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Abstract We show that the multivariate generating function of appropriately normal-
ized moments of a measure with homogeneous polynomial density supported on a
compact polytope P ⊂ R

d is a rational function. Its denominator is the product of
linear forms dual to the vertices of P raised to the power equal to the degree of the
density function. Using this, we solve the inverse moment problem for the set of, not
necessarily convex, polytopes having a given set S of vertices. Under a weak non-
degeneracy assumption we also show that the uniform measure supported on any such
polytope is a linear combination of uniform measures supported on simplices with
vertices in S.
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1 Introduction

The initial motivation for the present paper came from proposed in [20] efficient
algorithm recovering an arbitrary convex polytope fromaxialmoments of a polynomial
measure supported on it. This algorithm is based on the formulas for the axial moments
of polytopes found over 20 years ago independently by Brion, Lawrence, Khovanskii,
Pukhlikov, and Barvinok [7,12,22,27], see [8,9] for accessible explanation. In [20]
the authors made an essential, although implicit, use of a univariate rational generating
function for appropriately normalized axialmoments. Here amultivariate, and explicit,
analog of the latter function is developed. It turns out it provides a very convenient
encoding of non-convex polytopes, which is of independent interest. E.g. it leads
to a natural definition of vertices of such non-convex polytopes, which have similar
properties to vertices of convex polytopes. It also allows to find the exact solutions of
a class of inverse moment problems on non-convex polytopes.

After the first version [19] of this text was released in 2012, it was pointed out to
us by Prof. Michèle Vergne that Laplace transform techniques developed for studying
hyperplane arrangements in [13] simplify and strengthen a number of our results. We
discuss this in the Sect. 5.1, while leaving full details for another publication.

Notation 1 In what follows we shall always assume that R
d is endowed with a

fixed coordinate system (x1, . . . , xd), orthonormal with respect to the standard scalar
product 〈·, ·〉. Let μ be a finite complex-valued Borel measure in R

d . (For standard
measure-theoretic notions we follow [29].) Given a multiindex I = (i1, . . . , id), let
xI be the shorthand of the monomial xi1

1 . . . xid
d and |I | the shorthand for i1 +· · ·+ id .

For any multiindex I , define the moment m I (μ) of μ as

m I (μ) :=
∫
Rd

xi1
1 xi2

2 . . . xid
d dμ(x1, x2, . . . , xd) =

∫
Rd

xI dμ(x). (1.1)

Define the normalized moment generating function Fμ(u) = Fμ(u1, . . . , ud) of μ

by

Fμ(u) :=
∑

I :=(i1,...,id )≥0

(|I | + d)!
i1! · · · id ! m I (μ)uI , where uI = ui1

1 . . . uid
d . (1.2)

Note that Fμ(u) admits the integral representation

Fμ(u) = d!
∫
Rd

dμ(x)
(1 − 〈x,u〉)d+1 , (1.3)

which is a special case of a Fantappiè transformation. For details on the latter, see e.g.
[5, Chapter 3]. A proof of (1.3) will be given at the end of Sect. 2; see also Remark 10.
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Given any complex-valued finite measure μ and any degree δ homogeneous d-
variate polynomial ρ, it is convenient to define the (re)normalized moment generating
function Fρ

μ (u) for the measure ρμ, where by definition,
∫
Rd f d(ρμ) = ∫

Rd fρdμ,
in such a way that it can be obtained from Fμ(u) by application of the differential
operator ρ

(
∂
∂u

)
. Namely, set

Fρ
μ (u) :=

∑
I :=(i1,...,id )≥0

(|I | + d + δ)!
i1! · · · id ! m I (ρμ)uI . (1.4)

Note that Fρ
μ (u) �= Fρμ(u) for non-constant ρ. However, they are also connected, by

an explicit differential operator as follows.

Theorem 1 For any complex-valued finite measure μ and any homogeneous polyno-
mial ρ of degree δ,

Fρ
μ (u) =

d+δ−1∏
�=d

(∑
k

uk
∂

∂uk
+ �

)
◦ Fρμ(u) (1.5)

= ρ

(
∂

∂u

)
◦ Fμ(u) (1.6)

= (d + δ)!
∫
Rd

ρ(x)dμ(x)
(1 − 〈x,u〉)d+δ+1 . (1.7)

Here and in what follows ◦ denotes the application of a differential operator to a
function. The proof of the latter result is basically an exercise in manipulating formal
power series, and we do not claim its novelty. For the sake of completeness, we include
a proof in Sect. 2.

Results on convex polytopes

Afinite set S ⊂ R
d is called spanning if it is not contained in any (affine) hyperplane in

R
d . (Obviously, card(S) ≥ d +1.) As usual, by a (compact, convex) polytope P ⊂ R

d

we mean the convex hull of a finite spanning set in R
d . The set of vertices of a convex

polytope P is the inclusion-minimal finite set with convex hull P . A d-simplex in R
d

is the convex hull of a spanning (d + 1)-tuple of points. By an open polytope (resp.
simplex) we mean the set of interior points of a compact polytope (resp. simplex).

Given a convex polytope P let V = (v1, . . . , vN ) denote the set of its ver-
tices. Assume that P is simple, i.e. each v ∈ V has exactly d incident edges vve1 ,
…, vved . Set wk(v) := vek − v, for 1 ≤ k ≤ d. The non-negative real span
Kv of w1(v),…, wd(v) is called the tangent cone of P at v. For each Kv, define
| det Kv| = | det(w1(v), . . . , wd(v))| to be the volume of the parallelepiped formed
by w1(v), . . . , wd(v).

Given a bounded domain � ⊂ R
d , we call the measure

μ� = χ�dx1dx2 . . . dxd ,
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where χ� is the characteristic function of �, the standard measure of �.
For a simple convex polytope P , we have the following explicit representation of

FμP (u).

Theorem 2 For an arbitrary simple convex polytope P ,

FP (u) := FμP (u) = (−1)d
∑
v∈V

〈v,u〉d | det Kv|∏d
j=1〈w j (v),u〉 · 1

1 − 〈v,u〉 (1.8)

= (−1)d
∑
v∈V

| det Kv|∏d
j=1〈w j (v),u〉 · 1

1 − 〈v,u〉 . (1.9)

Remark 1 Instead of the explicit choice of wk(v) for v ∈ V made above, we can take
any fixed set of non-zero vectors w1(v), . . . , wd(v), spanning the tangent cone of v in
P . This does not affect the validity of (1.8) and (1.9).

Theorem 2 implies

Corollary 3 Let � = conv(V) ⊂ R
d be an arbitrary d-simplex. Then

F�(u) = d!Vol(�)∏
v∈V

(1 − 〈v,u〉) . (1.10)

Remark 2 As we discovered after we proved the above results, statements similar to
Corollary 3 in the complex setting can be found in [5, Sect. 3.5] and in particular [5,
Corollary 3.5.6].

A variation of (1.10) also appears in [6], in the context of designing an efficient
procedure for integration of polynomials over simplices.

Notice that an arbitrary convex polytope P admits a triangulation which only uses
the existing vertices of P , see e.g. [9, Theorem 3.1]. Applying Corollary 3 and The-
orem 1 to the sum of measures corresponding to such a triangulation we get the
following.

Corollary 4 The normalized moment generating function Fρ

P (u) of any convex poly-
tope P with respect to any homogeneous polynomial density function ρ of degree δ is
a rational function with denominator dividing

∏
v∈V

(1 − 〈v,u〉)δ.

Example 1 Let � be a triangle in R
2 with vertices v1 = (1, 1), v2 = (2, 5) and

v3 = (3, 2). Its normalized moment generating function equals

F�(u1, u2) = 7

(1 − u1 − u2)(1 − 2u1 − 5u2)(1 − 3u1 − 2u2)
.
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Its Taylor expansion about the origin up to the terms of degree 7 is given by

7 + 42u1 + 56u2 + 175u2
1 + 455u1u2 + 329u2

2 + 630u3
1 + 2387u2

1u2

+ 3367u1u2
2 + 1750u3

2 + 2107u4
1 + 10318u3

1u2

+ 21217u2
1u2

2 + 21546u1u3
2 + 8967u4

2 + 6762u5
1 + 40082u4

1u2

+ 106526u3
1u2

2 + 157976u2
1u3

2 + 128772u1u4
2

+ 45276u5
2 + 21175u6

1 + 145845u5
1u2 + 468895u4

1u2
2

+ 900123u3
1u3

2 + 10744451u2
1u4

2 + 741993u1u5
2 + 227269u6

2,

which implies that

m00 = 7

2
, m10 = 7, m01 = 28

3
, m20 = 175

12
, m11 = 455

24
,

m02 = 329

12
, m30 = 63

2
, m21 = 2387

60
,

m12 = 3591

20
, m03 = 175

2
, m40 = 2107

30
, m31 = 5159

60
,

m22 = 21217

180
, m13 = 3591

20
, m04 = 2989

10
,

m50 = 161, m41 = 2863

15
, m32 = 7609

30
, m23 = 5642

15
,

m14 = 3066

5
, m05 = 1078, m60 = 3025

8
,

m51 = 6945

16
, m42 = 13397

24
, m33 = 128589

160
,

m24 = 153493

120
, m15 = 35333

16
, m06 = 32467

8
.

Results on non-convex polytopes

Our secondgroupof results addresses the problemof distinguishingdifferent polytopes
with the same underlying set of vertices from information on their moments. The
problem of restoring the vertices of a polygon or a polytope with a constant mass
density from information on its moments was addressed earlier in e.g. [14,18,20,21,
24,31]. However, the latter do not provide the recovery of the vertices in the generality
required in the present paper. Below we concentrate on the case of constant density
and known vertices, and plan to return to the general inverse problem for polytopes
with unknown polynomial density and unknown location of their vertices in the future.

First we need to define what we mean by a polytope. It turned out that there is no
general consensus about this notion. Instead there exist several competing definitions
having their own advantages in different situations. We shall study the following class
of polytopal objects.
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Definition 1 A subset P ⊂ R
d coinciding with a finite union of arbitrary convex

d-dimensional polytopes is called a generalized polytope.

Definition 2 The number of components of a generalized polytope P is the number
of connected components of the set Po ⊂ P of interior points of P . The closure of
each connected component of Po is called a component of P . A generalized polytope
with one component is called indecomposable.

Remark 3 We say that a simplicial complex in R
d is pure if all its maximal simplices

have dimension d. Clearly any generalized polytope in R
d can be represented as the

topological space of an appropriate pure simplicial complex.

Remark 4 Often one considers a more restricted class of objects, namely polytopes.
A polytope P ⊂ R

d is a generalized polytope homeomorphic to a d-dimensional
manifold with boundary.

We need to introduce the notion of a vertex of a generalized polytope.

Definition 3 Given a generalized polytope P ⊂ R
d , we call a finite collection of

open disjoint d-dimensional simplices in R
d a dissection of P if the closure of their

union coincides with P .

A wealth of material on dissections of polytopes can be found in [25], see also [16].

Definition 4 Given a generalized polytope P ⊂ R
d , we call a point v a vertex of P ,

if v is a vertex of (the closure of) some open simplex in every dissection of P .

Definition 5 Given a point p ∈ P of a generalized polytope P, we denote by the
tangent cone Tp(P) of P at p the set obtained as follows. For a sufficiently small
ε > 0, set Pp(ε) = P ∩ Bp(ε) where Bp(ε) is the ε-ball centered at p. Define
Tp(P) as the set obtained by taking a ray through p and every point ofPp(ε). In other
words, Tp(P) is the cone with the apex at p and the base Bp(ε). (Obviously, Tp(P)

is independent of ε for a sufficiently small ε > 0, and it need not be convex.)

Lemma 5 A pointv is a vertex ofP if and only if Tv(P)does not admit a decomposition
in the disjoint union of convex polyhedral subcones, such that each subcone in the
decomposition has a translation-invariant direction (i.e. is not pointed). In particular,
if the tangent cone to P at v has a connected component with no translation-invariant
direction, then v is a vertex.

We denote by conv(S) the convex hull of an arbitrary set S ⊂ R
d . The above lemma

implies that any vertex of conv(P) is a vertex of P .
The following result extends Corollary 4 to the case of generalized polytopes.

Proposition 6 For any generalized polytope P with the set of vertices V(P), the
denominator of its normalized moment generating function Fρ

P (u) with respect to a
homogeneous polynomial density function ρ of degree δ divides


P (u) :=
∏

v∈V(P)

(1 − 〈v,u〉)δ.
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C ′

A

B

B′

A′

CC ′

B

B′

A

Fig. 1 Schönhardt polyhedron obtained from an octahedron (on the left) by removing tetrahedra [AB B′C],
[AA′ B′C ′], and [A′ BCC ′]

Remark 5 There exist generalized polytopes which do not admit dissections with only
existing vertices. The simplest example of this kind is the Schönhardt polyhedron, see
Fig. 1 and [30]. Absence of a dissection T which uses only its 6 vertices can be
established by observing that none of the edges AC , A′B, and B ′C ′ can appear in a
simplex of T , yet any simplex on these 6 vertices must contain one of them. Therefore,
Proposition 6 is not an immediate consequence of Corollary 3.

Remark 6 For “generic” generalized polytopes P , the denominator �(u) of FP (u)

equals 
P (u), but for certain special polytopes the denominator �(u) may be its
proper divisor, as can be seen from the following example. Let A = {0, a1, a2, a3} ⊂
R
3 be a spanning set, and v ∈ R

3. Let P± := conv(v ± A) and P := P+ ∪P−. Then
1 − 〈u, v〉 does not appear in �(u), as

FP (u) = FP+(u) + FP−(u) = K

∑
1≤i< j≤3〈u, ai 〉〈u, a j 〉 + (1 − 〈u, v〉)2∏

1≤i≤3((1 − 〈u, v〉)2 − 〈u, ai 〉2) ,

where K �= 0 is a real constant.

Now we introduce several finite-dimensional linear spaces related to a given finite
spanning set S ⊂ R

d . Let P(S) be the set of all generalized polytopes P whose sets
V(P) of vertices are contained in S. For P ∈ P(S), we denote by μP its standard
measure. (Obviously, μP is supported on P ⊆ conv(S).)

Denote by M(S) the linear space of all signed measures, i.e. the linear span of all
standardmeasuresμP forP ∈ P(S). LetM�(S) ⊆ M(S) be its subspace spanned by
μ�, for � ∈ P(S) a d-dimensional simplex. (The spaceM�(S) has earlier appeared
in [2–4] in a somewhat different context.) We shall refer to elements of M(S) as to
polytopal measures with the vertex set S. The following conjecture was central to our
study; it was pointed out to us that it follows from results in [13] after [19] was released
(cf. Sect. 5.1 for a discussion). As well, at the same time authors of [1] started working
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on this question; their [1, Theorem 1], proved using a distinct from [13] set of ideas,
implies the conjecture.

Conjecture 7 (Corollary to [1, Theorem 1]) For an arbitrary spanning set S and any
P ∈ P(S), its standard measure μP belongs to M�(S). In other words, M(S) =
M�(S).

By Remark 5, the above is non-trivial. In fact, [1] shows a stronger result, namely
that the coefficients in a decomposition of μc P into a sum of μ� are integers, in
particular resolving in the affirmative [19, Problem 3]. In view of this, we can make a
stronger, “inclusion-exclusion”-like conjecture.

Conjecture 8 For an arbitrary spanning set S and anyP ∈ P(S), its standardmeasure
μP can be decomposed as

μP =
∑

�∈DP

σ�μ�, σ� = ±1 for all �,

with DP a set of d-dimensional simplices in P(S).

Note that this holds true for d = 2, as well as for any convex P , with a stronger
condition that all σ� = 1.

While we did not have a proof of Conjecture 7 in its full generality, we have
succeeded in proving it for a rather large class of spanning sets. Roughly speaking, the
latter should be close to “generic”. Specifically, given a finite spanning set S ⊂ R

d ,we
say that S is weakly non-degenerate if any (d + 2)-tuple of points from S is spanning.
If S satisfies the stronger condition that each (d + 1)-subset of S is spanning then we
call the latter S strongly non-degenerate.

Theorem 9 Conjecture 7 holds for any weakly non-degenerate finite set S.

Remark 7 Theorem 9 would imply Conjecture 7 if one could prove that the standard
measure of an arbitrary generalized polytope P can be obtained as the limit of the
standardmeasures of a 1-parameter family of generalized polytopesP(t)withP(0) =
P such that for t �= 0 the vertices of P(t) are weakly non-degenerate, and each vertex
of P(t) tending to a vertex of P as t → 0. We are unable to prove the existence of
such deformations in general.

The key idea in the proof of Theorem 9 is to study the corresponding spaces of
Fantappiè transformations of signed measures in M(S). In particular, we are able to
compute the corresponding dimensions1. In more detail, let F(S) (resp. F�(S)) be the
linear space of Fantappiè transformations of signed measures inM(S) (resp.M�(S)).
In other words, F(S) (resp. F�(S)) is the space of normalized moment generating
functions of signed measures in M(S) (resp. M�(S)).

1 Note that presently we are not aware of a formula or a recipe for calculating the dimension of M�(S)

without the assumption of the theorem. (The manuscript [3] contains an algorithm constructing a basis of
this space.)
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Since each compactly supported measure is uniquely determined by its complete
set of moments, the map

Fμ : M(S) → F(S), (1.11)

induced by the Fantappiè transformation is a linear isomorphism, cf. [5, Sect. 3.5].
Finally, given a spanning set S = {v1, . . . , vN } ⊂ R

d , denote byRat(S) the linear
space of all rational functions with the denominator 
S(u) as in (1.12),


S(u) =
N∏

i=1

(1 − 〈vi ,u〉), (1.12)

andwith the numerator an arbitrary real (inhomogeneous) polynomial of degree atmost
N − d − 1. Here the numerator and the denominator might have common factors.

Proposition 10 F�(S) coincides with Rat(S) if and only if S is strongly non-
degenerate.

Corollary 11 If S is strongly non-degenerate then M�(S) = M(S).

Corollary 11 implies that for strongly non-degenerate S, the dimension of all these
linear spaces equals

(N−1
d

)
. Note that Corollary 11 settles Theorem 9 for the strongly

non-degenerate S.
Our final goal is to explicitly solve the following inverse moment problem.

Problem 1 Given a strongly non-degenerate spanning set S ⊂ R
d , |S| = N , find

the unique polytopal measure in M(S) with a given set of all moments up to order
N − d − 1.

We start with the following simple observation.

Lemma 12 Given an arbitrary spanning set S ⊂ R
d , |S| = N, and an arbitrary

polynomial T (u) of degree at most N − d − 1, there exists a unique rational function
R(u) = P(u)/
S(u) with Taylor polynomial of degree N −d−1 at the origin equal to
T (u). Namely, P(u) = [T (u)
S(u)]N−d−1, where [·]N−d−1 stands for the truncated
polynomial with all monomials up to degree N − d − 1.

For S = {v1, . . . , vN } ⊂ R
d strongly non-degenerate, we give an explicit inversion

formula determining the densities of an unknown polytopal measure having a given set
of moments up to order N −d −1 on each simplex in a natural basis ofM�(S). In view
of Lemma 12 we can assume that we are already given an arbitrary rational function
R(u) = P(u)/
S(u), where deg P(u) ≤ N − d − 1, and we want to determine the
densities of the required signed measure fromM(S) in terms of numerator P(u).

From now on we shall choose the basis of M�(S) consisting of the standard
measures of all simplices containing the last vertex vN , see Lemma 16 below. Let
L = {l1, l2, . . . ., lN−1} be the (N − 1)-tuple of linear forms corresponding to ver-
tices v1, v2, . . . , vN−1, where li (u) = 1 − 〈vi ,u〉. Consider the linear span VL of all
possible products of the form l j1 · l j2 · · · · · l jN−d−1 , 1 ≤ j1 < j2 < · · · < jN−d−1.
There are

(N−1
d

)
such products, and each of them is a polynomial of degree at most
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N − d − 1. On the other hand, the dimension of the space Pol(N − d − 1, d) of
all (inhomogeneous) polynomials of degree at most N − d − 1 in d variables equals(N−1

d

)
, as well.

Define the square matrix MatS of size
(N−1

d

)
with entries being coefficients of

the above products of linear forms with respect to the standard monomial basis in
Pol(N − d − 1, d). We assume that MatS acts on the space VL of column vectors.

Theorem 13 For an arbitrary strongly non-degenerate spanning set S ⊂ R
d ,

|S| = N, the matrix MatS is invertible. Moreover, for a rational function R(u) =
P(u)/
S(u), where P(u) is an arbitrary polynomial of degree N −d −1, there exists
a unique measure μR ∈ M(S) with Fantappiè transform R(u). Namely,

μR = Mat−1
S (P(u)). (1.13)

Remark 8 A detailed explanation of the meaning of (1.13) can be found in the proof
of Theorem 13, see also Example 2 below. An explicit formula for the matrix Mat−1

S
is given in Lemma 19.

Recall that a spanning set S isweakly non-degenerate if any (d+2)-tuple of its points
is spanning. With minor changes, the above solution of the inverse moment problem
can be adapted to this more general case. In order not to overload the introduction we
refer the readers interested in this situation to Sect. 4. The case of an arbitrary spanning
set S, however, remains unsolved and offers several interesting challenges in matroid
theory. We hope to return to it in the future.

It will be convenient to work with scaled volumes of simplices, which we call
weights.

Definition 6 Given a signed measure μ in R
d and a d-dimensional simplex � ⊂ R

d ,
we define the weight w� of � by the formula:

w� = d!
∫

�

dμ. (1.14)

In other words, the density d� of the measure in question which should be placed at
� equals

d� = w�

d!Vol(�)
.

We finish the introduction by explicitly solving the above inverse problem for a
concrete 5-tuple of points in R

2.

Example 2 Set S = {v1, v2, v3, v4, v5} where v1 = (1, 0), v2 = (2, 1), v3 =
(1, 2), v4 = (0, 1), v5 = (0, 0). The corresponding set L = {l1, l2, l3, l4} of lin-
ear forms is given by l1 = 1−u1, l2 = 1−2u1−u2, l3 = 1−u1−2u2, l4 = 1−u2.
Additionally, l5 = 1. We are considering the basis of M�(S) consisting of (the stan-
dard measures of) 6 triangles containing v5. Therefore we need 6 quadratic forms
obtained as pairwise products li l j , 1 ≤ i < j ≤ 4. We get
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

l1l2 = 1 − 3u1 − u2 + 2u2
1 + u1u2

l1l3 = 1 − 2u1 − 2u2 + u2
1 + 2u1u2

l1l4 = 1 − u1 − u2 + u1u2

l2l3 = 1 − 3u1 − 3u2 + 2u2
1 + 5u1u2 + 2u2

l2l4 = 1 − 2u1 − 2u2 + 2u1u2 + u2
2

l3l4 = 1 − u1 − 3u2 + u1u2 + 2u2
2.

Notice that l1l2 corresponds to triangle �345, l1l3 to �245, l1l3 to �245, l1l4 to �234,
l2l3 to �145, l2l4 to �135, and l3l4 to �125. Ordering monomials spanning the space
Pol(2, 2) as (1, u1, u2, u2

1, u1u2, u2
2), we get the 6 × 6-matrix MatS and its inverse

Mat−1
S as follows

MatS =
l1l2 l1l3 l1l4 l2l3 l2l4 l3l4⎛

⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

1 1 1 1 1 1 1
u1 −3 −2 −1 −3 −2 −1
u2 −1 −2 −1 −3 −2 −3
u2
1 2 1 0 2 0 0

u1u2 1 2 1 5 2 1
u2
2 0 0 0 2 1 2

4Mat−1
S =

1 u1 u2 u2
1 u1u2 u2

2⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

l1l2 1 −1 1 1 1 −1
l1l3 −4 0 −4 0 0 −4
l1l4 9 3 3 1 1 1
l2l3 1 1 1 1 1 1
l2l4 −4 −4 0 −4 0 0
l3l4 1 1 −1 1 −1 1

(For TEXnical reasons we give 4Mat−1
S above.) Thus, given an arbitrary rational

function R(u1, u2) = P(u1, u2)/
S(u1, u2) where P(u1, u2) = a00 + a1,0u1 +
a0,1u2+a2,0u2

1+a11u1u2+a02u2
2 is a polynomial of degree atmost 2 and
S(u1, u2) =

l1l2l3l4l5, we get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

w345 = 1
4 (a00 − a10 + a01 + a20 − a11 + a02)

w245 = −a00 − a01 − a02
w235 = 1

4 (9a00 + 3a01 + 3a10 + a20 + a11 + a02)

w145 = 1
4 (a00 + a01 + a10 + a20 + a11 + a02)

w135 = −a00 − a10 − a20
w125 = 1

4 (a00 + a10 − a01 + a20 − a11 + a02),

where wi jk is the weight of the signed measure to be placed on �i jk , see (1.14).
To illustrate all steps of solution of our inversemoment problem, assume that we are

looking for a polygonal measure with the vertex set S and (ad hoc chosen) moments
m00 = 1, m10 = 2, m01 = 3, m20 = 4, m11 = 5, m02 = 6. Then its normalized
moment generating function Fμ(u) satisfies the relation

Fμ(u) = 1
2!
0!0! + 2

3!
1!0!u1 + 3

3!
0!1!u2 + 4

4!
2!0!u2

1 + 5
4!
1!1!u1u2

+ 6
4!
0!2!u2

2 + · · · = P(u1, u2)

l1l2l3l4l5
,
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Fig. 2 Final measure in Example 2

where P(u1, u2) is a (non-homogeneous) polynomial of at most second degree. Thus,
truncating the product of the left-hand side and l1l2l3l4l5 up to the second degree, we
obtain

P(u1, u2) = 2 + 4u1 + 10u2 + 10u2
1 + 24u1u2 + 10u2

2,

i.e. a00 = 2, a10 = 4, a01 = 10, a20 = 10, a11 = 24, a02 = 10. Thus
w345 = 1, w245 = −22, w235 = 26, w145 = 15, w135 = −16, w125 = −2. The
areas of the corresponding triangles are equal to: Area(�345) = 1

2 ; Area(�245) =
1; Area(�235) = 3

2 ; Area(�145) = 1
2 ; Area(�135) = 1; Area(�125) = 1

2 . This
implies that the densities of the measure of the corresponding triangles are equal to
d345 = 1, d245 = −11, d235 = 26

3 , d145 = 15, d135 = −8, d125 = −2. To obtain
the final densities in the convex hull conv(S) of S, one has to decompose conv(S)

into domains obtained by removing from conv(S) the set of all hyperplanes spanned
by vertices in S. For each such domain, we should add up the densities of all basic
simplices containing this domain. The resulting measure is shown in Fig. 2.

Remark 9 Domains into which the convex hull conv(S) is cut by the hyperplanes
spanned by S were introduced in [2] where they were called chambers. The incidence
matrix of the simplices spanned by S and those chambers was studied in some detail
in [3,4]. This matrix allows to formalize the last step of construction of the above
polygonal measure, where information on the densities of the simplices is transformed
into information on the densities of the chambers. But, in general, already the number
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of chambers is a complicated invariant of the set S. It seems that the general problem
of constructing the set of chambers and the corresponding incidence matrix in terms
of a given S is quite non-trivial.

2 Proving results on convex polytopes

Following Brion-Lawrence-Khovanskii-Pukhlikov-Barvinok, see [7,9,20,22], we
define for each vector z ∈ R

d , the j-th axial moment μ j (z) of a simple convex
polytope P with respect to z as

μ j (z) =
∫
P

〈x, z〉 j dx.

We will use the following important statement, cf. e.g. [9, Theorem 10.5].

Theorem 14 The moment μ j (z) satisfies

μ j (z) = (−1)d j !
( j + d)!

∑
v∈V

〈v, z〉 j+d Dv(z), (2.1)

where Dv(z) := | det Kv|∏d
j=1〈w j (v),z〉 , and z is an arbitrary vector for which the products

∏d
j=1〈w j (v), z〉, v ∈ V , do not vanish. Moreover, the following identities hold:

∑
v∈V

〈v, z〉 j Dv(z) = 0, for 0 ≤ j ≤ d − 1. (2.2)

Proof of Theorem 2 To prove (1.8), consider the generating function

�z(u) =
∞∑
j=0

( j + d)!
j ! μ j (z)u j ,

where u ∈ R. Formula (2.1) implies that �z(u) is rational. Indeed,

�z(u) =
∞∑
j=0

(−1)d
∑
v∈V

〈v, z〉 j+d | det Kv|u j

∏d
k=1〈wk(v), z〉

= (−1)d
∑
v∈V

〈v, z〉d | det Kv|∏d
k=1〈wk(v), z〉

∞∑
j=0

〈v, z〉 j u j =
∑
v∈V

〈v,u〉d | det Kv|∏d
k=1〈wk(v),u〉 · (−1)d

1 − 〈v,u〉 ,



268 N. Gravin et al.

where u = uz. On the other hand, using the multinomial coefficients
(|J |

J

) = |J |!
j1!... jd !

of multiindices J = ( j1, . . . , jd) � |J |, one gets

∫
P

〈x, z〉 j dx =
∫
P

(
d∑

i=1

xi zi

) j

dx =
∑
J� j

(
j

J

)
zJ
∫
P
xJ dx =

∑
J� j

(
j

J

)
zJ m J (P),

where m J (P) = m J (μP ). Therefore,

FP (uz) := FP (uz1, . . . , uzd) :=
∞∑
j=0

∑
( j1,..., jd )� j

( j + d)!
j1! . . . jd !m j1,..., jd (uz1)

j1 · · · (uzd) jd

=
∞∑
j=0

( j + d)!
j !

⎡
⎣ ∑

J :=( j1,..., jd )� j

(
j

J

)
m J (P)zJ

⎤
⎦ u j

=
∞∑
j=0

( j + d)!
j ! μ j (z)u j = �z(u),

and (1.8) follows.
In view of relations (2.2), the right-hand side of (1.8) can be rewritten as (1.9).

Indeed, writing (1 − 〈v,u〉)−1 = ∑∞
j=0〈v,u〉 j and expanding (1.8) with respect to

j th powers of 〈v,u〉, we see that (2.2) implies that for j < d the sum of all terms
〈v,u〉 j vanishes. ��

Proof of Corollary 3 Let V = (v0, v1, . . . , vd). Then for each j �= i , we have
w j (vi ) = v j − vi . Hence | det Kvi | does not depend upon i and equals d!Vol(�).
The right-hand side of (1.8) becomes

(−1)dd!Vol(�)

d∑
i=0

〈vi ,u〉d

∏d
j=1〈w j (vi ),u〉 · 1

1 − 〈vi ,u〉

= (−1)dd!Vol(�)

d∑
i=0

〈vi ,u〉d∏
j �=i 〈v j − vi ,u〉 · 1

1 − 〈vi ,u〉

= (−1)dd!Vol(�)

d∑
i=0

ζ d
i∏

j �=i (ζ j − ζi )
· 1

1 − ζi
,

where ζi = 〈vi ,u〉. Computing the common denominator of the latter, we obtain

F�(u) = (−1)dd!Vol(�)∏d
i=0(1 − ζi )

d∑
i=0

[∏
k>l,k �=i �=l(ζk − ζl)

∏
j �=i (1 − ζ j )

]
(−1)iζ d

i∏
s>t (ζs − ζt )

.
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It is convenient to introduce onemore linear form ζd+1 := 1, so that the last expression
reads as

F�(u) = (−1)dd!Vol(�)

d∑
i=0

[∏
d+1≥k>l≥0,

k �=i �=l
(ζk − ζl)

]
(−1)iζ d

i∏
d+1≥s>t≥0(ζs − ζt )

. (2.3)

To complete the proof, we notice that

0 = det

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1 1
ζ0 ζ1 . . . ζd 1
ζ 2
0 ζ 2

1 . . . ζ 2
d 1

. . .

ζ d
0 ζ d

1 . . . ζ d
d 1

ζ d
0 ζ d

1 . . . ζ d
d 1

⎞
⎟⎟⎟⎟⎟⎟⎠

= 1 · det

⎛
⎜⎜⎜⎜⎝

1 1 . . . 1
ζ0 ζ1 . . . ζd

ζ 2
0 ζ 2

1 . . . ζ 2
d

. . .

ζ d
0 ζ d

1 . . . ζ d
d

⎞
⎟⎟⎟⎟⎠

+(−1)d+1
d∑

i=0

ζ d
i (−1)i · det

⎛
⎜⎜⎜⎜⎝

1 . . . 1 1 . . . 1
ζ0 . . . ζi−1 ζi+1 . . . ζd+1

ζ 2
0 . . . ζ 2

i−1 ζ 2
i+1 . . . ζ 2

d+1
. . .

ζ d
0 . . . ζ d

i−1 ζ d
i+1 . . . ζ d

d+1

⎞
⎟⎟⎟⎟⎠

=
∏

d≥k>l≥0

(ζk − ζl) + (−1)d+1
d∑

i=0

ζ d
i (−1)i ·

⎡
⎢⎢⎣

∏
d+1≥k>l≥0,

k �=i �=l

(ζk − ζl)

⎤
⎥⎥⎦ .

Indeed, the first matrix has two identical rows and thus vanishing determinant, which
we expand with respect to the last row. The last equality is the standard formula for
the Vandermonde determinant. Thus we have

d∑
i=0

ζ d
i (−1)i ·

⎡
⎢⎢⎣

∏
d+1≥k>l≥0,

k �=i �=l

(ζk − ζl)

⎤
⎥⎥⎦ = (−1)d

∏
d≥k>l≥0

(ζk − ζl).

Now we plug this formula into (2.3) and get

F�(u) = d!Vol(�)
1∏d

t=0(1 − ζt )
= d!Vol(�)∏

v∈V (1 − 〈v,u〉) .

��
Lemma 15 Let u = (u1, . . . , ud) and x = (x1, . . . , xd) be formal variables, and
� ∈ R . Then

(∑
k

uk
∂

∂uk
+ �

)
◦ (1 − 〈x,u〉)−� = �(1 − 〈x,u〉)−�−1. (2.4)
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Proof Note that uk
∂

∂uk
◦ (1 − 〈x,u〉)−� = xkuk�(1 − 〈x,u〉)−�−1. Thus

(∑
k

uk
∂

∂uk
+ �

)
◦ (1 − 〈x,u〉)−� = �(1 − 〈x,u〉)−�−1〈x,u〉 + �(1 − 〈x,u〉)−�

= �(1 − 〈x,u〉)−�−1.

��
Proof of (1.3) For a d-variate polynomial g(z), we denote by g

(
u ∂

∂u

)
the differential

operator g
(

u1
∂

∂u1
, . . . , ud

∂
∂ud

)
. We use the identity

g

(
u

∂

∂u

)
◦
∑

I

aI x
IuI =

∑
I≥0

g(I )aI x
IuI , (2.5)

which holds for any formal d-variate power series
∑

I aIxIuI and any d-variate
polynomial g(z). (It can be easily verified for monomial g(z) and then extended by

linearity.) Setting h(z) := ∏d
�=1

(∑d
k=1 zk + �

)
, notice that h(I ) = (|I | + 1)(|I | +

2) · · · (|I | + d). Now using (2.5) together with the obvious identity:

(1 − 〈x,u〉)−1 =
∑
I≥0

(|I |
I

)
xIuI ,

one obtains

Fμ(u) :=
∑
I≥0

(|I | + d

I

)
m I (μ)uI =

∑
I≥0

h(I )

(|I |
I

)
m I (μ)uI

=
∫
Rd

∑
I≥0

h(I )

(|I |
I

)
xIuI dμ(x) =

∫

Rd

h

(
u

∂

∂u

)
◦
∑
I≥0

(|I |
I

)
xIuI dμ(x)

=
∫

Rd

h

(
u

∂

∂u

)
◦ dμ(x)
1 − 〈x,u〉 =

∫

Rd

d! dμ(x)
(1 − 〈x,u〉)d+1 ,

where in the final derivation we repeatedly made use of (2.4), for 1 ≤ � ≤ d. ��
Remark 10 Another point of view on (1.3) is that it is the result of the application
of the differential operator g

(
u ∂

∂u

)
to the integral transformation

∫
Rd

dμ(x)
1−〈x,u〉 of the

measure μ (also known as the Fantappiè transform of μ); see e.g. [23].
In [26] a similar idea was applied to the harmonic polygonal measures in the plane.

Proof of Theorem 1 Assume first that ρ(x1, . . . , xd) = xK = xk1
1 · · · xkd

d is a mono-
mial and consider

ρ

(
∂

∂u

)
◦ Fμ(u) = ∂ |K |

∂uk1
1 · · · ∂ukd

d

◦
∑

I=(i1,...,id )≥0

(|I | + d)!
i1! · · · id ! m I (μ)uI .
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One gets

∂ |K |

∂uK
◦ Fμ(u) =

∑
I=(i1,...,id )≥0

⎛
⎝ (|I | + |K | + d)!∏d

j=1(i j + k j )!
d∏

j=1

(i j + k j )!
i j !

⎞
⎠m I+K (μ)uI

=
∑

I=(i1,...,id )≥0

(|I | + d + |K |)!∏d
j=1 i j !

m I (xK μ)uI .

Observe that the normalizing coefficients of m I (xK μ) in the latter expression depend
only on I and |K | but not on particular entries of K . Therefore, for an arbitrary
homogeneous ρ of degree δ, one gets by additivity

ρ

(
∂

∂u

)
◦ Fμ(u) =

∑
I=(i1,...,id )≥0

(|I | + d + δ)!∏d
j=1 i j !

m I (ρμ).

This shows (1.6). Repeated application of (2.4), for d + 1 ≤ � ≤ d + δ, to the integral
representation (1.3), respectively, to the representation (1.2), of Fρμ(u) implies (1.7),
respectively, (1.5). ��

3 Inverse moment problem for strongly non-degenerate S

Proof of Lemma 5 We prove first that the tangent cone at any non-vertex allows a
decomposition into convex polytopal cones each having a translation-invariant direc-
tion.

Let v be a point in P which is not a vertex. Then there is a dissection T of P such
that v is not a vertex of any simplex of T . Let U be the set of simplices Su of T with
closures containing v. Take the dissection of the tangent cone Tv(P) into the tangent
cones to simplices from U , Tv(P) = ∪u∈U Tv(Su). Clearly, every subcone Tv(Su)

contains a translation-invariant direction (any direction parallel to the minimal face
containing v).

Vice versa, to prove the converse implication, let us take a dissection of the tangent
cone Tv(P) into a disjoint union of convex polytopal cones Q1, . . . , Qk . By definition
of the tangent cone and since P can be represented as a finite union of simplices, we
obtain that any sufficiently small neighborhood of v in the tangent cone Tv(P) is a
neighborhood of v in the entire P . Consider the parallelepiped Boxε centered at v
that is the ε-ball centered at v, in the L1-norm. Note that each convex polytopal set
Qi ∩ Boxε can be decomposed into a union of simplices that do not contain v as a
vertex.

Further notice that the set P \ Boxε can be represented as a finite disjoint union of
simplices, since Boxε is the intersection of a finite number of half-spaces and P is a
disjoint union of simplices. Clearly, every simplex in this union should not have v as
a vertex. Now combining the dissections of each Qi ∩ Boxε and P \ Boxε we obtain
the required dissection of P . ��
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Proof of Proposition 6 We begin by considering the case ρ ≡ 1. Let T be a dissection
of P with vertices V(T ). Corollary 3 implies that FP (u) has a denominator dividing
gT (u) = ∏

v∈V(T )(1 − 〈v,u〉). Take v1 ∈ V(T ) \ V(P). Then there exists another
dissection T ′ such that v1 /∈ V(T ′). Expressing FP (u) as ratios of polynomials, we
have

FP (u) = fT (u)

hT (u)(1 − 〈v1,u〉) = fT ′(u)

gT ′(u)
, where gT (u) = hT (u)(1 − 〈v1,u〉).

Here gT ′ is not divisible by 1 − 〈v1,u〉, by the choice of T ′. Thus fT is divisible by
1 − 〈v1,u〉, and can be canceled out in the expression for FP (u).

The case of arbitrary homogeneous ρ follows immediately by applying Theorem 1
to the already covered case ρ ≡ 1. ��
Proof of Proposition 10 First we show that for an arbitrary finite spanning set S ⊂ R

d ,
the space M�(S) has a basis of d-dimensional simplices containing a fixed vertex
v ∈ S. In particular, the set of all d-dimensional simplices containing v spansM�(S)

but is not necessarily a basis. Consequently, their Fantappiè transformations span
F�(S). The following result is formulated as Theorem 4.2 of [3] and in a different
form in [2]. (We omit the proof of this statement here.)

Given two points p and q and a set M in R
d , we say that q is visible from p with

respect to M if the line segment pq is disjoint from M .

Lemma 16 Given a d-dimensional simplex σ ⊂ R
d , denote byV(σ ) the set of vertices

of σ . Let σ 0 be the interior of σ . Let p be any point in R
d and let Q+ (resp. Q−) be

the set of all (d − 1)-dimensional faces of σ which are visible (resp. not visible) from
p with respect to σ 0. Then the standard measures of all d-dimensional simplices with
vertices in V(σ ) ∪ {p} satisfy

μσ =
∑

σi ∈Q+
μσi ,p −

∑
σi ∈Q−

μσi ,p,

where μσi ,p is the standard measure of the d-dimensional simplex spanned by the
vertices of σi and the point p.

Remark 11 If σi,p is a degenerate simplex, i.e., p lies in the hyperplane spanned by
σi , we simply exclude the corresponding term μσi,p from the above formula.

To prove Proposition 10, we need to show that F�(S) coincides with Rat(S) if
and only if S is strongly non-degenerate. Indeed, F�(S) ⊆ Rat(S) for an arbitrary
spanning S, by Proposition 6. The Fantappiè transform Fμ : M�(S) → F�(S) is a
linear isomorphism which implies that dimM�(S) = dim F�(S). By Lemma 16, the
spaceM�(S) is spannedby the standardmeasuresμ� of the setBi of alld-dimensional
simplices containing the fixed vertex vi . Let us fix the vertex vN and consider the set
BN . For S strongly non-degenerate, the cardinality of BN equals

(N−1
d

)
.

Now we show that F�(S) = Rat(S), whereRat(S) has the dimension
(N−1

d

)
, as it

is isomorphic to the space Pol(N − d − 1, d) of all d-variate polynomials of degree
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at most N − d − 1. This would immediately imply that the standard measures of
simplices in BN are linearly independent.

Lemma 17 If S is strongly non-degenerate, then F�(S) = Rat(S).

Proof We recall thatF�(S) comprises all linear combinations of the rational functions

d!Vol(vi1 , . . . , vid , vN )

(1 − 〈vi1 ,u〉) · · · · · (1 − 〈vid ,u〉) · (1 − 〈vN ,u〉) .

For each term 1 − 〈vi ,u〉, we consider a (homogeneous) linear form li (u0,u) =
u0 −〈vi ,u〉 in d +1 variables u0, . . . , ud . Set n = N −1 where n ≥ d +1. For the n-
tupleL = {l1, l2, . . . ., ln} of linear (d+1)-variate forms, let VL be the linear span of all
possible products of the form li1li2 . . . lin−d , 1 ≤ i1 < i2 < · · · < in−d ≤ n. Observe
that VL is the space of all numerators that one can obtain in F�(S). We need to show
that VL contains H Poly(n − d, d + 1), the space of all (d + 1)-variate homogeneous
polynomials of degree n − d. Recall that any d + 1-tuple of linear forms li1 , . . . , lid+1

is linearly independent due to the strong degeneracy assumption. Thus we can express
each single variable u0, . . . , ud as a linear combination of these forms. Since VL

contains all products li1li2 . . . lin−d−1l j , where j ∈ {1, . . . , n} \ {i1, . . . , in−d−1}, we
conclude that VL contains all homogeneous polynomials of the form

li1li2 . . . lin−d−1uk, for 0 ≤ k ≤ d.

From that we deduce that VL contains all homogeneous polynomials of the form
li1li2 . . . lin−d−2uku j , where j, k ∈ [n] \ {i1, . . . , in−d−1}. Continuing along the same
lines, we derive by induction that VL contains H Poly(n − d, d + 1). ��

For an arbitrary spanning S, the cardinality of BN is at most
(N−1

d

) = dimRat(S).
Furthermore, if S is not strongly non-degenerate the cardinality ofBN is strictly smaller
than

(N−1
d

)
, as there will be linear dependencies among the standard measures on the

simplices in BN . Therefore, dim F�(S) < dimRat(S). ��
We define the square matrix MatL of size

(n
d

)
with entries being coefficients of the

above products of linear forms w.r.t. the standard monomial basis in H Pol(n −d, d +
1).

Lemma 18 The determinant of MatL is proportional to the product of the deter-
minants of all (d + 1)-tuples (li1, li2 , . . . , lid+1), i1 < i2 < . . . < id+1. (By the
determinant of a (d + 1)-tuple of vectors in R

d+1 with a fixed basis we mean the
determinant of the matrix formed by the coordinates of these vectors in a chosen
basis.)

Proof Indeed, det(MatL) is a form of degree (d +1)
(n

d

)
in the coefficients of the linear

forms l1, . . . , ln . Thus the product
∏

i1,...,id+1
det(li1, li2 , . . . , lid+1)has the samedegree

as det(MatL). Therefore it suffices to show that det(MatL)vanishes as soon as someof
det(li1, li2 , . . . , lid+1) vanishes. (Observe that all polynomials det(MatL) are coprime.)
Without loss of generality, assume that l1 is a linear combination of l2, . . . , ld+1. But
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then the column of MatL corresponding to the (n − d)-tuple (1, d + 2, d + 3, . . . , n)

will be a linear combination of those corresponding to (2, d +2, d +3, . . . , n),…(d +
1, d + 2, d + 3, . . . , n).

Proof of Corollary 11 As we mentioned above, M(S) is isomorphic to F(S) and,
analogously, M�(S) is isomorphic to F�(S). Thus, if we prove the equality F(S) =
F�(S), then we getM(S) = M�(S). By Lemma 17, the space F�(S) coincides with
the linear space of all rational functions with the numerator an arbitrary polynomial
of degree at most N − d − 1 and the denominator 
S(u) equal to the product of all
linear forms dual to all vertices in S. By Proposition 6 an arbitrary function in F(S)

is a rational function with denominator of desired form and numerator of degree at
most N − d − 1, for obvious reasons—take an arbitrary dissection and sum over its
simplices. Since all such functions are already in F�(S) we are done. ��
Proof of Theorem 13 Given a strongly non-degenerate set S = {v1, . . . , vN−1, vN }
and the Fantappiè transform R(u) = P(u)/
S(u), where 
S(u) = ∏N

j=1 l j (u), we
want to solve the inverse moment problem. (It is easy to obtain P(u) from information
on the moments of order at most N − d − 1 using Lemma 12.)

To solve the latter inverse problem using Corollary 3, we need to find an appropriate
set of weightsw = {wi1,...,id }, i1 < i1 < . . . < id , wherewi1,...,id is the weight (recall
Definition 1.14) of the d-dimensional simplex conv(vi1 , vi2 , . . . , vid , vN ) so that

∑
i1<i2<...<id

wi1,...,id

li1(u)li2(u) . . . lid (u)lN (u)
= P(u)

l1(u)l2(u) . . . lN (u)
.

Clearing the denominators, we get the equation

∑
i1<i2<...<id

wi1,...,id l j1(u)l j2(u) . . . l jN−d−1(u)lN (u) = P(u),

where { j1, . . . jN−d−1} = {1, 2, . . . , N − 1} \ {i1, . . . , id}. The latter equation is
obviously equivalent to the system of linear equations

MatS · w = (pI1 , . . . , pIt ), where P(u) =
∑

I

pIuI ,

and w = {wi1,...,id } is the vector consisting of the weights of all simplices containing
vN . ��

Theorem 13 solves the inverse moment problem for strongly non-degenerate span-
ning set S. We can make this solution more explicit by giving a closed formula for
the inverse matrix Mat−1

S . To do this, we introduce an extra variable u0 ∈ R and
identify the space Pol(N − d − 1, d) with the space H Pol(N − d − 1, d + 1) of
homogeneous forms of degree N − d − 1 in d + 1 variables (u0, u1, . . . , ud). We
homogenize each linear form li (u) in L as li (u, u0) = u0 −〈vi ,u〉. (The matrix MatS

remains unchanged.)
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We also need the following (d + 1) × (N − 1) matrix L

L =

⎛
⎜⎜⎜⎝

l1 l2 . . . lN−1

u0 1 1 . . . 1
u1 −〈v1, e1〉 −〈v2, e1〉 . . . −〈vN−1, e1〉
...

...
...

...

ud −〈v1, ed〉 −〈v2, ed〉 . . . −〈vN−1, ed〉

⎞
⎟⎟⎟⎠ (3.1)

associated with MatS . For all possible subsets i[d] = {i1, . . . , id}, i1 < i2 < · · · < id

of d distinct columns of L, consider the linear in u function Li[d](u) given by:

Li[d](u) = det

⎡
⎢⎢⎢⎣

u0 1 . . . 1
u1 −〈vi1 , e1〉 . . . −〈vid , e1〉
... . . .

ud −〈vi1 , ed〉 . . . −〈vid , ed〉

⎤
⎥⎥⎥⎦ . (3.2)

Denote by Li[d], j the coefficient of u j in the linear form Li[d](u). For each 1 ≤ j ≤
N − 1, define L( j, i[d]) as

L( j, i[d]) = det

⎡
⎢⎢⎢⎣

1 1 . . . 1
−〈v j , e1〉 −〈vi1 , e1〉 . . . −〈vid , e1〉

... . . .

−〈v j , ed〉 −〈vi1 , ed〉 . . . −〈vid , ed〉

⎤
⎥⎥⎥⎦ . (3.3)

Note that if j /∈ i[d] then L( j, i[d]) �= 0, as by the assumption of strong non-
degeneracy of S the corresponding d + 1 linear forms are linearly independent. On
the other hand, if j ∈ i[d], then we have L( j, i[d]) = 0.

The matrix Mat−1
S has the following explicit description.

Lemma 19 For each (N − d − 1)-tuple of forms {l j1, l j2 , . . . , l jN−d−1}, set i[d] =
{i1, . . . , id} = [N − 1] \ { j1, . . . , jN−d−1}, where i1 < i2 · · · < id . Then,

Mat−1
S =

⎛
⎜⎜⎜⎜⎝

. . . un0
0 un1

1 . . . und
d . . .

...
...

l j1 . . . l jN−d−1 . . .

∏d
j=0 L

n j
i[d], j∏N−d−1

k=1 L( jk ,i[d]) . . .

...
...

⎞
⎟⎟⎟⎟⎠. (3.4)

Proof of Lemma 19 In order to show that Mat−1
S defined by (3.4) is indeed the inverse

of MatS we need to verify that Mat−1
S · MatS is the identity operator on VL.

Let e′ be the standard basis vector of VL corresponding to the product of linear forms
l j ′1 . . . l j ′N−d−1

. Then MatS · e′ is the vector consisting of the monomial coefficients

of the homogeneous form l j ′1 . . . l j ′N−d−1
in the variables u0, . . . , ud . Let eT be the
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row vector of Mat−1
S corresponding to the product l j1 . . . l jN−d−1 . We note that in

eT · (MatS · e′) one can factor out the common denominator
∏N−d−1

k=1 L( jk, i[d]) of
all fractions in eT ; the remaining factor is of the form

∑
I=(n0,...,nd )
|I |=N−d−1

MatS[uI , e′]
d∏

j=0

L
n j
i[d], j = l j ′1(Li[d](u)) . . . l j ′N−d−1

(Li[d](u)). (3.5)

Note that l j ′k (Li[d](u)) = L( j ′k, i[d]) for 1 ≤ k ≤ N − d − 1, i.e., this holds for

all terms in the product on the right-hand side of (3.5). Hence, if e �= e′ then eT ·(
MatS · e′) = 0, as among j ′1, . . . , j ′N−d−1 one canfind j ′ ∈ i[d]withL( j ′, i[d]) = 0.
On the other hand, if e and e′ coincide, then the right-hand side of (3.5) is equal to∏N−d−1

k=1 L( jk, i[d]). Dividing by the common denominator of the fractions in e, we
obtain eT · (MatS · e) = 1. ��

4 Inverse moment problem for weakly non-degenerate S

Given an arbitrary spanning set S = {v1, v2, . . . , vN }, consider the linear space
�(S) ⊆ Pol(N − d − 1, d) spanned by all products l j1l j2 . . . l jN−d−1 , j1 < j2 <

. . . < jN−d−1. The next statement explains why we can extend our solution of the
inverse moment problem from the case of strongly non-degenerate S to the case of
weakly non-degenerate S.

Lemma 20 �(S) = Pol(N − d − 1, d) if and only if S is weakly non-degenerate,
i.e., each (d + 2)-tuple of points of S is spanning.

Proof We have N (non-homogeneous) linear forms l1 . . . , lN in variables u =
(u1, . . . , ud) and the linear space VL spanned by all possible products of (N −d −1)-
tuples of distinct forms. We need to investigate whether VL coincides with Pol(N −
d − 1, d). Homogenizing, we consider the same question for the linear homoge-
neous forms and the homogeneous polynomials of degree N − d − 1 in variables
(u0, u1, . . . , ud).

First assume that there are d + 2 linear forms l1, . . . , ld+2 which are not spanning.
Then one can find a non-zero vector z0 ∈ R

d+1, such that l1(z) = · · · = ld+2(z) = 0.
Note that each product of N −d −1 different forms chosen from l1, . . . , lN contains at
least one form among {l1, . . . , ld+2}. Therefore any linear combination of products of
N −d−1 forms vanishes at z0. Thus VL cannot coincidewith H Pol(N −d−1, d+1).

Conversely, assume that every (d + 2)-tuple of distinct forms among l1, . . . , lN is
spanning. First, we notice that H Pol(N − d − 1, d + 1) can be spanned by the all
possible products of N −d −1 linear forms (not necessarily pairwise distinct). Indeed,
since first d +2 forms span the dual space of R

d+1, we can express each variable xi as
a linear combination of these forms. Therefore every monomial of degree N − d − 1
can be expressed as a linear combination of products of N − d − 1 forms.
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Nowwe show that each product of N −d −1, not necessarily distinct, forms can be
expressed as a linear combination of the products of distinct ones. Assume the contrary
and consider monomials li1

1 . . . liN
N of degree N − d − 1 which cannot be expressed

as a linear combination of products with all distinct forms. Among those monomials
we take a monomial m = lk1

1 . . . lkN
N having the maximal number of distinct forms in

the product. Since m is not a product of all distinct forms, it should contain a form
li in some power ki ≥ 2. Given that ki ≥ 2 and the degree of m is N − d − 1, one
can find d + 2 distinct forms li1 , . . . , lid+2 that do not appear in m. Since any d + 2
of our forms span the dual space of R

d+1, we can express li as a linear combination
of li1, . . . , lid+2 . Now rewrite m as

(
α1 · li1 + · · · + αd+2 · lid+2

)
lk1
1 . . . lki −1

i . . . lkN
N ,

where α1 · li1 + · · · + αd+2 · lid+2 = li . Thus we get an expression of m as a linear

combination of monomials α j · li j l
k1
1 . . . lki −1

i . . . lkN
N , where each such monomial has

more distinct forms than m. Each of such monomials can be expressed as a linear
combination of products of all distinct forms, sincem was chosen as a monomial with
the maximal possible number of distinct forms, which cannot be expressed in such a
way. This is a contradiction. Thereforem can also be expressed as a linear combination
of products of all distinct forms. ��

Below we consider the inverse problem for a weakly non-degenerate S, using nota-
tion from (3.1) and (3.3). Here we no longer have a natural basis of all simplices
sharing a common vertex vN . Because of that we need to consider all N points and
include one more linear form lN into the corresponding matrix L. Slightly abusing
our notation, we denote by L the same matrix as before, although it contains one
more (last) column corresponding to vN . Similarly to notation (3.3), for a given set
J of d + 1 linear forms, we denote by L(J ) the determinant of the corresponding
(d + 1) × (d + 1)-minor of L.

We introduce the extended
(N−1

d

) × ( N
d+1

)
-matrix M̃at S with columns consisting

of the coefficients of the homogeneous polynomial li1(u) . . . liN−d−1(u) with respect

to the monomial basis in the variables (u0, u1, . . . , ud). By Lemma 20, M̃at S has full
rank, since it determines a surjective linear map onto H Pol(N − d − 1, d + 1). Thus
M̃at S has a maximal minor with a non-vanishing determinant. Formula (4.1) holds
for the determinant of any maximal minor of M̃at S .

Lemma 21 LetS be any set of
(N−1

d

)
columns of M̃at S. We label each column T ∈ S

by the corresponding subset of the linear forms l1, . . . , lN of cardinality N − d − 1.
Then the determinant of the maximal minor M̃at S(S) formed by the columns of S is
given by:

det
[

M̃at S(S)
]

= k(S) ·
∏

J∈[ N
d+1]:∀T ∈S T ∩J �=∅

L(J ), (4.1)

where k(S) is a constant (possibly equal to zero) depending only on the combinatorial
structure of the (N − d − 1)-tuples in the set S.

Proof Fix the setS as above. In what follows, we treat both sides of (4.1) as complex-
valued polynomials in N · (d +1) variables, these variables being the entries of matrix
L.
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We first show that every determinant L(J ) divides det
[

M̃at S(S)
]
. Indeed, let

J = { j1, . . . , jd+1} be a set of (d + 1) forms which has a nonempty intersection
with any (N − d − 1)-tuple of forms in S. Let z = (z1, . . . , zN ·(d+1)) be a zero of
the polynomial L(J ), which means that forms l j1 , . . . , l jd+1 comprised of the corre-
sponding coordinates of z are linearly dependent. Therefore, there is a non-zero vector
u0 ∈ R

d+1, such that l j1(u0) = · · · = l jd+1(u0) = 0. Consider the row vector (uI
0)

consisting of
(N−1

d

)
homogeneous monomials of degree N −d −1 evaluated at u0.We

notice that (uI
0) is in the kernel of M̃at S(S), as the product of (uI

0) with each column

vector T ∈ S of M̃at S(S) is equal to
∏

j∈T l j (u0); and every set T ∈ S contains

at least one of the forms l j1, . . . , l jd+1 in such a product. Thus det
[

M̃at S(S)
]
also

vanishes at such z.
We recall a well-known fact (cf. e.g. [11, Theorem 61.1]) that

L(J ) = det

⎛
⎜⎜⎜⎝

l j1 l j2 . . . l jd+1

u0 z j1 z j2 · · · z jd+1

u1 z j1+N z j2+N · · · z jd+1+N
...

...
...

. . .
...

ud z j1+d N z j2+d N · · · z jd+1+d N

⎞
⎟⎟⎟⎠,

is an irreducible complex-valued polynomial in variables z j1, z j2 . . . , z jd+1+Nd . Now
if every zero of an irreducible polynomial p(z1, . . . , zN (d+1)) annihilates another
polynomial q(z1, . . . , zN (d+1)), then p divides q. We conclude that L(J ) divides

det
[

M̃at S(S)
]
.

Using the fact that each L(J ) is an irreducible polynomial and all L(J )’s are
pairwise distinct (i.e., have distinct sets of projective zeros) we conclude that the

product of L(J )’s in the right-hand side of (4.1) divides det
[

M̃at S(S)
]
.

Finally, the product of L(J )’s has the degree

(d + 1)

∣∣∣∣
{

J ∈
[

N

d + 1

]∣∣∣∣∀T ∈ S T ∩ J �= ∅
}∣∣∣∣ . (4.2)

We observe that for each T ∈ S, the complementary set of d + 1 forms cannot be
taken as a feasible J . We notice further that these complements are the only exceptions
for the choice of J . Therefore as a feasible J we can pick any of

( N
d+1

)
(d + 1)-tuples

except those
(N−1

d

)
complements of a T ∈ S. Therefore, (4.2) equals

(d + 1)

((
N

d + 1

)
−
(

N − 1

d

))
= (d + 1)

(
N − 1

d + 1

)
= (N − d − 1)

(
N − 1

d

)
.

The latter expression coincides with the degree of the polynomial det
[

M̃at S(S)
]

(assuming that it is not a zero), as M̃at S(S) has
(N−1

d

)
columns and each entry is a

homogeneous polynomial of degree N − d − 1.



On moments of a polytope 279

Hence M̃at S(S) coincides with the product ofL(J )’s up to a constant factor which
might vanish. This constant does not depend on the entries of matrix L and hence it is
completely determined by the set S, regardless of the location of points of S in R

d .
��

Lemma 20 allows us to solve the inverse moment problem for a given weakly non-
degenerate S = {v1, . . . , vN } in a certain linear space M̃(S) ⊇ M�(S) of measures
supported on conv(S). Namely, M̃(S) is spanned by measures μ ∈ M̃(S) whose
normalized moment generating functions Fμ(u) belong to Rat(S), i.e. Fμ(u) =
P(u)/
S(u), where
S(u) = ∏N

j=1 l j (u) and P(u) is a polynomial of degree at most
N − d − 1. Indeed, by Lemma 20 any R(u) ∈ Rat(S) can be represented in the form

R(u) =
∑

i1<i2<···<id+1≤N

Ki1i2...id+1

li1li2 . . . lid+1

, (4.3)

with some real constants Ki1i2...id+1 . If vi1 , vi2 , . . . , vid+1 span R
d then the term

Ki1i2 ...id+1
li1 li2 ...lid+1

can be interpreted as the normalized moment generating function of an

appropriately scaled standard measure of the d-dimensional simplex spanned by these
vertices.

If vi1 , vi2 , . . . , vid+1 only span a hyperplane H in R
d then (4.3) corresponds to

a singular (w.r.t. to the Lebesgue measure on R
d ) measure μδ supported on δ =

conv(vi1 , . . . , vid+1). Oneway to define it as theweak limit of a sequence of (absolutely
continuous with respect to the Lebesgue measure onR

d ) measures—the appropriately
scaled standardmeasuresμδt of family ofd-dimensional simplices δt whichdegenerate
into δ when t = 0. There is no loss in generality in assuming Ki1i2...id+1 = 1, i.e., to
deal with probability measures.

Proposition 22 Let W = {w1, . . . ,wd ,wd+1} be a (d + 1)-tuple of points in R
d

such that W spans a hyperplane H ⊂ R
d . Denote by lw1 = 1− 〈w1,u〉, . . . , lwd+1 =

1−〈wd+1,u〉 the associated linear forms. There exists a unique measure μW supported
on δ = conv(W) with the normalized moment generating function FμW(u) given by

FμW(u) = 1

lw1lw2 . . . lwd+1

. (4.4)

Proof Without loss of generality assume thatW = {w1, . . . ,wd ,wd+1} is ordered in
such a way that {w1, . . . ,wd} span H . Then, δt is defined as δt = conv(δ,wid+1 +
tz), with z a unit normal to H , and μδt as the uniform density probability measure
supported on δt . Then lim

t→0
μδt = μδ , where lim is understood in sense of weak

convergence of distributions (measures), i.e., that lim
t→0

∫
f dμδt = ∫

f dμδ for any

bounded, continuous real function onR
d , cf. e.g. [10]. Then, this measure has compact

support, and thus is determined by its moments, cf. e.g. [28, Proposition 3.2]. ��
Remark 12 One can prove that the integration of a smooth compactly supported func-
tion φ with respect to the limiting measure μW is given by the integration of φ over δ

with a continuous piecewise linear weight function uniquely determined by δ. Similar
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limits appear frequently in the theory of splines. Since we only need the existence of
μW we do not pursue this topic here.

Our solution of the inverse moment problem for the linear space M̃(S) closely
follows the pattern presented in Example 2. In other words, given a weakly non-
degenerate S and the set of moments up to order N − d − 1 we

(i) produce the rational function R(u) ∈ Rat(S) with Taylor coefficients coinciding
with the normalized moments;

(ii) represent R(u) in the form (4.3);
(iii) for each term as in (4.4), determine the underlying measure supported on the

(probably degenerate) convex hull of the vertices vi1 , vi2 , . . . , vid+1 .

We can now prove our central result claiming that M�(S) = M(S) for a weakly
non-degenerate S.

Proof of Theorem 9 Theorem 9 is already settled in Corollary 11 for the case of
strongly non-degenerate S. It remains to consider the case of weakly non-degenerate
S. The denominator of the moment generating function FP (u) for an arbitrary gener-
alized polytope P with the vertex set S is of the form �N

i=1li by Proposition 6, and its
numerator belongs to Pol(N − d − 1, d). As S is weakly non-degenerate, FP (u) can
be written as a linear combination of the fractions as in (4.3), where (i1, i2, . . . id+1)

runs over the set of (d +1)-tuples of indices. If a (d +1)-tuple li1, li2 , . . . lid+1 is span-
ning then K

li1 li2 ...lid+1
is the moment generating function of the measure supported on

the simplex�, determined by its denominator, with the uniform density K/d!Vol(�).
By Proposition 22, if a (d + 1)-tuple li1 , li2 , . . . lid+1 is not spanning then

K
li1 li2 ...lid+1

is

the moment generating function of a singular measure supported on a degenerate sim-
plex. AsP is a generalized polytope, its standardmeasure has no singular components.
Therefore, no degenerate simplices can appear in its decomposition. ��
Remark 13 The latter proof demonstrates that if one starts from the set of moments of
the standardmeasureμof a polytopewith thevertex set S thenwenever obtain degener-
ate simpliceswhile solving the inversemoment problem.This iswhyM�(S) = M(S).
However, an explicit description of F�(S) for a general weakly non-degenerate S is
missing at present. For concrete Examples 3 and 4, we give these descriptions below.

Our final result computes dimM�(S) and describes a procedure to construct a
basis for M�(S).

Proposition 23 Let S = {v1, . . . , vN } ⊂ R
d be an arbitrary weakly non-degenerate

spanning set. Then

(i) dimM�(S) = (N−1
d

) − �deg where �deg is the number of degenerate simplices,
i.e., the number of non-spanning (d + 1)-tuples of points of S.

(ii) If δ is a degenerate d-dimensional simplex with vertices in S \ {vi } then there is
exactly one linear dependence among the standard measures of all d-dimensional
simplices on vi and d vertices of δ.

(iii) The standard measure of any d-dimensional simplex on vi is contained in at most
one dependence as in (ii).
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(iv) For any vertex vi , one can construct a (in general, non-unique) basis Bi of M�(S)

consisting of standard measures of d-dimensional simplices on vi , as follows.
(a) Start from the set Bi of the d-dimensional simplices on vi .
(b) For each degenerate simplex δ not containing vi , remove from Bi the standard

measure of an arbitrary simplex on vi from the corresponding to δ linear
dependence, cf. (i).

Thus we obtain
(N−1

d

)−�deg standard measures of d-dimensional simplices, form-
ing a basis of M�(S).

Proof To prove (i), notice that dim M̃(S) = dimRat(S) = (N−1
d

)
. As well, M̃(S) =

M(S)⊕Mdeg(S),whereMdeg(S) is the linear spanof themeasuresμ(1)
δ with δ running

over the set of all degenerate simplices spanned by (d+1)-tuples of dependent vertices
in S, cf. Proposition 22. Observe that these measures μ

(1)
δ are linearly independent, as

each degenerate simplex defines a singular measure supported in a proper hyperplane,
and these hyperplanes differ for different degenerate simplices. We are done with (i).

Let �0 be a dependent d + 1-subset of S, and δ = conv(�0) be as in (ii). Then δ

spans a hyperplane H0. As each d-dimensional simplex on σ0 := vi and d vertices
from �0 is uniquely defined by the latter, it suffices to analyze dependencies between
the standard measures of d − 1-simplices with vertices in �0.

We can view �0 as a weakly non-degenerate subset in R
d−1 ∼= H0. By (i), we have

dimM�(�0) = ( d
d−1

) − �deg(�0). If �0 is strongly non-degenerate as a subset of
H0 ∼= R

d−1, i.e. �deg(�0) = 0, then dimM�(�0) = d, i.e., there is exactly one linear
dependence between the standard measures of d − 1-simplices with vertices in �0,
and we are done. Otherwise, �0 = {σ1} ∪ �1, with �1 spanning a hyperplane H1 in
H0. Moreover, this can only happen if d ≥ 3. Now, we can repeat the whole argument
with σ1 in place of σ0,�1 in place of�0, and H1 in place of H0. Again, we either have
�1 strongly degenerate, and we are done, or we repeat this argument, etc., until we
hit a strongly non-degenerate �k , which is bound to happen, as the dimension goes
down each iteration. This completes the proof of (ii).

Then, (iii) stems from the fact that the vertices of d-dimensional simplex on vi

distinct from vi span a hyperplane, and the only possibility for a degenerate simplex
δ as in (ii) is to lie in this hyperplane.

Finally, to prove (iv), observe that the set B′
i of the standard measures of

d-dimensional simplices containing a given vertex vi always spans M�(S), see
Lemma 16. Now for each degenerate d-simplex δ, we prune B′

i by removing the
standard measure of a simplex in the linear dependence corresponding to δ. In view
of (ii) and (iii) this process is well-defined and unambiguous. In the end we obtain(N−1

d

)− �deg standard measures of d-dimensional simplices. In view of (i) they form
a basis of M�(S), as claimed. ��
Remark 14 The above discussions show that the columns of M̃at S corresponding
to degenerate simplices must necessarily be included in any non-vanishing maximal
minor M̃at S(S).

We conclude our discussion of the weakly non-degenerate case with two examples.
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Fig. 3 Vertices for Examples 3 and 4

Example 3 Let S = {v1, v2, v3, v4, v5} where v1 = (1, 1), v2 = (2, 0), v3 =
(2, 2), v4 = (0, 2), v5 = (0, 0) as on the left-hand side of Fig. 3. Then l1 =
1 − u1 − u2, l2 = 1 − 2u1, l3 = 1 − 2u1 − 2u2, l4 = 1 − 2u2, l5 = 1. Calcu-
lating the products li l j , i < j and taking their coefficients in the standard monomial

basis of Pol(2, 2) we obtain the following 6 × 10-matrix M̃at S

M̃at S =

⎛
⎜⎜⎜⎜⎜⎜⎝

l1l2 l1l3 l1l4 l1l5 l2l3 l2l4 l2l5 l3l4 l3l5 l4l5
1 1 1 1 1 1 1 1 1 1 1
u1 −3 −3 −1 −1 −4 −2 −2 −2 −2 0
u2 −1 −3 −3 −1 −2 −2 0 −4 −2 −2
u2
1 2 2 0 0 4 0 0 0 0 0

u1u2 2 4 2 0 4 4 0 4 0 0
u2
2 0 2 2 0 0 0 0 4 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Its rank equals 6 and one of non-vanishing maximal minors consists of the columns
with numbers S = {5, 6, 7, 8, 9, 10}. (Recall that any non-vanishing maximal minor
must include columns 6 and 9 corresponding to degenerate triples (v1, v3, v5) and
(v1, v2, v4) resp.) The corresponding submatrix M̃at S(S) equals

M̃at S(S) =

⎛
⎜⎜⎜⎜⎜⎜⎝

l2l3 l2l4 l2l5 l3l4 l3l5 l4l5
1 1 1 1 1 1 1
u1 −4 −2 −2 −2 −2 0
u2 −2 −2 0 −4 −2 −2
u2
1 4 0 0 0 0 0

u1u2 4 4 0 4 0 0
u2
2 0 0 0 4 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Further,

4M̃at
−1
S (S) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 u1 u2 u2
1 u1u2 u2

2

l2l3 0 0 4 0 −4 4
l2l4 0 0 0 0 −2 2
l2l5 0 0 2 0 −2 0
l3l4 1 −1 0 0 −1 1
l3l5 0 1 0 0 −1 0
l4l5 0 −1 1 1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Thus, given an arbitrary rational function R(u1, u2) = P(u1, u2)/
S(u1, u2), where
P(u1, u2) = a00 + a1,0u1 + a0,1u2 + a2,0u2

1 + a11u1u2 + a02u2
2 is any polynomial of

degree at most 2 and 
S(u1, u2) = l1l2l3l4l5, we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

w145 = −a10 − a20 − a11
w135 = − 1

2 (a11 − a02)

w134 = 1
2 (a01 − a11)

w125 = 1
4 (a00 − a10 − a11 + a02)

w124 = 1
4 (a10 − a11)

w123 = − 1
4 (a10 − a01 − a20 + a11).

Triangles �135 and �124 are degenerate which implies that if the original measure
we are recovering is polygonal then w135 = w124 = 0. Therefore the linear space of
numerators P(u1, u2) for the space F�(S) in this example is given by the relation

a01 = a11 = a02.

Our last example is more degenerate than the previous one, although still weakly
non-degenerate. In fact, in this example S is a multiset since v1 = v5. It shows that
our technique can be generalized to a certain class of multisets as well.

Example 4 Set S = {v1, v2, v3, v4, v5}, where v1 = v5 = (0, 0), v2 = (2, 0), v3 =
(1, 1), v4 = (0, 2) as on the right-hand side of Fig. 3. Then l1 = l5 = 1, l2 =
1 − 2u1, l3 = 1 − u1 − u2, l4 = 1 − 2u2. Calculating all products li l j , i < j and
taking their coefficients in the standard monomial basis of Pol(2, 2), we obtain the
following 6 × 10-matrix M̃at S :

M̃at S =

⎛
⎜⎜⎜⎜⎜⎜⎝

l1l2 l1l3 l1l4 l1l5 l2l3 l2l4 l2l5 l3l4 l3l5 l4l5
1 1 1 1 1 1 1 1 1 1 1
u1 −2 −1 0 0 −3 −2 0 −1 −1 0
u2 0 −1 −2 0 −1 −2 −2 −3 −1 −2
u2
1 0 0 0 0 2 0 0 0 0 0

u1u2 0 0 0 0 2 4 0 2 0 0
u2
2 0 0 0 0 0 0 0 2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Its rank equals 6 and a non-vanishing maximal minor consists of the columns with
numbers S = {1, 3, 4, 5, 6, 8}. The corresponding submatrix M̃at S(S) equals

M̃at S(S) =

⎛
⎜⎜⎜⎜⎜⎜⎝

l1l2 l1l4 l1l5 l2l3 l2l4 l3l4
1 1 1 1 1 1 1
u1 −2 0 0 −3 −2 −1
u2 0 −2 0 −1 −2 −3
u2
1 0 0 0 2 0 0

u1u2 0 0 0 2 4 2
u2
2 0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Further,

4M̃at
−1
S (S) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 u1 u2 u2
1 u1u2 u2

2

l1l2 0 −2 0 −2 −1 0
l1l4 0 0 −2 0 −1 −2
l1l5 4 2 2 1 1 1
l2l3 0 0 0 2 0 0
l2l4 0 0 0 −1 1 −1
l3l4 0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Thus, given an arbitrary rational function R(u1, u2) = P(u1, u2)/
S(u1, u2), where
P(u1, u2) = a00 + a1,0u1 + a0,1u2 + a2,0u2

1 + a11u1u2 + a02u2
2 is any polynomial of

degree at most 2 and 
S(u1, u2) = l1l2l3l4l5, we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

w345 = − 1
4 (2a10 + 2a20 + a11)

w235 = − 1
4 ((2a01 + a11 + 2a02)

w234 = 4a00 + 2a01 + 2a10 + a20 + a11 + a02
w145 = 2a20
w135 = −a10 + a11 − a20
w125 = 2a02.

Notice that triangles �125,�135,�145,�234 are degenerate. If we know that the orig-
inal measure we are recovering is polygonal then one should get w125 = w135 =
w145 = w234 = 0. Therefore, the linear space of numerators P(u1, u2) for the space
F�(S) in this example is given by the system of equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a20 = 0

a10 = a11
a02 = 0

4a00 + 2a01 + 3a10 = 0.



On moments of a polytope 285

5 Remarks and open problems

Remark 15 A weaker form of Corollary 4 (i.e., the rationality of Fρ

P (u), but without
the claim on the particular shape of the denominator) can be derived directly from
(1.3) by using Stokes formula, along the lines of [7, Lemma 1].

Problem 2 Find an appropriate version of Theorem2, applicable to non-simple and/or
non-convex polytopes.

Remark 16 Choose an arbitrary basis {� j } ofM�(S) consisting of the standard mea-
sures of simplices. The set {� j } spans an integer lattice in M�(S). (One can easily
see that this lattice is invariantly defined independently of the choice of a basis of
standard measures of simplices.) Denote by M�

Z
(S) the space M�(S) with the latter

lattice. We can prove the following.

Proposition 24 Any generalized polytope P ∈ P(S) with standard measure μP cor-
responds to a rational point in M�

Z
(S).

Proof As Conjecture 7 follows from [1, Theorem 1], one has μP ∈ M�(S). One
can easily show that P can be represented as the union of the closures of connected
components of R

d \ H(S), where H(S) is the hyperplane arrangement consisting of
all hyperplanes spanned by d-tuples of points in S. (The converse is obviously not
true.) Let S̃ ⊇ S be the extended set of vertices obtained by adding to S all vertices of
the hyperplane arrangement H(S). Since each connected component in R

d \ H(S) is
convex, it can be triangulated on S̃. Consider the space M�

Z
(S̃). Obviously, μP is an

integer point inM�
Z
(S̃). Also,M�

Z
(S) is contained inM�

Z
(S̃) as a sublattice. Thus, if

μP belongs toM�
Z
(S) it is a rational point there. ��

Problem 3 One can also define a rational convex cone Pos(S) ⊂ MZ(S) by taking
non-negative linear combinations of allμP , whereP runs over the set of all generalized
polytopes in P(S).

Conjecture 25 The rational cone Pos(S) is uniquely determined by the oriented
matroid associated to S.

We conclude this section with the following question.

Problem 4 Is it possible to describe the extremal rays of Pos(S)?

One can easily show that a simplex from P(S) spans an extremal ray of Pos(S)

if and only if it does not contain any points of S distinct from its vertices. Problem 4
is apparently closely related to the problem of classification of combinatorial types of
point arrangements, see e.g. [17] and references therein.

5.1 Hyperplane arrangements and Laplace transform

After the first version [19] of this text was released, it was pointed out to us that
Laplace transform technique developed for studying hyperplane arrangements in [13]
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(see also [15, Sect. II.8]) and the corresponding knowledge accummulated simplify
and strengthen a number of our results. Here we sketch the key ideas, leaving full
details for another publication.

LetP be a generalized polytope. It is natural to homogenize its normalized moment
generating function—the rational function Fρ

P (u) from Proposition 6—so that its
numerator and denominator become homogeneous, using an extra variable u0. E.g.
this allows to account for the origin appearing as a vertex of P . It also has a natural
interpretation in terms of measures. Namely, embedP in the hyperplane {u | u0 = 1},
and consider the cone spanned by P; equip this cone with exponentially decaying in
the direction u0 measure. Then the Laplace transform of this measure is the homoge-
nization F̃P (ũ) of Fρ

P (u), where we denoted ũ := (u0,u1, . . . ,ud).

Note that the denominator of F̃P (ũ) is the product of powers of linear forms �v(ũ),
with v ∈ V(P). The paper [13] associates to the hyperplane arrangement specified
by the corresponding hyperplanes the algebra of rational functions generated by the
reciprocials of the �v, endowed with the natural action of the polynomial differential
operators. Then it proceeds to show that F̃P (ũ) admits a decomposition into a sum
of F̃�(ũ), with � ranging through d-simplices with vertices in V(P), whenever F̃(ũ)

corresponds to a non-singular polynomial density measure. This in particular implies
Conjecture 7, and much more.
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