  An illustration of the dynamics of the function f�,� from Example 4 with � = 3.1 and � = 0.8 . Escap-
ing points are coloured in grey, and yellow points lie in the basins of attraction of an attracting cycle of 
period two (red dots). The unit circle is invariant and has been drawn in white (color figure online)
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backward invariant, this is in fact a subset of X. By repeated application of this argument, 
we deduce that T =

⋃
n⩾0 f

−n(E) is a connected subset of X.
Since J(f ) is the whole plane, and the backward orbit of any non-exceptional point is 

dense in J(f ) , it follows that T = ℂ . Hence T ⊆ X ⊆ T  , and so X is connected.   ◻

We now give the example.

Example 5 Set f̃ (z) ∶= cosh z , which is a transcendental entire function that is a lift of the 
transcendental self-map of ℂ∗ given by

Observe that J(f̃ ) = ℂ . Indeed, f̃  has only two singular values, which are the critical values 
at ±1. So f̃  belongs to the so-called Speiser class S and hence f̃  has no Baker domains and 
no wandering domains [10, 17]. Moreover, it follows from the classification of Fatou com-
ponents [5, Section 4.2] that since all the singular values of f̃  escape to ∞ , f̃  cannot have 
any other type of Fatou component. Berweiler [6] showed that if f̃  is a lift of a transcen-
dental self-map f of ℂ , then J(f̃ ) = exp−1(J(f )) , and therefore J(f ) = ℂ

∗.
Define the set

It can be shown that, with X = I(f̃ ) , the hypotheses of Proposition 4.1 are satisfied; indeed, 
it is a calculation that E ⊆ I(f̃ ) and that E contains every preimage of the real line. Hence 
I(f̃ ) is connected.

Now put X = I∞(f ) and take expE in place of E, which again satisfy the hypotheses of 
the version for ℂ∗ of Proposition 4.1, and so the set I∞(f ) is connected. Note that it also fol-
lows from Proposition 4.1 that I(f ) is connected.  △

5  Doubly connected Baker domains

We conclude the paper with our results concerning doubly connected Baker domains. First, 
we prove Theorem 1.4, by constructing the first example of such a domain. To that end, we 
use the following result from approximation theory (see [16, Corollary in p. 162]).

Lemma 5.1 Suppose that S ⊆ ℂ is a closed set such that ℂ̂⧵S is connected and locally 
connected at ∞ , and assume that S lies in a sector

for some 0 < 𝛼 ⩽ 2𝜋 . Suppose that �(r) is a real function that is continuous and positive 
for r ⩾ 0 and satisfies

If g0 ∶ S → ℂ is continuous on S and holomorphic on the interior of S, then there exists an 
entire function g such that

f (z) ∶= exp (0.5(z + 1∕z)).

E ∶= iℝ ∪
⋃

n∈ℤ

{x + iy ∈ ℂ ∶ y = n�}.

W� ∶= {z ∈ ℂ ∶ |arg z| ⩽ �∕2},

∫
+∞

1

r−(𝜋∕𝛼)−1 log 𝜀(r) dr > −∞.

(1)|g(z) − g0(z)| < 𝜀(|z|), for all z ∈ S.
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This result was used in [21, Lemma 4.5] to construct transcendental self-maps of ℂ∗ 
with Baker domains and wandering domains that escape in any possible way (see [21, 
Theorem  1.1 and Theorem  1.2]). However, it is not clear if the Baker domains con-
structed in [21] are simply or doubly connected.

Proof of Theorem 1.4 Choose R > 0 sufficiently large that both

and also

Define the set

and let g0 denote the principal branch of the logarithm on S ⊆ ℂ⧵(−∞, 0] . Next set

Note that S ⊆ W𝜋 , and

It follows, by Lemma 5.1, that there exists a transcendental entire function g such that (1) 
holds. Now set

so that f  is a transcendental self-map of ℂ∗ . Let

(see Fig. 5). Suppose that z ∈ S� . Then, by (1), (2) and (3), we have that

Thus, z ∈ S� implies that Re (f (z)) ⩾ Re(z) + 2R and hence also that f (z) ∈ S� . We 
can deduce that S′ lies in an invariant Baker domain of f. Since S′ contains the circle 
{z ∈ ℂ ∶ |z| = 3R∕4} , the Baker domain must be doubly connected.   ◻

(2)|||exp
(
� + z−2

)
− 1

||| ⩽ 4|z|−2, for |�| ⩽ |z|−2 ⩽ 4

R2
,

(3)R ⩾ 8|z|−1 + 12R|z|−2, for |z| ⩾ R

2
.

S ∶= {z ∈ ℂ ∶ |z − 3R| ⩽ R} ∪ {z ∈ ℂ ∶ Re(z) ⩾ 3R},

𝜀(r) ∶=

{
r−2, for r > 1,

1, for 0 ⩽ r ⩽ 1.

∫
∞

1

r−2 log 𝜀(r) dr = −2∫
∞

1

r−2 log r dr = −2 > −∞.

f (z) ∶= exp(g(z + 3R) + z−2),

S� ∶= {z ∈ ℂ ∶ R∕2 < |z| and z + 3R ∈ S}

Re(f (z)) = Re(exp[g(z + 3R) + z−2]),

= Re(exp[g0(z + 3R)] ⋅ exp[g(z + 3R) − g0(z + 3R) + z−2]),

= Re((z + 3R) ⋅ exp[g(z + 3R) − g0(z + 3R) + z−2]),

⩾ (Re(z) + 3R) ⋅ (1 − 4|z|−2) − |Im(z)| ⋅ 4|z|−2,
⩾ Re(z) + 3R − 8|z|−1 − 12R|z|−2,
⩾ Re(z) + 2R.
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Suppose that U is a Baker domain of a transcendental meromorphic function or tran-
scendental self-map f of ℂ∗ . We say that a set H ⊆ U is an absorbing set if f (H) ⊆ H 
and for every compact set K ⊆ U , there exists n ∈ ℕ such that f n(K) ∈ H . The existence 
of simply connected absorbing sets for Baker domains of transcendental entire functions 
was established by Cowen [8]. In [7], the authors study when a Baker domain of a tran-
scendental meromorphic functions admits a simply connected absorbing domain. Even 
though Baker domains can be doubly connected in ℂ∗ as we have seen in Theorem 1.4, 
it is easy to show that they always contain a simply connected absorbing domain.

Lemma 5.2 Let f be a transcendental self-map of ℂ∗ such that f has a Baker domain U. 
Then U contains a simply connected absorbing set.

Proof By [21, Lemma 3.5], we can find a suitable lift f̃  of f for which a component V of 
exp−1(U) is a Baker domain for f̃  . Then, it follows from the classification of Baker domains 
for transcendental entire functions that the Baker domain V of f̃  contains an absorbing 
set H′ [30, Theorem  5.1]. Then, the set H = exp(H�) is an absorbing set for U. Indeed, 
for every z ∈ U , there exists a point w ∈ exp−1(z) that lies in V and if n ∈ ℕ is such that 
f̃ n(w) ∈ H� , then f n(z) ∈ H , as we wanted to show.   ◻

Observe that this means that we can transfer the classification of Baker domains for 
transcendental entire functions (see, for example, [30, Section 5]) to transcendental self-
maps of ℂ∗ by using the fact that f and any of its lifts f̃  are conjugated on the absorbing 
set.

In the case that f has a doubly connected Baker domain, we can deduce some addi-
tional properties of f. Recall that given a transcendental self-map f of ℂ∗ , we define the 
index of f as the index (or winding number) of f (�) with respect to 0, where 𝛾 ⊆ ℂ

∗ 
is any positively oriented simple closed curve around 0. This quantity is a topological 
invariant of f. We prove that ind(f ) = 0 when f has a doubly connected Baker domain.

Lemma 5.3 Let f be a transcendental self-map of ℂ∗ such that f has a doubly connected 
Baker domain. Then ind(f ) = 0.

Fig. 5  The set S′ in the proof of Theorem 1.4, which is contained in a doubly connected Baker domain
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Proof Let U be the doubly connected Baker domain of f and suppose that H ⊆ U is a sim-
ply connected absorbing set. Suppose that 𝛾 ⊆ U is a positively oriented simple closed 
curve around 0. Let n ∈ ℕ be such that f n(𝛾) ⊆ H . Then,

and so ind(f ) = 0 as required.   ◻

We conclude the paper with the proof of Theorem 1.5, that relates the fact that f has a 
doubly connected Baker domain with the connectivity of the set I(f ) ∪ {0,∞}.

Proof of  Theorem  1.5 Let U be the doubly connected Baker domain of f and, by 
Lemma 5.2, let H ⊆ U be a simply connected absorbing set. By taking a suitable iterate 
of f, we may assume without loss of generality that U is invariant. Consider Hn to be the 
component of f −n(H) that contains H. Then, we can write

where Hn ⊆ Hn+1 for n ∈ ℕ . Since U is doubly connected, there exists n0 ∈ ℕ such that Hn 
is doubly connected and n0 is minimal with this property; note that the union of an increas-
ing sequence of open simply connected sets is simply connected. We claim that the closure 
Ĥn0+1

 necessarily contains both 0 and ∞ . Indeed, let 𝛾 ⊆ Hn0
 be a curve of index 1 around 0. 

Each of the components of the preimage of � in Hn0+1
 is a cuve � ′ that is unbounded in ℂ∗ . 

Observe that each of the complementary components of Hn0
 in U must contain a compo-

nent of the preimage of � , and so the closure of U in ℂ̂ contains {0,∞} . This proves the 
claim and the theorem.   ◻
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