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Abstract: Optical metamaterials can concentrate light into extremely tiny volumes to enhance their 
interaction with quantum objects. In this paper, a cylindrical microcavity based on the 
Au-dielectric-Au sandwiched structure is proposed. Numerical study shows that the cylindrical 
microcavity has the strong ability of localizing light and confining 103- – 104-fold enhancement of 
the electromagnetic energy density, which contains the most energy of the incoming light. The 
enhancement factor of energy density G inside the cavity shows the regularities as the change in the 
thickness of the dielectric slab, dielectric constant, and the radius of gold disk. At the normal 
incidence of electromagnetic radiation, the obtained reflection spectra operate in the range from   
4.8 μm to 6 μm and with the absorption efficiency C (C=1–Rmin), which can reach 99% by optimizing 
the structure’s geometry parameters, and the dielectric constant. Due to the symmetry of the 
cylindrical microcavities, this structure is insensitive to the polarization of the incident wave. The 
proposed optical metamaterials will have potential applications in the surface enhanced spectroscopy, 
new plasmonic detectors, bio-sensing, solar cells, etc. 
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1. Introduction 

Recently, surface plasmon polaritons (SPPs) and 
localized surface plasmon polaritons (LSPs) are 
widely researched in the basis theory of optical 

metamaterials [1, 2]. Metal-dielectric photonic band 
gap structures [3, 4] are usually used to excite SPPs 
and LSPs. They have many extraordinary optical 

properties, such as surface enhanced spectroscopy [5, 
6], enhanced transmission [7−9], sensitive 
bio-sensing [10, 11], negative refractive index 

[12−14], double negative materials [15], and high 

resolution imaging [16, 17]. The metallic gratings 
consisting of narrow slits [18] may become 

transparent for extremely broad bandwidths under 
the oblique incidence. In addition, ultrathin, 
broadband, highly efficient [19, 20], and freely 

tunable [21] metamaterial-based polarization 
converters have been realized. In the visible and 
infrared range, as the wavelength increases, the 

penetration depth into the dielectric layer increases. 
At the same time, the ohmic loss of metal layers 
reduces reversely [22]. In particular, the ohmic loss 

is very low in the far infrared region, where it has a 
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perfect reflection characteristic. Because of these 
features, we can break the diffraction limitation and 
confine light within a sub-wavelength volume [23]. 
So far, confining light within a sub-wavelength 

volume has become one of the hot issues in the 
optical metamaterial research. In the terahertz region, 
dimensions can be reduced to extreme 

subwavelength [23, 24]. Furthermore, 
Fevillet-Palma et al. [25] studied the near-field 
enhancement properties of the antenna in the 

terahertz region and originally calculated the 
electromagnetic energy density in the cavities. 
However, the cuboid microcavities have the lower 

absorption efficiency, and this cuboids cavity is 
sensitive to the polarization of the incident wave. 

In this work, we first proposed 

metal-dielectric-metal (MDM) cylindrical 
microcavities and numerically calculated the 
electromagnetic energy density in the cavities and 

the concentration mechanism and the absorption 
properties of the cylindrical microcavities through 
the mathematical model by high frequency structure 

simulator (HFSS, commercial software). Compared 
with the literature [25], we got a higher absorption 
efficiency C. Because the gold disk is of circular 

symmetry, the structure was insensitive to the 
polarization of the incident light. The proposed 
model and calculation method will play a guidance 

role in the optimization of substrates for the surface 
enhanced spectroscopy. 

2. Simulation and structures 

The designed MDM structure is simulated by 

HFSS, a finite element method based program. The 
MDM cylindrical cavities are periodically arranged 
in a square lattice in the X-Y plane, as shown in Fig. 

1(a). Figure 1(b) is the schematic of a unit cell of the 
cylindrical cavity array. A dielectric layer is 
sandwiched between two metallic layers: the top 

layer is a gold disk, and the bottom layer is a gold 
ground layer. The deep black area between the gold 
disk and gold ground layer in Fig. 1(b) is the 

cylindrical microcavity formed between a gold disk  

 

(a) 

 

Z

X

Y

K 

E 

H 
 

Dielectric

Au 

Au

 

(b) 

 

(c) 

Fig. 1 Schematic of the designed MDM structure:        
(a) schematic of the cylindrical cavity array, (b) schematic 
geometry of a unit cell of the cylindrical microcavity at the 
normal incident TM plane wave (the top is a gold disk, the 
middle is a dielectric layer, the bottom is a gold plane, and the 
deep black area between the gold disk and gold ground layer is 
the cylindrical microcavity), and (c) cross section view of the 
cylindrical microcavity in the Y-Z plane (r, h, L, and P represent 
the gold disk radius, thickness of the gold disk, height of the 
microcavity, and period, respectively). 

and a gold ground layer. If the thickness L of the 
dielectric layer is smaller than the wavelength, such 
a structure supports a TM100 mode [25]. Figure 1(c) 

shows the cross section of the cavity in the Y-Z plane, 
and the structural parameters are shown in the figure. 
The thickness of the dielectric layer is chosen as L, 

and h and r are defined as the thickness and radius 



                                                                                             Photonic Sensors 

 

150 

of the gold disk, respectively. In this paper, the 
thickness of the gold ground layer is chosen as  
0.45 m. The gold ground layer has two significant 
functions. One is to serve as an optical mirror. As 

the thickness is greater than the penetration depth of 
the incident light, the transmittance is close to zero. 
The other is to couple with the gold disk and gold 

ground layer to create electric and magnetic dipoles 
which extremely concentrate electromagnetic energy 
into the microcavities. Period P is 3 m. The 

orientations of the electric field (E), the magnetic 
field (H), and the wave vector (K) are shown in Fig. 

1(b). The incident angle is 0. The boundary 

conditions are set as the perfect electric conductor 
and perfect magnetic conductor on two-pair faces. 
The dielectric permittivity of gold is modeled by 

using the Drude model [26] 

  
2

2
1

i


 
 


             (1) 

with the plasma frequency ωP=1.37×1016
 rad/s and 

scattering frequency =4.08×1013
 rad/s. 

3. Results and discussion 

In order to study the resonant characteristics of 

the cylindrical microcavity, we calculate the 

reflectivity spectra R(ω)=|S11(ω)|2 at the normal 

incident TM plane wave. As shown in Fig. 2, the 

resonant cavity mode appears as a reflection dip in 

the spectra. Moreover, the grating period is kept 

subwavelength, so that the only contribution to the 

reflected signal is the specular reflection (0th 

diffraction order) [25]. We also calculate the 

transmission of the structure shown in Fig. 1 and 

obtain near zero transmission for all geometry 

parameters (the transmission spectra are not given 

here). According to the equation 
1T R C               (2) 

where T, R, and C are the transmission, reflection, 

and absorption, respectively. Due to T = 0, the 

minimum of reflection appears as the maximum of 

absorption. If we define C=1–Rmin, where Rmin is the 

minimum reflectivity at the resonant frequency, a 

larger C indicates a stronger absorption efficiency. 

3.1 Absorption of the configuration 

Figure 2(a) is the reflectivity spectra of the 

cylindrical microcavity in the MDM structure at the 

normal incident with variable dielectric constant , 
here L=1 m, h=0.45 m, H=0.45 m, and P=3 m. 

When  changes from 10 to 14 (with a step of 1), the 

resonant frequency is around 60.3 THz, 57.5 THz, 

54.95 THz, 52.9 THz, and 51 THz, and C is 85%, 

88%, 97%, 99%, and 97%, respectively. It can be 

seen that the reflection peaks show red-shift with an 

increase in the dielectric constant, and this means 

that the greater the dielectric constant is, the greater 

the near-field coupling is, which reaches an 

agreement with that in [27]. This is because the 

change in the effective dielectric permittivity [, (ω)] 

of the system results in a shift of the electric 

resonance frequency. And the rate of red-shift is 

proportional to the dielectric constant. Figure 2(b) 

shows the reflectivity spectra as a function of L. As 

shown in Fig. 2(b), the resonant frequency mainly 

locates in the range of (53.7 ± 0.75) THz, whose 

dependence on L is relatively weak [27]. In contrast, 

the dielectric constant  has much more greater 

impacts on the electric dipole resonances due to the 

excitement of the external electric field than L. At  

L = 0.98 μm, C is 96%. When L increases to 0.99 m, 

C reaches the maximum 99%. A further increase in 

L will reduce C. At L=1.00 m, C declines to 98%. 

When L changes from 1.01 m to 1.03 m, the 

absorption efficiency inside the cavity continues to 

fall. The results show that the absorption efficiency 

inside the cavity is closely related to L. Figure 2(c) 

presents the reflectivity spectra as a function of r, 

here L=1 m, h=0.45 m, H=0.45 m, and P=3 m. 

When r increases from 0.4 m to 0.9 m (with a step 

of 0.1 m), the resonant frequency locates at  

56.255 THz, 54.255 THz, 53.75 THz, 53.355 THz, 

53.25 THz, and 53.15 THz, respectively and C 

equals to 71%, 89%, 99%, 88%, 69%, and 50%, 

respectively. As shown in Fig. 2(c), the resonant 
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peaks show red-shift with an increase in the radius, 

which has a similar trend as Fig. 2(a), and this 

near-field coupling phenomenon was reported in 

[25]. The results also show that the absorption 

efficiency inside the cavity is sensitive to the radius 

of the gold disk. 

 
Fig. 2 Reflection spectra of the cylindrical microcavity in the MDM structure at the normal incident TM plane wave: (a) reflectivity 

spectra with the change in the dielectric constant , L=1 m, h=0.45 m, H=0.45 m, and P=3 m, (b) reflection spectra with the 
change in L, r=0.6 m, H=0.45 m, and P=3 m, and (c) reflectivity spectra with the change in r, L=1 m, h=0.45 m, H=0.45 m, and 
P=3 m.

3.2 Localizing features 

As reported in [25], the energy of the incidence 

wave is dissipated by both the metallic and the 

dielectric losses, and the large part of the energy can 

been localized in the dielectric microcavity. In order 

to study the regularity of the energy density in the 

condition of different parameters, we calculate the 

energy density of the electromagnetic field inside 

the cylindrical cavity with the change in the 

dielectric constant, the thickness of the dielectric 

slab, and the radius of the gold disk. Because of the 

energy conservation, the peak electrical energy is 

equal to the average total energy inside the cavity, 

and the solution is achieved by integrating E E  

within the volume 

      d
V

E E
E dv

V


              (3) 

where V is the volume of the cavity, Ed is the energy 
density inside the cavity, and E represents the 
electric field vector inside the cavity. Firstly, we 
calculate the energy density Ed1 inside the dielectric 

cavity in the MDM structure. Then, we calculate the 
energy density Ed2 inside the vacuum cavity without 
the MDM structure, whose shape and size are the 
same as the dielectric cavity. We define G= Ed1 / Ed2 

as the enhancement factor of the energy density. A 
cavity with too big or small volume will affect the 
electromagnetic (EM) energy absorption and 
confinement inside the cavity [23]. Only when the 
parameters of the material and geometry are 
optimized, the impedance of the structure matching 
to the impedance of vacuum will the extreme 
confinement of the EM field and strong absorption 
inside the cavities appear. Figure 3(a) shows the 
enhancement factor of the energy density G as a 
function of . It can be seen that the enhancement 
factor G increases with an increase in the dielectric 
constant . Because the near-field coupling between 
the top and bottom metal layers become stronger 
[27], the ability of localizing the light inside the 
dielectric cavities is strengthened as shown in Fig. 

3(a). Figure 3(b) shows the energy density ratio G as 
a function of the thickness of the dielectric slab L. 
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As shown in Fig. 3(b), when L changes from 0.98 

m to 0.99 m, G shows the trend of growth. When 
L increases to 0.99 m, G reaches the maximum 
4180. A further increase in L will reduce G. At 
L=1.03 m, G declines to 2945. Figure 3(b) reveals 
very important field spreading in the plane of the 
metallic strip [23] when L changes from 0.99 m to 
0.98 m. So the enhancement factor G is sensitive to 
L, and the most optimal G should also be related to 
the effective dielectric permittivity [()] of the 
system. Figures 4(a) and 4(b) present the energy 
density ratio G and absorption efficiency C as a 
function of the radius r of the gold disk, respectively. 
From Fig. 4(a), we can see that G shows the trend of 
increase first and when r = 0.5 m, G reaches the 
maximum 3314. Afterwards, G begins to decrease. 
As shown in Fig. 4(b), their variation trend is the 
same as that shown in Fig. 4(a). Their difference is 
that C reaches the maximum 97% when r = 0.6 m. 
It can be seen that the maximum of C does not 
indicate the maximum of the energy density ratio. To 
explain this phenomenon, we use the following 
model (4): 

2
0 res

ohm2
in

cos
2

ZE
Q C

E V

 






︱ ︱

∣ ︱
        (4) 

where  is the dielectric constant of the middle layer, 

V = πr2L is the volume of the cylindrical resonator, 

Ein is the electric field amplitude of the incoming 

wave, EZ0 is the amplitude of the mode resonantly 

excited in the microcavity, and θ is the incident 

angle. For the data reported here, we have cosθ = 1, 

 = P2, and Qohm is the quality factor Q of the Ohmic 

loss. When r = 0.6 m, C = 0.97, G = 3232,  r= 0.5 

m, and R = 3314, C is 0.85. Because Qohm 

approximately equals in the bands studied here, we 

can get 
2

0
2

in

ZE

E

︱ ︱

∣ ︱
= res C/V, indicating that the 

energy density ratio inside the cavity is decided by 

res C/V. At r = 0.6 m, its res C is greater than that 

at r = 0.5 m. As the volume plays the most 

important role in R, R reaches the maximum (3314) 

at r = 0.5 m. 

 

(a) (b)

48 000

45 000

42 000

39 000

36 000

33 000

30 000

27 000

G
 

10 11 12 13 14 

Dielectric constant L (m) 
0.98 0.99 1.00 1.01 1.02 1.03

 
Fig. 3 Energy density ratio G as the dielectric constant  and 

the thickness L of the dielectric slab: (a) energy density ratio G 

as a function of the dielectric constant  and (b) energy density 
ratio G as a function of the thickness L of the dielectric slab. 
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   Fig. 4 Energy density ratio G and absorption efficiency C as 
a function of the radius r of the gold disk: (a) energy density 
ratio G as a function of the radius r of the gold disk and      
(b) absorption efficiency C as a function of the radius r of the 
gold disk. 

3.3 Physical mechanism 

To explore the physical mechanism of the 

extreme confinement and perfect absorption inside 

the cavity, the distributions of the EM field intensity 

and current at the resonant mode (f = 53.7 THz) are 

simulated, as shown in Fig. 5. Figure 5(a) shows the 

amplitude of the electric field in the middle of the 

dielectric layer in the X-Y plane. The gray circle 

represents the cylindrical microcavity. A standing 

wave pattern is clearly shown in Fig. 5(a). The 

amplitude of the electric field can be approximated 

by the expression 

cos (0 )
X

E X r
x





～ ＜ .       (5) 

At r = 0, |E| reaches its maximum, that is, the 

energy is strongly localized around the center of the 

cylindrical microcavity. Figure 5(b) presents the 
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amplitude of the electric field in the middle of the 

dielectric layer in the Y-Z plane. In this figure, the 

white area represents the metal, the middle layer is 

dielectric, and the EM field is highly localized 

between the two metal layers, which can be 

approximated as a standing wave too. The confining 

mechanism, which arises from the impedance 

mismatch between the metal-metal and single metal 

regions [24], is responsible for the formation of the 

standing wave patterns. The perfect absorbing  
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Fig. 5 Distributions of the EM field intensity and current within cylindrical cavities at the normal incident TM plane wave:      

(a) amplitude of the electric field in the middle of the dielectric layer in the X-Y plane at f = 53.7 THz, (b) amplitude of the electric field 
in the middle of the dielectric layer in the Y-Z plane at f=53.7 THz, (c) amplitude of the electric field on the top surface of the dielectric 
layer at f = 53.7 THz, (d) amplitude of magnetic field in the middle of the dielectric layer in the Y-Z plane at f = 53.7 THz, and       
(e) distribution of the current in the middle of the dielectric layer in the Y-Z plane at f = 53.7 THz.



                                                                                             Photonic Sensors 

 

154 

characteristics may be explained by Figs. 5(c)−5(e). 

Figure 5(c) shows the amplitude of the electric field 

on the top surface of the dielectric layer, and here 

the gray circle represents the position of the gold 

disk. As indicated in Fig. 5(c), the distribution of the 

electric field mainly concentrates around the gold 

disk, forming a square area. However, the amplitude 

of the electric field in the center of the gold disk is 

weaker than that in the surrounding. Meanwhile,   

it can be seen clearly that six “hot spots” 

symmetrically locate in the four edges of the square 

area and both sides of the gold disk in the Y-axis 

direction. In this case, the gold disk can be regarded 

as the electric dipole resonator by the external 

electric field excitation. A change in the disk 

diameter will result in a shift of the electric 

resonance frequency and hence result in a change in 

the effective dielectric permittivity [()] of the 

system. Figure 5(d) shows the distribution of the 

current in the middle of the dielectric layer in the 

Y-Z plane. The white areas in this figure are the two 

metal layers. The magnetic field distribution shown 

in Fig. 5(d) clearly indicates the localization of the 

magnetic field between two metal layers, and the 

formation of the magnetic dipole resonance. A 

change in the dielectric layer thickness mainly 

affects the magnetic resonance and the effective 

magnetic permeability [(ω)] of the system. By 

optimizing the parameters of the top gold layer and 

dielectric layer thickness, we can tune  of the  
and   resonances .  When we achieve  = 

 
 

1Z
 
 

 
  

 
 

, an impedance near the free space 

value is formed. With strongly coupling the incident 

radiation to the resonant structure and perfect 

absorbance being theoretically possible, it can only 

occur when the metal-metal layer is 

impedance-matched to the free space [28]. The 

distribution of the current in the middle of the 

dielectric layer in the Y-Z plane is shown in Fig. 5(e), 

here the arrows in the dielectric cavity represent the 

magnitude and direction of the current. Figure 5(e) 

clearly indicates that the currents on the disk and the 

ground plane are opposite, forming a circulating 

current known as a magnetic resonance, which 

results in an artificial magnetic moment that 

interacts strongly with the magnetic field of the 

incident light. If the electric and magnetic dipole 

resonances occur at the same frequency, then there 

will be a strong localization of the electromagnetic 

energy inside the cylindrical microcavity. To realize 

the high confinement and perfect absorption, the 

optical metamaterials are usually engineered by 

simultaneously minimizing the reflectance with 

perfect impedance matching and eliminating the 

transmittance by maximizing material losses. 

4. Conclusions 

We have numerically studied the electromagnetic 

energy density and absorption efficiency inside the 

MDM cylindrical microcavities in the mid-infrared 

range. As the change in the thickness of the 

dielectric slab, dielectric constant, and the radius of 

gold disk, G and C present some important 

regularities for us to modulate the resonance 

frequency and strengthen electromagnetic energy 

density. The enhancement factor G increases with an 

increase in the dielectric constant . When L changes 

from 0.98 m to 1.03 m, G increases first and then 

decrease. When L = 0.99 m, G reaches the 

maximum 4180. At L = 1 m, H = 0.45 m, h =  

0.45 m, and r = 0.6 m, C is 0.97, and R is 3232. 

When r = 0.5 m with other conditions unchanging, 

C is 0.85, and R is 3314. It can be seen that the 

maximum of C does not indicate the maximum of 

the energy density ratio. This kind of strong 

absorption and high localization makes the proposed 

structures have broad applications in the areas such 

as the surface enhanced spectroscopy, new 

plasmonic detectors, bio-sensing, and solar cells. 
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