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Abstract
We find a semi-algebraic description of the Minkowski sum A3,n of n copies of the twisted 
cubic segment {(t, t2, t3) ∣ −1 ≤ t ≤ 1} for each integer n ≥ 3 . These descriptions provide 
efficient membership tests for the sets A3,n . These membership tests in turn can be used to 
resolve some instances of the underdetermined matrix moment problem, which was formu-
lated by Michael Rubinstein and Peter Sarnak in order to study problems related to L-func-
tions and their zeros.

Keywords Semi-algebraic sets · Implicitization · Twisted cubic

Mathematics Subject Classification 14P10

1 Introduction

The zeros of L-functions are known to be able to describe various geometrical and arith-
metical objects and are the subjects of several conjectures (cf. [1–3]). For example, the 
Generalized Riemann Hypothesis conjectures that all non-trivial zeros of an L-function 
have real part 1∕2 and the Grand Simplicity Hypothesis asserts that the imaginary parts 
of zeros of Dirichlet L-functions are linearly independent over ℚ (cf. [5]). L-functions can 
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also be encountered in proofs of the Prime Number Theorem (cf. [6]) and in primality tests 
(cf. [4]).

Let � be an automorphic cusp form and let L(s, �) be its standard L-function. A conjec-
ture, which has been verified in many cases, states that under certain conditions the func-
tion L(s, �) has an analytic continuation Λ(s, �) that satisfies the functional equation

where N� is the conductor of � and W(�) is either 1 or −1 . The sign W(�) ∈ {±1} is called 
the root number of � . The problems of computing root numbers and counting the zeros of 
L-functions are related to the following problem with logN� ≈ n.

Problem  1.1 (The underdetermined matrix moment problem) Determine the possible 
sets of eigenvalues of a real orthogonal (2n + 1) × (2n + 1) matrix A given its first k ≤ n 
moments tr (A), tr (A2),… , tr (Ak).

This problem is the object of study in the paper [7] by Michael Rubinstein and Peter 
Sarnak. For the full background and relevance of the problem, we refer to this paper.

Let A be a real orthogonal (2n + 1) × (2n + 1) matrix. Then its eigenvalues are

for some �1,… , �n ∈ [0,�] . And conversely, any such sequence is the spectrum of a real 
orthogonal (2n + 1) × (2n + 1) matrix. We have

and cos(j�i) = Tj(cos(�i)) for all integers j ≥ 1 , where Tj is the j-th Chebyshev poly-
nomial of the first kind. The polynomial Tj(x) has degree j. So, given det(A) and 
tr (A), tr (A2),… , tr (Ak) for some integer k ≤ n , we can compute 

∑n

i=1
cos(�i)

j for each 
j ∈ {1,… , k} using Gaussian elimination on the coefficient vectors of T1,… , Tk . As 
det(A) ∈ {±1} only has finitely many possible values, we write ti = cos(�i) ∈ [−1, 1] and 
see that Problem 1.1 reduces to the following problem.

Problem 1.2 (The moment curve problem) Determine the set

given the real numbers x1,… , xk ∈ ℝ.

This problem was also formulated by Michael Rubinstein and Peter Sarnak. Note that 
given the first k power sums of t1,… , tn , we can compute all symmetric polynomial expres-
sions in t1,… , tn of degree at most k. So if k = n , then we are able to compute the coef-
ficients of the polynomial (x − t1)⋯ (x − tn) , which not only allows us to recover t1,… , tn , 
but also shows that t1,… , tn ∈ ℂ are unique up to reordering. So we are interested in the 
case where k < n . In this case, Michael Rubinstein and Peter Sarnak propose the following 
strategy: consider the set Ck ∶= {(t, t2,… , tk) ∣ −1 ≤ t ≤ 1} ⊆ ℝk and define

Λ(1 − s, �) = W(�)Ns−1∕2
� Λ(s, �),

det(A), ei�1 , e−i�1 ,… , ei�n , e−i�n

tr (Aj) = det(A)j + 2

n∑
i=1

cos(j�i)

{
(t1,… , tn) ∈ [−1, 1]n

|||||

n∑
i=1

t
j

i
= xj for all j ∈ {1,… , k}

}
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to be the Minkowski sum of n copies of Ck for each integer n ≥ 1 . Then we can determine 
the set of tuples (t1,… , tn) ∈ [−1, 1]n such that

for all j ∈ {1,… , k} recursively by first computing the set of tn ∈ [−1, 1] such that

In order to do the latter, we need an efficient membership test for the set Ak,n for all n > k . 
For k ∈ {1, 2} , this is easy. In general, one way to get an efficient membership test would 
be to describe the sets Ak,n implicitly using only equalities and inequalities involving  
polynomial expressions in x1,… , xk and unions—in other words, using semi-algebraic 
descriptions of the sets Ak,n . In this paper, we provide exactly such descriptions in the case 
that k = 3.

2  Main results

Let n ≥ 3 be a positive integer. Our first result describes the boundary of A3,n . We need this 
result in order to prove the Main Theorem. However, it also provides us with a piecewise 
parametrization, which is useful for rendering a visualization of A3,n . See Fig.  1 for an 
example.

Before we give the semi-algebraic description of A3,n , we first discuss the intui-
tion behind it. As Fig.  1 for n = 5 and the interactive 3D models for n = 3,… , 20 

Ak,n ∶= Ck + Ck +⋯ + Ck
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

n

n∑
i=1

t
j

i
= xj

(x1, x2,… , xk) − (tn, t
2
n
,… , tk

n
) ∈ Ak,n−1.

Fig. 1  A rendering of the semi-
algebraic set A3,5 . Interactive 3D 
models of A3,n are available at 
https ://maths ites.unibe .ch/bik/
A3n.html for n = 1,… , 20

(−5, 0,−5)

(5, 5, 5)

x

y

z

https://mathsites.unibe.ch/bik/A3n.html
https://mathsites.unibe.ch/bik/A3n.html
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demonstrate, the set A3,n looks like an oyster with an upper and lower shell forming the 
boundary. We call these upper and lower shells B+

n
 and B−

n
 respectively. These two shells 

have identical projections to the (x, y)-plane, which we denote by B♭
n
 , and both projec-

tion maps are one-to-one. This yields a first description of A3,n : for a point (x, y, z) ∈ ℝ3 
to lie in A3,n , it is necessary that (x, y) lies in B♭

n
 . When this is the case, the point lies in 

A3,n precisely when it lies below B+
n
 and above B−

n
.

Each of the two shells consists of n − 1 spiraling ridges. These are the sets C+
k,n−k−1

 
and C−

�,n−�−1
 defined below respectively. The projections of the ridges are easily visual-

ized on B♭
n
 . See Fig. 2. We can now reformulate our first description of A3,n in the fol-

lowing way: let (x, y, z) ∈ ℝ3 be a point such that (x, y) lies in B♭
n
 . Then (x, y) lies in the 

projections of C+
k,n−k−1

 and C−
�,n−�−1

 for some k,� . The point (x, y, z) lies in A3,n precisely 
when is lies below C+

k,n−k−1
 and above C−

�,n−�−1
.

Next, we think of (x,  y) as being fixed. This turns the conditions of lying below 
C
+
k,n−k−1

 and above C−
�,n−�−1

 into conditions on z. The former condition is equivalent to 
z being at most the biggest root of some parabola f = Az2 + Bz + C with A > 0 and can 
thus be expressed as f(z) being at most 0 or z is at most the value −B∕2A where f attains 
its minimum. See Fig. 3. Similarly, the latter condition is equivalent to z being at least 
the smallest root of a parabola f = Az2 + Bz + C with A > 0 and can be expressed as f(z) 
being at most 0 or z is at least the value −B∕2A where f attains its minimum. This is our 
description of A3,n . 

αn−2(−1, s)αn−1(−1, s)
π(C+

1,n−2)

π(C+
2,n−3)

. .
.

α
n−

2 (s, s)

α
n−

1 (s, 1)

π(C+
n−2,1)

α
n−

1 (s, s)

π(C+
n−1,0)

Fig. 2  The set B♭
n
= 𝜋(C+

1,n−2
) ∪⋯ ∪ 𝜋(C+

n−1,0
)

Fig. 3  Visualization of the condition z ≤ z+ in the proof of the Main Theorem. The parabola represents the 
function sending z to fk1(x − (n − k − 1), y − (n − k − 1), z − (n − k − 1))

0
θ z+ z
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In order to state our results precisely, we define the following sets:

• For all integers k,� ≥ 1 and a, b ≥ 0 , we take 

• We take B+
n
=
⋃n−1

k=1
C
+
k,n−k−1

. B−
n
=
⋃n−1

�=1
C
−
�,n−�−1

. 
• We let B♭

n
 be the set consisting of all points (x, y) ∈ ℝ2 such that ny ≥ x2 and 

y ≤ n − 1 + (x + 2i − (n − 1))2 for each i ∈ {0,… , n − 1}.

We also let � ∶ ℝ3
→ ℝ2 be the projection map sending (x, y, z) ↦ (x, y).

Theorem 2.1 Let (x, y) ∈ B
♭
n
 be a point and z ∈ ℝ be a real number.

(a) The boundary of A3,n is the union of B+
n
 and B−

n
.

(b) We have 𝜋(B+
n
) = 𝜋(B−

n
) = B

♭
n
.

(c) There exist unique numbers z+, z− ∈ ℝ such that (x, y, z+) ∈ B
+
n
 and (x, y, z−) ∈ B

−
n
 . 

We have z+ ≥ z− . Moreover, equality holds precisely when the point (x, y) lies on the 
boundary of B♭

n
.

(d) We have (x, y, z) ∈ A3,n if and only if z+ ≥ z ≥ z−.
(e) Every point on the boundary of A3,n can be written as

for some tuple (t1,… , tn) ∈ [−1, 1]n . The set {t1,… , tn}⧵{−1, 1} has at most two ele-
ments and the tuple (t1,… , tn) is unique up to permutation of its entries.

In Sect. 5, we find semi-algebraic descriptions of (in particular) C+
k,a

 and C−
�,b

 . To write 
these descriptions down, we define

for all positive integers k,� ≥ 1 . Note here that

C
+
k,a

=

⎧
⎪⎨⎪⎩
k

⎛⎜⎜⎝

s

s2

s3

⎞⎟⎟⎠
+

⎛⎜⎜⎝

t

t2

t3

⎞⎟⎟⎠

�����
− 1 ≤ s ≤ t ≤ 1

⎫
⎪⎬⎪⎭
+ a

⎛⎜⎜⎝

1

1

1

⎞⎟⎟⎠
,

C
−
�,b

=

⎧
⎪⎨⎪⎩

⎛
⎜⎜⎝

s

s2

s3

⎞
⎟⎟⎠
+ �

⎛
⎜⎜⎝

t

t2

t3

⎞
⎟⎟⎠

�����
− 1 ≤ s ≤ t ≤ 1

⎫
⎪⎬⎪⎭
+ b

⎛
⎜⎜⎝

−1

1

−1

⎞
⎟⎟⎠
.

p =

⎛⎜⎜⎝

t1
t2
1

t3
1

⎞⎟⎟⎠
+⋯ +

⎛⎜⎜⎝

tn
t2
n

t3
n

⎞⎟⎟⎠

Ak� = k�(k + �)2,

Bk�(x, y) = 2k�x(2x2 − 3(k + �)y),

Ck�(x, y) = x6 − 3(k + �)x4y + 3(k2 + k� + �
2)x2y2 − (k − �)2(k + �)y3,

Dk�(x, y) = (k + �)y − x2,

fk�(x, y, z) = Ak�z
2 + Bk�(x, y)z + Ck�(x, y)
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for all k,� . We then use these descriptions together with the previous theorem to prove our 
main result.

Take the following sets:

Main Theorem We have A3,n = X ∩ Y .

2.1  Structure of the paper

The first step of the proof is to show that the boundary of A3,n is contained in the union of 
B
+
n
 and B−

n
 . We start doing this by proving a result about representations of points on the 

boundary of A3,n in Sect. 3. In Sect. 4, we prove the statement for n = 4 and then conclude 
that it holds for all n ≥ 3 . After that, in Sect. 5, we find semi-algebraic descriptions for the 
components that make up the boundary. And then, in Sect. 6, we study the sets B+

n
 and B−

n
 

in more detail and prove Theorem 2.1 and the Main Theorem. We conclude the paper by 
discussing the problem for higher dimensions in Sect. 7.

3  Representations of points on the boundary of A3,n

The goal of this and the next section is to prove that the boundary of A3,n is contained in 
the union of B+

n
 and B−

n
 . We start with the following proposition.

Proposition 3.1 Let p ∈ ℝ3 be a point on the boundary of A3,n and write

for some tuple (t1,… , tn) ∈ [−1, 1]n . Then the set {t1,… , tn}⧵{−1, 1} has at most two 
elements.

B2
k�

− 4Ak�Ck� = 4k�(� − k)2D3
k�

X =

n−1�
k=1

⎧
⎪⎪⎨⎪⎪⎩

⎛
⎜⎜⎝

x

y

z

⎞
⎟⎟⎠
+ (n − k − 1)

⎛
⎜⎜⎝

1

1

1

⎞
⎟⎟⎠
∈ ℝ

3

���������

y ≤ k + (x + k)2,

y ≥ (k + 1)−1x2,

y ≤ 1 + k−1(x − 1)2 and

z ≤
−Bk1(x,y)

2Ak1

or fk1(x, y, z) ≤ 0

⎫
⎪⎪⎬⎪⎪⎭

,

Y =

n−1�
�=1

⎧⎪⎪⎨⎪⎪⎩

⎛⎜⎜⎝

x

y

z

⎞⎟⎟⎠
+ (n − � − 1)

⎛⎜⎜⎝

−1

1

−1

⎞⎟⎟⎠
∈ ℝ

3

���������

y ≤ � + (x − �)2,

y ≥ (� + 1)−1x2,

y ≤ 1 + �−1(x + 1)2 and

z ≥
−B1� (x,y)

2A1�

or f1�(x, y, z) ≤ 0

⎫⎪⎪⎬⎪⎪⎭

.

p =

⎛⎜⎜⎝

t1
t2
1

t3
1

⎞⎟⎟⎠
+⋯ +

⎛⎜⎜⎝

tn
t2
n

t3
n

⎞⎟⎟⎠



93Semi-algebraic properties of Minkowski sums of a twisted cubic segment

1 3

Proof Fix indices 1 ≤ i < j < k ≤ n and consider the map

Then we have p = �(ti, tj, tk) . The Jacobian of � at the point (ti, tj, tk) is

and hence has rank 3 if ti ≠ tj ≠ tk ≠ ti . So, if in addition ti, tj, tk ∉ {−1, 1} , then every 
point in a small neighborhood around p is in the image of � by the inverse function theo-
rem. As this cannot happen for a point p on the boundary of A3,n , it follows that the set 
{t1,… , tn}⧵{−1, 1} has at most two elements.   ◻

From the proposition, it immediately follows that the boundary of A3,n is contained 
in the union of the sets

over all integers k,� ≥ 1 and a, b ≥ 0 such that k + � + a + b = n . So to prove that the 
boundary of A3,n is contained in the union of B+

n
 and B−

n
 , it suffices to prove that every 

point that is contained in one of these sets and is not contained in B+
n
∪ B

−
n
 is also not con-

tained in the boundary of A3,n.

Lemma 3.2 Let k ≥ k′ ≥ 1 , � ≥ �′ ≥ 1 , a ≥ a′ ≥ 0 and b ≥ b′ ≥ 0 be integers. Take 
n = k + � + a + b , n� = k� + �� + a� + b� and −1 < s < t < 1 . Assume that

is not contained in the boundary of A3,n′ . Then

is not contained in the boundary of A3,n.

� ∶ [−1, 1]3 → ℝ
3,

(r, s, t) ↦

⎛
⎜⎜⎝

r

r2

r3

⎞
⎟⎟⎠
+

⎛
⎜⎜⎝

s

s2

s3

⎞
⎟⎟⎠
+

⎛
⎜⎜⎝

t

t2

t3

⎞
⎟⎟⎠
+

�
� ∈ {1,… , n}

� ∉ {i, j, k}

⎛
⎜⎜⎝

t�
t2
�

t3
�

⎞
⎟⎟⎠
.

⎛⎜⎜⎝

1 1 1

2ti 2tj 2tk
3t2

i
3t2

j
3t2

k

⎞⎟⎟⎠
=

⎛⎜⎜⎝

1

2

3

⎞⎟⎟⎠

⎛⎜⎜⎝

1 1 1

ti tj tk
t2
i

t2
j

t2
k

⎞⎟⎟⎠

⎧⎪⎨⎪⎩
k

⎛⎜⎜⎝

s

s2

s3

⎞⎟⎟⎠
+ �

⎛⎜⎜⎝

t

t2

t3

⎞⎟⎟⎠

�����
− 1 ≤ s ≤ t ≤ 1

⎫⎪⎬⎪⎭
+ a

⎛⎜⎜⎝

1

1

1

⎞⎟⎟⎠
+ b

⎛⎜⎜⎝

−1

1

−1

⎞⎟⎟⎠

p� = k�
⎛⎜⎜⎝

s

s2

s3

⎞
⎟⎟⎠
+ �

�
⎛⎜⎜⎝

t

t2

t3

⎞⎟⎟⎠
+ a�

⎛
⎜⎜⎝

1

1

1

⎞
⎟⎟⎠
+ b�

⎛⎜⎜⎝

−1

1

−1

⎞⎟⎟⎠

p = k

⎛⎜⎜⎝

s

s2

s3

⎞⎟⎟⎠
+ �

⎛⎜⎜⎝

t

t2

t3

⎞⎟⎟⎠
+ a

⎛⎜⎜⎝

1

1

1

⎞⎟⎟⎠
+ b

⎛⎜⎜⎝

−1

1

−1

⎞⎟⎟⎠
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Proof If the point p′ does not lie on the boundary of A3,n′ , then the point p cannot lie on the 
boundary of

and hence it can also not lie on the boundary of A3,n .   ◻

To prove that the boundary of A3,n is contained in the union of B+
n
 and B−

n
 , we need to 

eliminate the cases where one of the following conditions holds: 

(1) k,� ≥ 2,
(2) k = � = 1 and a, b > 0,
(3) k = 1 , � > 1 and a > 0,
(4) k > 1 , � = 1 and b > 0.

Using the previous lemma, we see that it suffices to eliminate the cases where

and hence we first consider the boundary of A3,n for n = 4.

4  The boundary of A3,4 versus the boundary of A3,n

In this section, we show that the boundary of A3,n is contained in B+
n
∪ B

−
n
 for n = 4 and con-

clude from this that the same statement holds for all n ≥ 3 . We need to show that no point of

is contained in the boundary of A3,4 for (k,�, a, b) = (1, 1, 1, 1), (1, 2, 1, 0) , (2,  1,  0,  1), 
(2, 2, 0, 0). We start with the case (k,�, a, b) = (2, 2, 0, 0).

Proposition 4.1 Take −1 < s < t < 1 . Then the point

does not lie on the boundary of A3,4.

Proof Consider the system of equations

with the additional conditions that −1 < t1, t2, t3, t4 < 1 are pairwise distinct. If this sys-
tem has a solution that satisfies the additional conditions, then the point p cannot lie on 
the boundary of A3,4 by Proposition 3.1. It turns out that such a solution (t1, t2, t3, t4) can 

A3,n� + (k − k�)(s, s2, s3) + (� − �
�)(t, t2, t3) + (a − a�)(1, 1, 1) + (b − b�)(−1, 1,−1)

(k,�, a, b) ∈ {(1, 1, 1, 1), (1, 2, 1, 0), (2, 1, 0, 1), (2, 2, 0, 0)}

⎧⎪⎨⎪⎩
k

⎛⎜⎜⎝

s

s2

s3

⎞⎟⎟⎠
+ �

⎛⎜⎜⎝

t

t2

t3

⎞⎟⎟⎠

�����
− 1 < s < t < 1

⎫⎪⎬⎪⎭
+ a

⎛⎜⎜⎝

1

1

1

⎞⎟⎟⎠
+ b

⎛⎜⎜⎝

−1

1

−1

⎞⎟⎟⎠

p = 2(s, s2, s3) + 2(t, t2, t3)

2s + 2t = t1 + t2 + t3 + t4,

2s2 + 2t2 = t2
1
+ t2

2
+ t2

3
+ t2

4
,

2s3 + 2t3 = t3
1
+ t3

2
+ t3

3
+ t3

4
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even be found when we assume that t1 + t2 = t3 + t4 . Indeed, let 0 ≠ � ≠ � ≠ 0 be such that 
|𝛼|, |𝛽| < 1 −

1

2
|s + t| and �2 + �2 = 1

2
(s − t)2 . Then

is a solution to the system equalities so that −1 < t1, t2, t3, t4 < 1 are pairwise distinct. One 
can check that |𝛼|, |𝛽| < 1 −

1

2
|s + t| and �2 + �2 = 1

2
(s − t)2 for �, � = ±

1

2
(s − t) . Here we 

use that |s − t| + |s + t| ≤ 2 ⋅max(|s|, |t|) < 2 . It follows that for any point (�, �) on the cir-
cle given by

that is sufficiently close to ( 1
2
(s − t),

1

2
(s − t)) also satisfies these conditions. So to conclude 

the proof, we simply let (�, �) be such a point with 0 ≠ � ≠ � ≠ 0 .   ◻

Next, we take care of the case (k,�, a, b) = (1, 1, 1, 1).

Lemma 4.2 Take 𝛿 > 0 . Then there exists an 𝜀 > 0 such that

for all −1 < s < t < 1 and 0 ≤ �′ ≤ � with 1 − t, t − s, s − (−1) ≥ �.

Proof For 0 ≤ 𝜆 ≪ 1 , consider (t1, t2, t3) = (s + �, t + � − �, 1 − �) where

Assuming that d ≥ 0 and −1 ≤ t1, t2, t3 ≤ 1 , one can check that

for ��(�) = 3�(1 − t − �)(1 − s − �) . Note that ��(0) = 0 . So to prove the lemma, it suf-
fices to find a c > 0 such that d ≥ 0 and −1 ≤ t1, t2, t3 ≤ 1 for all 0 ≤ � ≤ c and 𝜀�(c) > 0 , 
because we can then take � = ��(c) and have [0, 𝜀] ⊆ 𝜀�([0, c]).

Take c = min(𝛿, 𝛿2)∕1000 > 0 and assume that 0 ≤ � ≤ c . Then we have

and hence 
√
d ≥ t − s . We also have

since t − s, 1 − t ≤ 2 . Hence |�| ≤ �∕100 and therefore −1 ≤ t1, t2, t3 ≤ 1 . We have

Hence the statement of the lemma holds.   ◻

(t1, t2, t3, t4) =
(
s + t

2
+ �,

s + t

2
− �,

s + t

2
+ �,

s + t

2
− �

)

�2 + �2 =
1

2
(s − t)2

(s, s2, s3) + (t, t2, t3) + (1, 1, 1) − (0, 0, ��) ∈ A3,3

� = (� + (t − s) −
√
d)∕2,

d = (t − s)2 + 2(t − s)� + 4(1 − t)� − 3�2.

(s, s2, s3) + (t, t2, t3) + (1, 1, 1) − (0, 0, ��(�)) =

3∑
i=1

(ti, t
2
i
, t3
i
) ∈ A3,3

d ≥ (t − s)2 + 3�(2� − �) ≥ (t − s)2 ≥ 0

√
d − (t − s) =

d − (t − s)2√
d + (t − s)

≤
2(t − s)� + 4(1 − t)� − 3�2

2(t − s)
≤

12�

2�
≤ �∕100

𝜀�(c) = 3c(1 − t − c)(1 − s − c) ≥ 3c ⋅ 𝛿∕3 ⋅ 𝛿∕3 = c𝛿2∕3 > 0.
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Lemma 4.3 Take 𝛿 > 0 . Then there exists an 𝜀 > 0 such that

for all −1 < s < t < 1 and 0 ≤ �′ ≤ � with 1 − t, t − s, s − (−1) ≥ �.

Proof The proof is similar to the Proof of Lemma  4.2. For 0 ≤ 𝜆 ≪ 1 , one considers 
(t1, t2, t3) = (s − � + �, t − �,−1 + �) where

Assuming that d ≥ 0 and −1 ≤ t1, t2, t3 ≤ 1 , one can check that

for ��(�) = 3�(t − (−1) − �)(s − (−1) − �) . The other details are left to the reader.   ◻

Proposition 4.4 Take −1 < s < t < 1 . Then the point

does not lie on the boundary of A3,4.

Proof Set 𝛿 = min(1 − t, t − s, s − (−1))∕2 > 0 and let 𝜀 > 0 be the minimum of the two 
� ’s from Lemmas 4.2 and 4.3 . Write p = (x, y, z) . The Jacobian of the map

is invertible at (s, t). It follows that all points in ℝ2 in a small neighborhood of (x, y) are of 
the form

with (u, v) in a small neighborhood of (s, t) by the Inverse Function Theorem. By shrink-
ing this neighborhood, we may assume that −1 < u < v < 1 and 1 − v, v − u, u − (−1) ≥ � . 
Lemmas 4.2 and 4.3 now tell us that

for all (u, v) in the neighborhood and |𝜀′| < 𝜀 . Hence p is in the interior of A3,4 .   ◻

Finally, we take care of the cases (k,�, a, b) = (1, 2, 1, 0), (2, 1, 0, 1).

Lemma 4.5 Take 𝛿 > 0 . Then there exists an 𝜀 > 0 such that

for all −1 ≤ s < t < 1 and 0 ≤ �′ ≤ � with 1 − t, t − s ≥ �.

(s, s2, s3) + (t, t2, t3) + (−1, 1,−1) + (0, 0, ��) ∈ A3,3

� = (� + (t − s) −
√
d)∕2,

d = (t − s)2 + 2(t − s)� + 4(s − (−1))� − 3�2.

(s, s2, s3) + (t, t2, t3) + (−1, 1,−1) + (0, 0, ��(�)) =

3∑
i=1

(ti, t
2
i
, t3
i
) ∈ A3,3

p = (s, s2, s3) + (t, t2, t3) + (1, 1, 1) + (−1, 1,−1)

(u, v) ↦ (u, u2) + (v, v2) + (1, 1) + (−1, 1)

(u, u2) + (v, v2) + (1, 1) + (−1, 1)

(u, u2, u3) + (v, v2, v3) + (1, 1, 1) + (−1, 1,−1) + (0, 0, ��) ∈ A3,4

(s, s2, s3) + 2(t, t2, t3) + (0, 0, ��) ∈ A3,3
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Proof The proof is similar to the Proof of Lemma 4.2. For 0 ≤ 𝜆 ≪ 1 , one considers

where � =
√
2(t − s)� − 3�2 and finds that

for ��(�) = 6(t − s)2� − 24(t − s)�2 + 24�3 . The other details are left to the reader.   ◻

Lemma 4.6 Take 𝛿 > 0 . Then there exists an 𝜀 > 0 such that

for all −1 < s < t ≤ 1 and 0 ≤ �′ ≤ � with t − s, s − (−1) ≥ �.

Proof The proof is similar to the Proof of Lemma 4.2. For 0 ≤ 𝜆 ≪ 1 , one considers

where � =
√
2(t − s)� − 3�2 and finds that

for ��(�) = 6(t − s)2� − 24(t − s)�2 + 24�3 . The other details are left to the reader.   ◻

Proposition 4.7 Take −1 < s < t < 1 . Then the point

does not lie on the boundary of A3,4.

Proof The proof is similar to the proof of Proposition 4.4. For (u, v) in a small neighbor-
hood of (s, t), we find points in A3,4 above

using Lemma 4.5 and we find points below using Lemma 4.6. Note here that in the latter 
case the role of the pair (s, t) from Lemma 4.6 is played by (v, 1).   ◻

Proposition 4.8 Take −1 < s < t < 1 . Then the point

does not lie on the boundary of A3,4.

Proof The proof is similar to the proof of Proposition 4.7. For (u, v) in a small neighbor-
hood of (s, t), we find points in A3,4 above

(t1, t2, t3) = (s + 2�, t − � + �, t − � − �)

(s, s2, s3) + 2(t, t2, t3) + (0, 0, ��(�)) =

3∑
i=1

(ti, t
2
i
, t3
i
) ∈ A3,3.

2(s, s2, s3) + (t, t2, t3) − (0, 0, ��) ∈ A3,3

(t1, t2, t3) = (s + � + �, s + � − �, t − 2�)

2(s, s2, s3) + (t, t2, t3) − (0, 0, ��(�)) =

3∑
i=1

(ti, t
2
i
, t3
i
) ∈ A3,3.

p = (s, s2, s3) + 2(t, t2, t3) + (1, 1, 1)

(u, u2, u3) + 2(v, v2, v3) + (1, 1, 1)

p = 2(s, s2, s3) + (t, t2, t3) + (−1, 1,−1)

2(u, u2, u3) + (v, v2, v3) + (−1, 1,−1)
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using Lemma 4.5 and we find points below using Lemma 4.6. Note here that in the former 
case the role of the pair (s, t) from Lemma 4.5 is played by (−1, u) .   ◻

By combining Propositions 3.1, 4.1, 4.4, 4.7 and 4.8 , we see that the boundary of A3,n 
is contained in B+

n
∪ B

−
n
 for n = 4 . We now use this knowledge to prove the same for n > 4.

Theorem 4.9 The boundary of A3,n is contained in the union of B+
n
 and B−

n
.

Proof For n = 3 , this follows directly from Proposition 3.1. For n = 4 , we additionally use 
Propositions 4.1, 4.4, 4.7 and 4.8 . For n > 4 , we need to show that points of the form

with −1 < s < t < 1 , k,� ≥ 1 and a, b ≥ 0 are not on the boundary of A3,n when one of the 
following conditions holds: 

(1) k,� ≥ 2,
(2) k = � = 1 and a, b > 0,
(3) k = 1 , � > 1 and a > 0,
(4) k > 1 , � = 1 and b > 0.

This is done by combining Lemma 3.2 with Propositions 4.1, 4.4, 4.7 and 4.8 .   ◻

5  The semi‑algebraic components of the boundary of A3,n

Consider the sets

for k,� ≥ 1 . Recall that

and B2
k�

− 4Ak�Ck� = 4k�(� − k)2D3
k�

 from Sect. 2. Our goal for this section is to prove the 
following proposition and theorem.

k

⎛⎜⎜⎝

s

s2

s3

⎞⎟⎟⎠
+ �

⎛⎜⎜⎝

t

t2

t3

⎞⎟⎟⎠
+ a

⎛⎜⎜⎝

1

1

1

⎞⎟⎟⎠
+ b

⎛⎜⎜⎝

−1

1

−1

⎞⎟⎟⎠

⎧⎪⎨⎪⎩
k

⎛⎜⎜⎝

s

s2

s3

⎞⎟⎟⎠
+ �

⎛⎜⎜⎝

t

t2

t3

⎞⎟⎟⎠

�����
− 1 ≤ s ≤ t ≤ 1

⎫⎪⎬⎪⎭
+ a

⎛⎜⎜⎝

1

1

1

⎞⎟⎟⎠
+ b

⎛⎜⎜⎝

−1

1

−1

⎞⎟⎟⎠

Ak� = k�(k + �)2,

Bk�(x, y) = 2k�x(2x2 − 3(k + �)y),

Ck�(x, y) = x6 − 3(k + �)x4y + 3(k2 + k� + �
2)x2y2 − (k − �)2(k + �)y3,

Dk�(x, y) = (k + �)y − x2,

fk�(x, y, z) = Ak�z
2 + Bk�(x, y)z + Ck�(x, y)
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Proposition 5.1 If k = � , then

decomposes the polynomial fk� into irreducible factors over ℚ . If k ≠ � , then fk� is irreduc-
ible over ℂ.

Theorem 5.2 The set

consists of all points

such that fk�(x, y, z) = 0 , the inequalities

hold and in addition the following requirements are met:

• If k < � , then the inequality z ≤ −Bk� (x,y)

2Ak�

 must hold.

• If k = � , then equation z = −Bk� (x,y)

2Ak�

 must hold.

• If k > � , then the inequality z ≥ −Bk� (x,y)

2Ak�

 must hold.

For the remainder of the section, we fix integers k,� ≥ 1 and we write

in order to simplify the used notation.

Proof of Proposition 5.1 The first statement is easy. Assume that k ≠ � . To prove that f is 
irreducible under this assumption, note that f is homogeneous with respect to the grading 
where deg(x) = 1 , deg(y) = 2 and deg(z) = 3 . It follows that if f is reducible, then

for some a, b, c, d. However, this would imply that the coefficient

of C at y3 equals 0. This is a contradiction. So f is irreducible.   ◻

Proof of Theorem 5.2 Note that we have x, z ∈ [−(k + �), (k + �)] and y ∈ [0, (k + �)] for 
all points

fk�(x, y, z) = Ak�

(
z +

Bk�(x, y)

2Ak�

)2

⎧⎪⎨⎪⎩
k

⎛⎜⎜⎝

s

s2

s3

⎞⎟⎟⎠
+ �

⎛⎜⎜⎝

t

t2

t3

⎞⎟⎟⎠

�����
− 1 ≤ s ≤ t ≤ 1

⎫⎪⎬⎪⎭

(x, y, z) ∈ [−(k + �), (k + �)] × [0, (k + �)] × [−(k + �), (k + �)]

0 ≤ k�Dk�(x, y) ≤ k2(k + � + x)2,�2(k + � − x)2

A = Ak� ,B = Bk� ,C = Ck� ,D = Dk� , f = fk�

Az2 + B(x, y)z + C(x, y) = f = A(z + ax3 + bxy)(z + cx3 + dxy)

−(k − �)2(k + �)
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So we let

be a point and find out when it is contained in

We start by looking at the first two coordinates. So we solve the system of equations

under the conditions that −1 ≤ s ≤ t ≤ 1 . Solving the system, we find that

So we need to assume that k�D(x, y) ≥ 0 . Adding the condition s ≤ t , we get

and so the conditions −1 ≤ s and t ≤ 1 translate to

As x ∈ [−(k + �), (k + �)] , these conditions are equivalent to

Now, also consider the third coordinate z = ks3 + �t3 . One can check that f (x, y, z) = 0 . So 
if k = � , then we have

by Proposition  5.1 and we are done. So assume that k ≠ � . Then there are a priori two 
possibilities for z given x and y. However, given s and t, it becomes clear that only one 
possibility remains. So we just need to find an inequality that selects the correct root of 
f (x, y,−) . One can check that

⎛⎜⎜⎝

x

y

z

⎞⎟⎟⎠
∈

⎧
⎪⎨⎪⎩
k

⎛⎜⎜⎝

s

s2

s3

⎞⎟⎟⎠
+ �

⎛⎜⎜⎝

t

t2

t3

⎞⎟⎟⎠

�����
− 1 ≤ s ≤ t ≤ 1

⎫
⎪⎬⎪⎭
.

(x, y, z) ∈ [−(k + �), (k + �)] × [0, (k + �)] × [−(k + �), (k + �)]

⎧⎪⎨⎪⎩
k

⎛⎜⎜⎝

s

s2

s3

⎞⎟⎟⎠
+ �

⎛⎜⎜⎝

t

t2

t3

⎞⎟⎟⎠

�����
− 1 ≤ s ≤ t ≤ 1

⎫⎪⎬⎪⎭
.

x = ks + �t,

y = ks2 + �t2

(ks,�t) =

�
kx ±

√
k�D(x, y)

k + �
,
�x ∓

√
k�D(x, y)

k + �

�
.

(ks,�t) =

�
kx −

√
k�D(x, y)

k + �
,
�x +

√
k�D(x, y)

k + �

�

√
k�D(x, y) ≤ k(k + � + x),�(k + � − x).

k�D(x, y) ≤ k2(k + � + x)2,�2(k + � − x)2.

z =
−B(x, y)

2A

k2�2(k + �)3
�
z −

−B(x, y)

2A

�
= (k2 − �

2)
√
k�D(x, y)

3
.
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So we find that

when k < � and

when k > � . This concludes the proof.   ◻

6  The sets B+
n

 and B−
n

We are now ready to prove Theorem 2.1 and the Main Theorem. Let n ≥ 3 be an integer. 
Recall the following notation from Sect. 2.

• We have 

 for all integers k,� ≥ 1 and a, b ≥ 0.
• We have B+

n
=
⋃n−1

k=1
C
+
k,n−k−1

 and B−
n
=
⋃n−1

�=1
C
−
�,n−�−1

.
• The set B♭

n
 consists of all points (x, y) ∈ ℝ2 such that ny ≥ x2 and 

 for each i ∈ {0,… , n − 1}.
• The projection map � ∶ ℝ3

→ ℝ2 sends (x, y, z) ↦ (x, y).

We start by listing some properties of B+
n
 and B−

n
.

Proposition 6.1 Let 1 ≤ k ≤ n − 1 be an integer.

(a) The map

is a bijection.

z ≤
−B(x, y)

2A

z ≥
−B(x, y)

2A

C
+
k,a

=

⎧
⎪⎨⎪⎩
k

⎛⎜⎜⎝

s

s2

s3

⎞⎟⎟⎠
+

⎛⎜⎜⎝

t

t2

t3

⎞⎟⎟⎠

�����
− 1 ≤ s ≤ t ≤ 1

⎫
⎪⎬⎪⎭
+ a

⎛⎜⎜⎝

1

1

1

⎞⎟⎟⎠
,

C
−
�,b

=

⎧
⎪⎨⎪⎩

⎛
⎜⎜⎝

s

s2

s3

⎞
⎟⎟⎠
+ �

⎛
⎜⎜⎝

t

t2

t3

⎞
⎟⎟⎠

�����
− 1 ≤ s ≤ t ≤ 1

⎫
⎪⎬⎪⎭
+ b

⎛
⎜⎜⎝

−1

1

−1

⎞⎟⎟⎠

y ≤ n − 1 + (x + 2i − (n − 1))2

�k ∶ {(s, t)| − 1 ≤ s ≤ t ≤ 1} → �(C+
k,n−k−1

),

(s, t) ↦ k

(
s

s2

)
+

(
t

t2

)
+ (n − k − 1)

(
1

1

)
,
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(b) The boundary of �(C+
k,n−k−1

) is the union of the following three sets:

(c) We have 𝜋(B+
n
) = B

♭
n
.

(d) The projection map

is a bijection.

Proof To see (a), note that the map clearly is surjective. For injectivity, one has to solve 
�k(s, t) = (x, y) for s, t under the condition that s ≤ t . This yields at most one solution for 
all (x, y). For (b), note that the Jacobian of the map �k has full rank at all points (s, t) with 
−1 < t < s < 1 . From (b) follows that the boundary of �(B+

n
) is the union of

and

for i = 0,… , n − 1 . So the set itself is indeed given by the inequalities defining B♭
n
 . Finally, 

to see (d), it suffices to note that �(C+
k,n−k−1

∩ C
+
k+1,n−k

) is equal to

for k = 1,… , n − 2 .   ◻

Proposition 6.2 Let 1 ≤ � ≤ n − 1 be an integer.

(a) The map

is a bijection.
(b) The boundary of �(C−

�,n−�−1
) is the union of the following three sets:

(c) We have 𝜋(B−
n
) = B

♭
n
.

(d) The projection map

{�k(−1, t) ∣ −1 ≤ t ≤ 1}, {�k(s, s) ∣ −1 ≤ s ≤ 1}, {�k(s, 1) ∣ −1 ≤ s ≤ 1}.

B
+
n
→ B

♭
n
,

(x, y, z) ↦ (x, y),

{
n

(
s

s2

) |||||
− 1 ≤ s ≤ 1

}

{
i

(
−1

1

)
+

(
t

t2

)
+ (n − i − 1)

(
1

1

) |||||
− 1 ≤ t ≤ 1

}

{
(k + 1)

(
s

s2

)
+ (n − k − 1)

(
1

1

) |||||
− 1 ≤ s ≤ 1

}

�� ∶ {(s, t) ∣ −1 ≤ s ≤ t ≤ 1} → �(C−
�,n−�−1

),

(s, t) ↦

(
s

s2

)
+ �

(
t

t2

)
+ (n − � − 1)

(
−1

1

)
,

{��(−1, t) ∣ −1 ≤ t ≤ 1}, {��(t, t) ∣ −1 ≤ t ≤ 1}, {��(s, 1) ∣ −1 ≤ s ≤ 1}.
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is a bijection.

Proof The proofs are similar to those of Proposition 6.1.   ◻

The decomposition of B♭
n
 as a union of the projections of C+

1,n−2
,… , C+

n−1,0
 is visual-

ized in Fig.  2. We note that the decomposition of B♭
n
 as a union of the projections of 

C
−
1,n−2

,… , C−
n−1,0

 looks similar but is mirrored along the vertical axis.
We can now prove Theorem 2.1.

Proof of Theorem  2.1 We already know that (b) holds by Propositions  6.1 and 6.2 . We 
know that B+

n
,B−

n
⊆ A3,n , we know that the boundary of A3,n is contained in B+

n
∪ B

−
n
 by 

Theorem 4.9 and we know that the projection maps

are bijections by Propositions  6.1 and 6.2 . Together these statements imply (a). Let 
(x, y) ∈ B

♭
n
 be a point. Then there exist unique numbers z+, z− ∈ ℝ such that (x, y, z+) ∈ B

+
n
 

and (x, y, z−) ∈ B
−
n
 by Propositions  6.1 and 6.2 . Our goal is to prove that z+ ≥ z− with 

equality if and only if (x, y) lies on the boundary of B♭
n
 . Let z ∈ ℝ be a real number. From 

(a) and (b) it is clear that (x, y, z) ∈ A3,n if and only if z lies between z+ and z− . So z+ = z− 
when (x, y) lies on the boundary of B♭

n
 . And, to prove that z+ > z− otherwise, it suffices to 

show that there exists a z ∈ ℝ such that z < z+ and (x, y, z) ∈ A3,n . Now, let

be a point where −1 ≤ s ≤ t ≤ 1 and recall Lemmas  4.2 and 4.6 . If −1 < s < t < 1 and 
k = 1 , then there is a point in A3,3 below

and hence a point in A3,n below p. If −1 < s < t ≤ 1 and k ≥ 2 , then there is a point in A3,3 
below

and hence a point in A3,n below p. Taking into account how the sets C+
k,n−k−1

 intersect, we 
find that there is a point in A3,n below p unless s = −1 , (k, t) = (1, 1) or (s, k) = (t, n − 1) , 
which are exactly the cases where p projects to the boundary of B♭

n
 . This proves (c) and (d). 

Finally, using (a), (c), and Propositions 6.1 and 6.2 , we see that the boundary of A3,n is the 
disjoint union of several (but not all) sets of the form

B
−
n
→ B

♭
n
,

(x, y, z) ↦ (x, y),

B
+
n
→ B

♭
n
,

(x, y, z) ↦ (x, y),
and

B
−
n
→ B

♭
n
,

(x, y, z) ↦ (x, y),

p = k
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s

s2

s3
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+

⎛⎜⎜⎝

t

t2

t3

⎞⎟⎟⎠
+ (n − k − 1)

⎛⎜⎜⎝

1

1

1

⎞⎟⎟⎠
∈ C

+
k,n−k−1

⎛
⎜⎜⎝

s

s2

s3

⎞⎟⎟⎠
+

⎛⎜⎜⎝

t

t2

t3

⎞
⎟⎟⎠
+

⎛
⎜⎜⎝

1

1

1

⎞
⎟⎟⎠

2

⎛⎜⎜⎝
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+
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where k,�, a, b ≥ 0 have sum n. Given a point of the boundary, the number s is unique 
when k > 0 and the number t is unique when � > 0 . Together with Proposition 3.1, this 
shows (e).   ◻

Finally, we prove the Main Theorem.

Proof of the Main Theorem Fix a point (x, y, z) ∈ ℝ3 . The following conditions are 
equivalent: 

(a) We have (x, y) ∈ B
♭
n
.

(b) We have (x, y) ∈ �(C+
k,n−k−1

) for some k ∈ {1,… , n − 1}.
(c) We have (x, y) ∈ �(C−

�,n−�−1
) for some � ∈ {1,… , n − 1}.

Take k,� ∈ {1,… , n − 1} . Then, using Proposition 6.1, we see that

and we similarly get

using Proposition  6.2. Assume that (x, y) ∈ B
♭
n
 and that k,� are as in (b) and (c). Using 

Theorem 2.1(d), we need to find conditions that express that z− ≤ z ≤ z+ . We have

by Theorem 5.2. So z ≤ z+ when

or

Note here that the polynomial fk1(x, y,−) has degree 2 in z, that its leading coefficient is 
positive, that z+ is its highest root and that it attains its minimum at � . This is visualized in 
Fig. 3. We also have

⎧
⎪⎨⎪⎩
k

⎛⎜⎜⎝

s

s2

s3

⎞⎟⎟⎠
+ �

⎛⎜⎜⎝

t

t2

t3

⎞⎟⎟⎠

�����
− 1 < s < t < 1

⎫
⎪⎬⎪⎭
+ a

⎛⎜⎜⎝

1

1

1

⎞⎟⎟⎠
+ b

⎛⎜⎜⎝

−1

1

−1

⎞⎟⎟⎠

�(C+
k,n−k−1

) =

⎧⎪⎨⎪⎩

�
x

y

�
∈ ℝ

2

������

y ≤ n − 1 + (x + k − (n − k − 1))2

y ≥ n − k − 1 + (k + 1)−1(x − (n − k − 1))2

y ≤ n − k + k−1(x − (n − k))2

⎫⎪⎬⎪⎭

�(C−
�,n−�−1

) =

⎧⎪⎨⎪⎩

�
x

y

�
∈ ℝ

2

������

y ≤ n − 1 + (x − � + (n − � − 1))2

y ≥ n − � − 1 + (� + 1)−1(x + (n − � − 1))2

y ≤ n − � + �−1(x + (n − �))2

⎫⎪⎬⎪⎭

fk1(x − (n − k − 1), y − (n − k − 1), z+ − (n − k − 1)) = 0,

(n − k − 1) +
−Bk1(x − (n − k − 1), y − (n − k − 1))

2Ak1

≤ z+

z ≤ (n − k − 1) +
−Bk1(x − (n − k − 1), y − (n − k − 1))

2Ak1

=∶ �

fk1(x − (n − k − 1), y − (n − k − 1), z − (n − k − 1)) ≤ 0.
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by Theorem 5.2 and from this we conclude that z ≥ z− if and only if

or

This leads to the semi-algebraic description of the Main Theorem.   ◻

7  Higher dimensions

The Main Theorem provides a semi-algebraic description of the set A3,n for each inte-
ger n ≥ 3 . So, a natural question to ask is: can we use the same proof strategy to find a 
semi-algebraic description of the sets Ak,n for k > 3 ? At the moment, there still are some 
obstacles to doing so, which we discuss in this section.

Following the same strategy as for k = 3 , we would again start by trying to find a 
description of the boundary of Ak,n . One can check that the statement and proof of Propo-
sition 3.1 carry over in a straightforward fashion for k > 3 , which yields a superset of the 
boundary. After this, one would again need to exclude points from this superset when they 
do not in fact lie on the boundary. In view of Theorem 2.1(d), proving that a point in A3,n 
does not lie on the boundary can be done by showing that there are points in A3,n above and 
below it. So an analogue of Theorem 2.1(d) for higher dimensions would be very useful. 
This leads to the following conjecture, which holds for k ≤ 3.

Conjecture 7.1 Let (x1,… , xk) be a point in Ak,n . Then the set

is a closed interval.

Another approach might be through a generalization of Theorem 2.1(e). The boundary 
of Ak,n is contained in the union of the sets

over all integers �1,… ,�k−1, a, b ≥ 0 that sum to n. The uniqueness of the representation 
of each point on the boundary would imply that the boundary of Ak,n is a disjoint union of 

f1�(x + (n − � − 1), y − (n − � − 1), z− + (n − � − 1)) = 0,

−(n − � − 1) +
−B1�(x + (n − � − 1), y − (n − � − 1))

2A1�

≥ z−

z ≥ −(n − � − 1) +
−B1�(x + (n − � − 1), y − (n − � − 1))

2A1�

f1�(x + (n − � − 1), y − (n − � − 1), z + (n − � − 1)) ≤ 0.

{y ∈ ℝ|(x1,… , xk−1, y) ∈ Ak,n}
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−1

(−1)2

⋮

(−1)k

⎞⎟⎟⎟⎠
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some of these sets. It would also be a tool to eliminate some of these sets from considera-
tion. This leads to our second conjecture, which also holds for k ≤ 3.

Conjecture 7.2 Every point on the boundary of Ak,n can be written as

for some tuple (t1,… , tn) ∈ [−1, 1]n . The set {t1,… , tn}⧵{−1, 1} has at most k − 1 elements 
and the tuple (t1,… , tn) is unique up to permutation of its entries.

Apart from finding the boundary of Ak,n , there is also the problem of describing it semi-
algebraically. When one would attempt this, the main obstacle to overcome is, in our opin-
ion, finding an analogue of Theorem 5.2. For k = 4 , this means we need to solve the fol-
lowing problem.

Problem 7.3 Determine a semi-algebraic description of the set

given the integers �1,�2,�3 ≥ 1.

These sets are expected to be the building blocks for the boundary of A4,n , so a solu-
tion to this problem seems essential if we want to apply the same approach we used for 
A3,n . Using elimination theory, we find that the Zariski closure of this set is a hypersurface 
defined by a single polynomial f�1,�2,�3

(x1, x2, x3, x4) . This polynomial is homogeneous of 
degree 24 with respect to the grading where deg(xi) = i and has 169 terms. Its coefficients 
are symmetric polynomials in �1,�2,�3 of degree up to 18. When #{�1,�2,�3} ≤ 2 , the 
polynomial is a square. And, we have

This suggests that we should first solve

for t1, t2, t3 and then solve f�1,�2,�3
(x1, x2, x3, x4) = 0 for x4 . As this only involves solving 

polynomial equations of degree ≤ 4 , this is theoretically doable. The problem however is 
to express the inequalities −1 ≤ t1 ≤ t2 ≤ t3 ≤ 1 as polynomial inequalities in x1, x2, x3, x4.

As an example, consider the case �1 = �2 = �3 = 1 . In this case, the set is contained in 
the hypersurface given by the equation

⎛
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which allows to eliminate the coordinate x4 . So here, the problem consists of finding a 
semi-algebraic description of the set

given x1, x2, x3 ∈ ℝ.
If we can solve Problem 7.3, we still need to find analogues for the results in Sect. 6. 

These results rely on our complete understanding of the roots and extrema of parabolas. So 
to generalize these results, we probably need a similar level of understanding in the cases 
of cubics and quartics, which for now seems to be out of reach.
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