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Abstract

G protein—coupled receptors (GPCRs) constitute the largest class of cell surface signaling receptors and regulate major neuro-
biological processes. Accordingly, GPCRs represent primary targets for the treatment of brain disorders. Several human genetic
polymorphisms affecting GPCRs have been associated to different components of alcohol use disorder (AUD). Moreover,
GPCRs have been reported to contribute to several features of alcohol-related behaviors in animal models. Besides traditional
pharmacological tools, genetic-based approaches mostly aimed at deleting GPCR genes provided substantial information on how
key GPCRs drive alcohol-related behaviors. In this review, we summarize the alcohol phenotypes that ensue from genetic
manipulation, in particular gene deletion, of key GPCRs in rodents. We focused on GPCRs that belong to fundamental neuronal
systems that have been shown as potential targets for the development of AUD treatment. Data are reviewed with particular
emphasis on alcohol reward, seeking, and consumption which are behaviors that capture essential aspects of AUD. Literature
survey indicates that in most cases, there is still a gap in defining the intracellular transducers and the functional crosstalk of
GPCRs as well as the neuronal populations in which their signaling regulates alcohol actions. Further, the implication of only a
few orphan GPCRs has been so far investigated in animal models. Combining advanced pharmacological technologies with more
specific genetically modified animals and behavioral preclinical models is likely necessary to deepen our understanding in how
GPCR signaling contributes to AUD and for drug discovery.
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Introduction large class of cell surface proteins encoded by more than

800 genes in human. These receptors are classically bound

G protein—coupled receptors (GPCRs), which are also called
seven-transmembrane (7TM) domain receptors, represent a
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by a ligand that triggers changes of the highly dynamic
GPCR conformation ultimately leading to the modulation of
G protein—dependent and/or G protein—independent signaling
cascades [1]. GPCR ligands include a broad panel of endog-
enous signaling molecules such as cytokines, metabolites,
hormones, or neurotransmitters. The majority of GPCR en-
dogenous ligands are agonists, and thus their binding to
GPCRs induces G protein activation which may, in turn, mod-
ulate several second messengers and signaling cascades such
as adenylyl cyclase, cyclic adenosine monophosphate
(cAMP), mitogen-activated protein kinase (MAPK), phos-
phatidylinositol 3-kinase (PI3K), and enzyme phospholipase
A2 (PLA2) pathways [2]. G proteins mediate a wide variety of
cellular functions, including ion channel activity and modula-
tion of neurotransmitter release, and thus regulate a remark-
able variety of biological outputs. Alternatively, the multi-
functional proteins {3-arrestins 1 and 2 can also mediate
GPCR signaling [3]. GPCRs are the main receptor targets
for the development of pharmaceutical drugs (see guide to
pharmacology at http://www.guidetopharmacology.org/
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about.jsp) [4]. GPCRs have also the capacity to form oligomer
by covalent bonds or by intermolecular forces and may be
homodimer (two identical GPCRs) or heterodimer (two
different GPCRs). Oligomerization may change the ligand
binding and signaling properties of the GPCRs and thus can
result in unique functional entities [5, 6]. Interestingly, GPCR
heterodimers have been described in different structures of the
rodent brain and are believed to contribute to several features
of substance use disorder [7].

More than 30% of the drugs approved by the Food and
Drug Administration (FDA) of the USA target GPCRs with
a total sales volume estimated to be 180 billion USD [8—10].
These pharmaceutical drugs bind to GPCRs expressed notably
in the nervous system such as opioid, endocannabinoid, and
aminergic (5-hydroxytryptamine (5-HT), serotonin, and dopa-
mine (DA)) receptors [9]. Accordingly, many drugs used to
treat psychiatric disorders target GPCRs or proteins that mod-
ulate the extracellular levels of neurotransmitters (e.g., selec-
tive serotonin reuptake inhibitors). In this context, innovative
strategies including location biased [11], system biased [12,
13], allostery [14], and structure-based docking approaches
[15] have being implemented to design safer and more effi-
cient drugs targeting GPCRs. In addition, GPCRs with no
endogenous ligand identified, termed orphan GPCRs, also
represent promising targets for drug development of psychi-
atric diseases [16]. The majority of orphan GPCRs are also
expressed in the brain [17-19] and are located at the cell
surface allowing for ease of access. Today, GPCRs are still
considered promising therapeutic targets for the treatment of
psychiatric diseases. Through the advent of transgenic tools,
the generation of genetically modified mice has constituted a
fruitful approach to tackle GPCR function in vivo and to ex-
amine their potential as drug targets.

Targeted Gene Disruption to Study GPCR
Function /n Vivo

Cloning of the genes encoding GPCRs in the late 1980s and
1990s along with the development of transgenic technologies
to engineer mice with targeted gene disruption propelled sci-
entists to address GPCR function in health and disease
through a brand new experimental framework [20, 21]. Until
then, traditional pharmacological methods had provided many
valuable insights but were limited in certain cases owing to the
low selectivity of the available ligands. This is particularly
true when it is necessary to untangle the functional character-
istics of highly related GPCR subtypes in vivo where it is
arduous to control tissue concentration of an active molecule
and its selective binding to the targeted receptor following
systemic or local administration. Similarly and regarding or-
phan GPCRs, the lack of potent synthetic brain-penetrant li-
gands constitutes additional obstacles to probe their function
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in vivo. In this context, in vivo manipulation of genes encoding
GPCRs represented a powerful alternative and/or complemen-
tary approach to explore individually the contribution of each
GPCR subtype and orphan GPCRs in physiological and path-
ological processes. Although the use of GPCR null mutant
mice provided a way to circumvent the lack of ligand selec-
tivity, these models do have their own drawbacks [21]. In
particular, deletion of a specific gene can be lethal or give rise
to unexpected genetic compensation that could distort or mask
the actual function of the targeted GPCR. Moreover, specific
neuronal or brain region localizations of receptors, as exem-
plified by DA receptors, can lead to various and complex
actions of GPCRs that will not be fully captured by a null
mutant approach. In such instances, tissue-specific, condition-
al, and inducible knockouts can substitute traditional null mu-
tant animals [21]. In addition to the use of GPCR null mutant
mice, targeted disruption of genes encoding GPCR ligands or
encoding enzymes involved in their production or degradation
has been also exploited to explore the contribution of GPCR
signaling in vivo. Importantly, combining such genetic animal
models with pharmacological compounds has made it possi-
ble to interrogate in vivo the functional relevance of GPCR
constitutive signaling, GPCR oligomerization, and the
crosstalk between GPCR systems [22-25]. Thus, genetic ro-
dent models must not be regarded only as a new way to verify
or clarify GPCR function but as complementary tools and new
opportunities to deepen our understanding in GPCR biology.

GPCRs and Alcohol-Related Behaviors:
Studies in Mutant Knockout Mice

Drugs of abuse affect neuromodulation mediated by GPCRs,
with multiple consequences for acute intoxication, drug seek-
ing, and consumption. Moreover, substantial literature indi-
cates that several GPCRs are involved in prolonged drug
exposure—induced neuroadaptations that play a critical role
in withdrawal symptom and drug relapse [26, 27]. Alcohol
use disorder (AUD) is today among the most pervasive psy-
chiatric disorder that encompasses multiple and complex
physiological and behavioral phenotypes. The familial inci-
dence of alcoholism indicates that heredity significantly in-
creases the likelihood of heavy drinking behavior and the
development of the disorder [28]. Indeed, individuals who
have a family history of alcoholism are of high risk to develop
and express alcohol addiction, relative to those who are family
history negative [29]. This genetic association has been con-
firmed by multiple gene studies including the Collaborative
Study on the Genetics of Alcoholism (COGA) [30]. Thus, one
major goal for neuroscientists has been to identify genes and
proteins in the brain that influence the development and/or the
expression of AUD. In this regard, the use of genetically
engineered mice, particularly global homozygous knockouts,
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has provided a productive and straightforward way to individ-
ually evaluate the contribution of protein-coding genes in
alcohol-related behaviors [31-33]. Thus, shortly after the
cloning of GPCR genes, the use of null mutant mice models
of alcohol abuse naturally emerged as an obvious strategy to
dissect out the contribution of GPCR signaling in alcohol
actions [21, 34]. Hence, mice with targeted GPCR gene dis-
ruption were tested under diverse typical procedures to eval-
uate their sensitivity to acute and chronic alcohol exposure
and alcohol consumption. The applicability of this genetic-
based approach was first illustrated with the use of null mutant
mice lacking the 5-HT;p serotonin receptor gene which
displayed enhanced voluntary alcohol intake and lower sensi-
tivity to acute alcohol action [35]. In the present review, we
will give updated progress that has been made in studying the
role of GPCRs in alcohol actions using transgenic mouse
models and in particular knockout animals. We decided to
discuss below only 1) GPCRs that have recognized a role in
drug use disorders and that represent key neurotransmitter
systems (DA, serotonin, glutamate, and 'y-aminobutyric acid
(GABA) receptors) and 2), based on our current knowledge,
GPCRs that constitute current therapeutic or emerging targets
for the treatment of AUD (opioid [36], endocannabinoid [37],
ghrelin receptor [215], corticotropin-releasing factor (CRF)
[38], melanocortin receptors [39], and orphan GPCRs).
However, we have also broadly catalogued reports that ad-
dressed GPCR function in alcohol drinking using knockout
mice (see Table 1) which will enhance the system-wide view
of GPCR genes role in alcohol actions.

Opioid Receptors

The opioid system is composed of three homologous GPCRs,
the mu opioid receptors (MORs), delta opioid receptors
(DORs), and kappa opioid receptors (KORs) [109] principally
coupled to Gi/o. These three GPCRs are activated by endog-
enous opioid peptides such as [3-endorphin, enkephalins, and
dynorphins [110]. Activation of the opioid system by opioid
peptides may diminish responses to stress and painful feelings
and modulate both mood and reward processing [109, 111].
Specifically, activation of MORs produces analgesia and eu-
phoria and MORs are critical for developmental, social, and
drug rewards [112]. DORs are modulating anxiety and mood
functions [113], and activation of DORs has been considered
as a mood enhancer. Dysfunction of the DOR system has been
associated with mood disorders, depression, and chronic pain
[114, 115]. Finally, KORs are mediating highly aversive and
psychotomimetic effects [116, 117]. The different components
of the endogenous opioid system are highly expressed in brain
areas involved in reward and motivation (for review, sece
[109]), and opioid system dysfunction may thus cause
addiction-related mood and cognitive disorders [112]. Here,

we will review the role of the three opioid receptors in alco-
holism identified using genetically modified mice.

MORs

The MORs are the primary target of morphine, as the deletion
of MORs (encoded by the Oprm1 gene) in mice abolished the
analgesic (therapeutic effect), dependence, and rewarding
properties of this drug [118]. Later, it was demonstrated that
MORs are the main receptors to mediate effects of other opi-
ates, both those used in clinic to treat pain or those abused in
the street for their euphoric properties (such as oxycodone,
fentanyl, methadone, buprenorphine, and heroin) [109, 120].
Misuse of opioids may cause addiction and is a leading cause
of the rising opioid epidemic in North America [109, 111,
119]. Furthermore, studies using MOR knockout mice dem-
onstrated that MORs are essential to drive reward properties of
other drugs of abuse including cocaine, A°-tetrahydrocannab-
inol (THC), nicotine, and alcohol [121, 122]. Deletion of
MORs in mice abolished self-administration and reduced vol-
untary drinking of alcohol and alcohol rewarding effect [41,
123]. Furthermore, deletion of MORs abolished the acute
anxiolytic-like and stimulant effects of alcohol and accelerated
the development of alcohol dependence [124], indicating that
MORs are essential for anxiolytic, locomotor, rewarding, and
addictive properties of alcohol. Recently, circuit mechanisms
underlying the role of MORs in alcohol-related behaviors
have been investigated by genetic approaches. Conditional
MOR deletion in GABAergic forebrain neurons using a
DIx5/6-Cre driver line (Cre expressed in GABAergic neurons
[125] crossed with floxed OprmI mice) diminished voluntary
alcohol drinking and alcohol rewarding properties [126].
Endogenous peptides binding to MORs such as 3-endorphin
and his precursor proopiomelanocortin (POMC) have also
been implicated in alcohol use and abuse disorders [121,
127, 128]. Specifically, (3-endorphin heterozygote knockout
mice showed an increased voluntary alcohol consumption in a
two-bottle choice paradigm [46]. In another study, voluntary
consumption was reduced in (3-endorphin knockout mice with
a stronger reduction in female mice [47]. Recently, a mouse
line with a genome-wide deletion of neuronal Pomc enhancer
1 was generated [127]. This deletion reduces specifically (3-
endorphin levels in the hypothalamus and decreases signifi-
cantly alcohol consumption in two alcohol drinking para-
digms: drinking in the dark and intermittent access [127].
Together, these studies revealed a contribution of 3-
endorphin in alcohol consumption.

The most studied MOR single nucleotide polymorphism
(SNP) is the A118G substitution of opioid receptor mu gene
(OPRM1; 151799971, exon 1), which replaces asparagine at
position 40 by aspartate (Asn40Asp) [129]. Functionally, this
substitution has been characterized as creating a new CpG site
for methylation and may explain the reduced MOR messenger
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Table 1 Preclinical data in genetically modified mice and effect of genetic deletion of different GPCRs on alcohol intake behaviors

GPCR system Gene Alcohol intake Drinking paradigm References
Opioid Oprml—/— l Continuous [40]
Oprml—/— l Continuous [41]
Oprml—/— l Self-administration [41]
Oprml, 118GG carrier i Continuous [42, 132]
Oprdl—/- i Limited [43]
Oprdl—-/- i Self-administration [44]
Oprdl—/- i Continuous [44]
Oprkl—/- l Limited [43]
Oprkl—/- l Continuous [45]
Pomc—/— 1 Continuous [46]
Pomce—/— l Continuous [47]
Penk—/— l Continuous [47]
Penk—/— = Continuous [48]
Pdyn—/— i Continuous [49]
Pdyn—/— i Continuous [50]
Opril™"~ | (only at high concentrations)  Continuous [51]
Oprll™" (in rats) l Self-administration [52]
Endocannabinoid Cnrl—/— l Limited [53]
Cnrl—/— l Limited [54]
Cnrl—/— l Continuous [55]
Cnrl—/— l Continuous [56]
Cnrl—/— l Continuous [23]
Cnrl—/— = Continuous [57]
Cnr2—/— 1 Continuous [58]
Cnr2—/— 1 Self-administration [58]
Ghrelin Ghsr—/— = Limited [59]
Ghsr—/— l Continuous [23]
Ghsr—/— (in rats) l Self-administration [60]
Ghsr—/— (in rats) l DID [60]
Ghsr—/— (in rats) X Intermittent access [60]
Ghrl—/— = Limited [61]
Ghrl—/— l Continuous [62]
Ghrl—/— l Continuous [23]
Mboat4—/— l Continuous [23]
Dopaminergic Drdl—/~ l Limited [63]
Drdl—/- l Continuous [63]
Drd2—/- l Continuous [64]
Drd2—/- l Continuous [65]
Drd2—/- l Continuous [66]
Drd2—/- l Continuous [67]
Drd2—/- l Self-administration [68]
Drd3—/- l Limited [69]
Drd3—/- l Continuous [69]
Drd3—/- X Continuous [70]
Drd3—/- ~ Self-administration [70]
Drd3—/~ = Limited [71]
Drd3—/— = Continuous [71]
Drd4—/— i Limited [72]
Serotoninergic Shtrib—/— 1 Continuous [35]
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Table 1 (continued)
GPCR system Gene Alcohol intake Drinking paradigm References
Shtrlb—/— 1= Self-administration [73]
Shtrib—/— = Continuous [74]
Shtrib—/— = Continuous [35]
Shtr6—/— = Continuous [75]
Glutamatergic Grm5—/— l Continuous [76]
Grm5—/— = Continuous [77]
Grm5—/— | (females only) 4 bottles [77]
Grm5—/— | (females only) DID [77]
Grm5—/— No change (females only) Limited [77]
Grm5AA/AA 1 Continuous [78]
Grm5AA/AA i DID [78]
Grm5AA/AA i Self-administration [78]
Grm2—/— 1 (only at high concentrations)  Continuous [79]
Grm4—/— ~ Continuous [80]
B6.129/0la—Grm7tmNovartis 1 Continuous [81]
CRF Crhrl—/— = Continuous [82]
Crhrl—/— 1 Stress + continuous [82]
CRFINestinCre = Continuous [83]
Crhrl—/— = Continuous [83]
CRFINestinCre l Stress + continuous [83]
Crhrl—/— 1 Stress + continuous [83]
Crhrl—/— 1 Vapor exposure + continuous  [83]
Crhrl—/- l DID [84]
Crhrl—/— l DID [85]
Crhrl—/— l 20% continuous [86]
Crhrl—/— = 3%, 6%, or 10% continuous [86]
Crhrl—/— l Stress + continuous [86]
Crhrl—/— x Self-administration [87]
Crhr2—/— l DID [85]
Melanocortin Mc3r—/— = DID [88]
Mc4r—/— = Continuous [89]
Orphan GPCR Gpr88—/— 1 Continuous [90]
Gpr88—/— 1 Intermittent access [90]
Muscarinic Chrm4—/— 1 Self-administration [91]
Histamine Hrh3—/— l Continuous [92]
Hrh3—/~ l Limited DID [92]
Melanin-concentrated hormone ~ Mchrl—/— i Continuous [93]
Mchrl—/~ = Limited [93]
Angiotensin Agtrla—/— l Continuous [94]
Agtr2—/— ~ Continuous [94]
Bradykinin Bdkrb2—/— = Continuous [94]
Vasopressin Avprla—/— i Continuous [95]
Adenosine Adoral—/— = Self-administration [96]
Adora2a—/— 1 Continuous [97]
Adora2a—/— = Continuous [98]
Neuropeptide Y Npylr—/— il Continuous [99]
Npy2r—/- /= Continuous [100]
Npy5r—/— = Continuous [101]
Chemokine Cer2—/— l Continuous [102]
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Table 1 (continued)

GPCR system Gene Alcohol intake Drinking paradigm References
Cer5—/— = Continuous [102]
Cholecystokinin Cckar—/— 1 (preference unchanged) Continuous [103]
Cckbr—/— /= Continuous [103]
Cckbr—/— 1 Continuous [104]
Neurokinin Tacrl—/— l Continuous [105]
Tacrl—/— l Continuous [106]
Neurotensin Ntsri—/— i Continuous [107]
Nisr2—/— 1 Continuous [108]

In the third column, symbols =, |, and 1 indicate no significant difference, decreased, or increased alcohol intake and/or preference, respectively, in
mutant versus control animals. Mice were tested unless when otherwise stated (rats); continuous, 24-h two-bottle choice alcohol consumption paradigm
or 24-h progressive two-bottle free-choice alcohol consumption paradigm; DID, drinking in the dark; intermittent access, intermittent access two-bottle
choice paradigm; limited, limited access procedures; Self-administration, operant alcohol self-administration; 4 bottles, four-bottle choice paradigm

RNA (mRNA) levels identified in vivo and in vitro [129]. In
parallel, it was also shown to remove a potential N-
glycosylation site in the extracellular domain altering [3-
endorphin binding and signaling [130]. The human A118G
variant has also been studied in animal genetic models of
alcoholism. In this model, exon 1 of the human OPRM]I with
or without the variant A118G was inserted into mice [131].
Striatal dopamine release induced by alcohol was increased in
A118G carrier in both humanized mice and humans [131].
Moreover, 118GG mice drank significantly more alcohol
using a continuous access paradigm compared to control an-
imals [132, 42].

Altogether, studies using knockout, conditional knockout,
and knock-in strategies demonstrate that MORs are crucial in
the development and maintenance of alcohol drinking and
support the fact that naltrexone (a MOR antagonist) is one of
the few available authorized medications to treat alcohol
abuse [133].

DORs

Considering that DORs play a role in mood disorders such as
depression and anxiety [113, 134] and that depression-like and
anxiety-like behaviors are comorbid with AUD [135], the role
of DORs in alcohol addiction has been investigated as a po-
tential target for treatment of AUD. It has been suggested that
acute and chronic alcohol exposure can affect the expression,
pharmacology, and function of DORs [136, 137]. For in-
stance, prolonged alcohol exposure using two-bottle limited
access [138] or alcohol-induced conditioned place preference
(CPP) procedures increased expression of DORs [139].
Moreover, acute alcohol injection in rats alters the binding
of selective ligand of the DORs ([3H][D-Pen2,b-Pen5]-en-
kephalin ([3H]-DPDPE)) in the prefrontal cortex (PFC), cau-
date putamen (CP), nucleus accumbens (NAc) core and shell,
and substantia nigra [140]. At the behavioral level, mice with
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total deletion of DORs showed an increased preference for
alcohol measured in the two-bottle choice procedure and have
an increased alcohol intake in this same paradigm only after a
long exposure to an operant alcohol administration procedure
[44]. Importantly, mice with C320T polymorphism
(Alal07Val) in exon 2 of the DOR gene (Oprdl) showed an
enhanced alcohol preference in CT heterozygous mice com-
pared to homozygous CC mice [141]. Regarding the endoge-
nous agonists, mice lacking the precursor preproenkephalin
(Penk) learned to self-administer alcohol similarly to wild-
type mice [142] and showed an intact rewarding effect of
alcohol and a normal pattern of alcohol consumption [48].
However, alcohol drinking was reduced in Penk knockout
mice under stressful conditions [47]. Given the important role
of DORs in anxiety-like responses [113], the latter observa-
tions support a role for DOR/pEnk signaling in regulating
emotional responses that may impact alcohol-intake behavior.
In alcoholics, however, no change in PENK mRNA was de-
tected in any brain structures tested including the dorsolateral
PFC, orbitofrontal cortex, and hippocampus [143].
Furthermore, a recent analysis of SNPs in PENK in multiplex
alcohol-dependent Caucasian American families provided no
support for the association of variations in PENK with alcohol
dependence [144]. Further studies to investigate the role of
pEnk and DORs in alcohol dependence in different popula-
tions will be for high interest. Altogether, these findings show
that DORs may promote alcohol consumption via regulation
of emotional processes.

KORs

KORs are implicated in many biological processes, such as
pain, stress, anxiety, and depression [145, 146]. The role of
KORs in alcohol-related behaviors has been reviewed in detail
in [147-149]. While study in rats showed that blockade of
KORs with n-BNI, a KOR antagonist, increased alcohol
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consumption in a two-bottle choice paradigm [150], total de-
letion of KORs in mice was associated with a reduced alcohol
intake in the same paradigm [45, 151]. Interestingly, condi-
tional knockout of KORs in the central nucleus of the amyg-
dala (CeA) resulted in reductions of alcohol intake in male but
not female mice [152]. The fact that KOR conditional knock-
out within the CeA did not affect alcohol drinking in female
mice may suggest that the mechanism of protective action of
KOR deletion is likely different between sexes. Moreover,
KOR total knockout mice showed a potentiation of the
alcohol-evoked dialysate DA levels in the NAc, suggesting
that reduction of endogenous activity of KOR systems may
lead to an enhancement of the reinforcing efficacy of alcohol
[153]. The reasons for these incongruent findings are still not
clear. It is, however, worth noting that the amount of alcohol
consumed depends on the efficacy of alcohol’s reinforcing
effects. Thus, increased reward value of alcohol could result
in reduced drinking when high concentrations of alcohol are
used, as lower amounts of alcohol would be sufficient to reach
the same rewarding effects. Further studies using instrumental
learning tasks may be critical for differentiating the role of
KOR systems in modulating the reinforcing efficacy of
alcohol.

At the peptide level, inhibition of dynorphin (an opioid
peptide that acts primarily at KORs) through total deletion
of' the prodynorphin Pdyn gene increased voluntary consump-
tion in two-bottle choice procedure in mice [49, 50]. In addi-
tion, rewarding effect of alcohol was unchanged [154—156] or
increased [49] in mice lacking Pdyn as measured by the CPP
procedure. The latter observation supports the drinking data
and the reported aversive-like activity of dynorphin peptides.
Pdyn knockout mice otherwise showed a normal increase in
stress-induced alcohol preference [50, 156] but developed
stronger withdrawal signs after chronic alcohol [49].
Conditional knockout of Pdyn in CeA neurons resulted in
decreased alcohol consumption in males and females and re-
duced pDyn neuron excitability in female mice following al-
cohol drinking [152]. In summary, these studies synthesize
what is known about the role of KOR/pDyn in alcohol phe-
notype and point out the sex differences in dynorphin and
KOR systems in the regulation of alcohol drinking behaviors.

Nociceptin/Orphanin FQ Receptor

The closest homolog of the opioid receptors is the opioid-like
receptor (ORL1 or nociceptin/orphanin FQ receptor (NOR))
[157]. This GPCR is targeted by the 17-amino acid neuropep-
tide nociceptin also termed orphanin FQ [158, 159].
Nociceptin and its receptor which couple to Gi/o proteins are
widely distributed in brain areas that have been associated
with reward-seeking behaviors. In human, in a Scandinavian
population, SNP rs6010718 in the gene encoding NOR
(OPRL1I) showed significant association with alcohol

dependence [160]. In rodents, several pharmacological studies
have suggested that NOR signaling is involved in the regula-
tion of addiction-related phenotypes, including drug wanting
and taking and relapse to several drugs, including opioids,
cocaine, and alcohol [157, 161-163]. When tested for alcohol
intake, NOR knockout mice showed a lower preference for
alcohol than wild-type mice [51]. However, this observation
needs to be consolidated with further studies. Indeed, mutant
mice also showed a disturbed water intake which may not
conclusively prove the presence of any specific association
between deletion of NOR and reduced alcohol intake. In ad-
dition, female mice lacking NOR and their control animals
showed similar alcohol-induced CPP, suggesting a rewarding
effect of alcohol in those not affected by NOR deletion [164].
Interestingly, rats lacking NOR showed reduced alcohol oper-
ant self-administration compared to outbred controls [52]. In
summary, while pharmacological studies showed a promising
finding that supports a role for NOR antagonism as a potential
treatment option for AUD, data from engineered rodent
models are still preliminary and need further investigations.

Altogether, preclinical research using genetically modified
rodents has revealed the crucial roles of opioid receptors in the
development and expression of alcohol-related behaviors that
may be important in humans. However, given the impact of
the opioid system in the acute and chronic effects of alcohol,
further molecular studies identifying functional polymor-
phisms in opioid genes are needed to afford a more focused
pharmacogenetic investigation.

Endocannabinoid Receptors

The endocannabinoid system consists of cannabinoid type 1
receptor (CBIR) and cannabinoid type 2 receptor (CB2R),
their two most characterized endogenous agonists ananda-
mide (AEA) and 2-arachidonoylglycerol (2-AG), as well as
the proteins that control endocannabinoid production and deg-
radation such as the catabolic enzyme fatty acid amide hydro-
lase (FAAH). The endocannabinoids are lipid-signaling mol-
ecules that regulate numerous peripheral and central biologi-
cal processes through the activation of CB1R and CB2R
[165-167].

Gi/o proteins mediate the canonical mode of CBIR and
CB2R signaling. CB1R is the most densely expressed
GPCR in the brain, whereas until the last decade, neuronal
CB2R distribution in the brain remained unclear [167-169].
The endocannabinoid system influences dopamine neuro-
transmission and thus associated behavioral responses includ-
ing reward [169-171]. CBIR is abundant in brain areas that
control motivation, impulsivity, or reinforcement processes, in
particular in the cortex, the hippocampus, and the basal gan-
glia [167-169, 172]. At the subcellular level, CBIR is pre-
dominantly located at GABAergic and glutamatergic
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presynaptic terminals. Postsynaptic release of
endocannabinoids typically mediates retrograde inhibitory
signaling to rapidly limit neurotransmitter release [169, 172,
173]. CB2R was originally considered absent from healthy
brain tissue but was observed in activated microglia [169,
174]. More recently, CB2R was also located in the midbrain
and striatal neurons along with other structures of the
mesocorticolimbic system and its activation inhibits firing of
dopaminergic neurons [169, 170]. Owing to its key role in
neurotransmission, synaptic plasticity, and addiction-related
behaviors, the endocannabinoid system has emerged as a rea-
sonable target for the treatment of alcohol abuse [169, 171,
175]. This possibility has been further strengthened by human
studies indicating that genetic polymorphisms including SNPs
(e.g., 11049353 and rs2023239) within the CNRI gene
encoding CB1R were associated with several features of
AUD [37, 176, 177]. Thus, the development of
endocannabinoid-based compounds and the generation of
CBI1R and CB2R mutant mice have understandably spurred
scientists to preclinical and clinical initiatives [37, 175,
178-181].

Different CBIR lacking mice on distinct genetic back-
grounds were generated by targeted disruption of the Cnrl
gene. Animals appeared healthy but exhibit some behavioral
alterations with discrepancies between studies. For instance,
Zimmer et al. [182] observed hypoactivity in mutant mice
whereas other reports did not [56, 183]. Nonetheless, many
studies converged to the finding that deletion of the Cnr/ gene
altered physiological actions of alcohol along with alcohol-
related behaviors. Mutant mice showed a strong inhibition of
accumbal dopamine release following intraperitoneal admin-
istration of alcohol [55]. Alteration in dopaminergic signaling
in response to lifelong suppression of CBIR is also substan-
tiated by enhanced expression of the striatal DA receptor D2R
[184]. In line with these findings, alcohol-induced
hyperlocomotion [56] and CPP for alcohol were reduced in
mice lacking CBIR [54, 184]. Importantly, genetic disruption
of CBIR has been also reported to decrease voluntary alcohol
intake in both male and female animals as assessed by differ-
ent two-bottle choice paradigms. Specifically, CB1R knock-
out mice displayed lower alcohol consumption when they had
a limited access to 10% alcohol for 6 h or 8 h [53, 54].
Similarly, alcohol drinking was also reduced under continuous
access of solutions containing various concentrations of alco-
hol [23, 55, 56]. Except for one study [57], consistent results
were also obtained regarding an attenuation of alcohol prefer-
ence [23, 54, 56, 185, 186]. Of note, Racz et al. [57] also
reported that unlike wild-type mice, CB1R mutant animals
exposed to a stressor induced by a mild 5-min foot shock
did not display any transient increase in alcohol intake and
preference. In contrast to alcohol consumption, mutant mice
expressed different drinking phenotypes with regard to su-
crose intake. Poncelet et al. [53] reported a decrease of
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consumption using a 5% sucrose solution in a limited access
procedure, whereas Naassila et al. [56] did not detect any
difference in sucrose preference when mice were given a 48-
h continuous access to 0.87% and 1.70% solutions. Besides
voluntary alcohol consumption, CB1R deletion was shown to
modulate signs that are indicators of alcohol withdrawal se-
verity. However, once again depending of the genetic back-
ground or the procedure used, both enhancement [56] and
reduction [57, 187] of withdrawal severity were described.
Importantly, pharmacological blockade of CBIR signaling
altered alcohol consumption and other alcohol-related behav-
iors in mice and rats under various procedures [169, 179],
further highlighting that the endocannabinoid system is essen-
tial for the expression of behavioral effects of alcohol.
Although detailed neurochemical and molecular mechanisms
are largely lacking, pharmacological and genetic models pro-
vided together a global picture of CBI1R implication in the
effects of alcohol in which CB1R signaling, in brain structures
that remain to be accurately defined, likely contributes to mo-
tivate and reinforce alcohol drinking [169, 171, 179].
Nonetheless, a prevailing role of peripheral CBIR in alcohol
actions cannot be ruled out yet. Indeed, a recent study inter-
rogated the contribution of CBIR signaling by taking ad-
vantage of peripherally restricted ligands in conjunction
with null ghrelin and ghrelin receptor mice (see also the
“Ghrelin Receptor” section below) and revealed a complex
functional crosstalk between these two GPCR systems
[23]. The data suggested that activation of peripheral
CBIR promotes gastric production of the hormone ghrelin,
thereby inducing vagus nerve stimulation which contrib-
utes to alcohol drinking. Consequently, preferential block-
ade of this periphery-to-brain signaling network with
nonpenetrant brain CB1R or ghrelin receptor inverse ago-
nists holds a promise for translation into clinical trials. This
is particularly apropos for CB1R signaling because clinical
trials conducted in alcohol abusers with the brain penetrant
inverse agonist rimonabant (SR 141716) showed limited
efficacy [175, 178, 181]. Most importantly, this compound
was withdrawn from the market in 2008 due to serious
psychiatric side effects. Consequently, more attention was
naturally devoted to CB2R [37, 109].

Actually, an early genetic study in Japanese pointed out
an association between a polymorphism in the CNR2
gene, which encodes CB2R, and alcoholism. This 2-bp
replacement polymorphism (rs2501432) results in Q63R
amino acid substitution and in a lower functional response
of CB2R to its ligands [169, 188]. In addition, Cnr2 gene
expression was found to be reduced in key brain struc-
tures of mice that exhibit higher alcohol preference [188,
189]. A significant progress in understanding how CB2R
signaling could modulate alcohol-related behaviors has
been made with the use of CB2R knockout mice that were
tested under diverse procedures [58]. Mice with lifelong
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deletion of the Cnr2 gene appeared healthy but exhibited
altered behavioral phenotypes such as decreased sponta-
neous locomotor activity and altered gene expression in
the mesocorticolimbic system [58, 190]. Deletion of the
Cnr2 gene resulted in enhanced severity of withdrawal
signs revealed following administration of a single high
dose of alcohol. With respect to wild-type mice, mutant
mice also exhibit increased preference for the alcohol-
conditioned place. Importantly, genetic blockade of
CB2R enhanced voluntary alcohol intake and alcohol
preference in male animals in a continuous access two-
bottle choice drinking paradigm in which alcohol concen-
tration was gradually increased from 2 to 8% within
16 days. In contrast, taste preference for saccharin and
quinine was similar regardless of the genotype. Further,
self-administration of alcohol using nose-spoke operant
responding was enhanced in CB2R knockout mice origi-
nating from two different genetic backgrounds. Of note,
when a progressive ratio schedule was conducted to quan-
tify how much work can be provided by animals to earn a
reinforcer, Ortega-Alvaro et al. [58] observed a higher
breaking point (defined as the highest response rate ac-
complished to obtain a single reward [191]) for mutant
mice, suggesting a greater sensitivity to the reinforcing
properties of alcohol. Altogether, these behavioral tests
indicated that CB2R signaling, in brain structures that
remain to be precisely identified, modulates the motiva-
tion to consume and seek alcohol. Other tests using mu-
tant mice also indicated that CB2R could be important in
handling stress situations that are associated with alcohol
drinking [192]. The neurochemical and molecular mecha-
nisms by which CB2R signaling mediates alcohol effects
remain unclear. However, by quantifying the mRNA
encoding tyrosine hydroxylase (TH) and MOR in the ven-
tral tegmental area (VTA) and the NAc, respectively,
Ortega-Alvaro et al. [58] observed higher expression of
MOR mRNA in naive CB2R knockout mice and en-
hanced expression of both transcripts in response to a
single oral administration of alcohol only in mutant ani-
mals. These data raise the possibility that a functional
crosstalk between the dopaminergic, the opioidergic, and
the endocannabinoid systems in mesolimbic structures
could contribute to the neurobiological mechanisms un-
derlying alcohol-reinforced behaviors. The therapeutic po-
tential of targeting CB2R signaling was further strength-
ened by a complementary pharmacological study showing
that the use of a selective agonist and inverse agonist of
CB2R reduced and enhanced respectively alcohol self-
administration in wild-type mice [193]. Finally, besides
CBIR and CB2R, mutant mice lacking FAAH, which ca-
tabolizes AEA, showed increased alcohol drinking and
preference in two-bottle choice paradigms [185, 194,
195].

The use of mutant mice clearly allowed light to be shed on
the cannabinoid receptors as promising targets to modulate
pathological drinking. Despite discouraging clinical data re-
garding the use of rimonabant, the endocannabinoid system,
and in particular CB2R, is still in the limelight for the treat-
ment of alcohol abuse.

Ghrelin Receptor

Ghrelin is an appetite-stimulating hormone which consists of a
28-amino acid octanoylated peptide mainly produced by en-
docrine cells located in the gastric fundus. Ghrelin is the en-
dogenous agonist of the growth hormone secretagogue recep-
tor (GHS-R1a) whose activation promotes growth hormone
(GH) release from the pituitary. Currently, ghrelin is principal-
ly regarded as a multifaceted controller of energy homeostasis,
metabolic functions, and neurobiological processes by acting
on both peripheral and central circuitries [196-200]. Human
and rodent ghrelin genes encode preproghrelin that is the pre-
cursor of obestatin, ghrelin, and unacylated ghrelin peptides.
The biological activities of ghrelin require acylation of its
serine 3 residue that is catalyzed by the ghrelin O-acyltrans-
ferase (GOAT) encoded by the Mboat4 gene in mice [23,
200-202]. Besides ghrelin, a new physiologically relevant
endogenous ligand for GHS-R1a, namely liver-expressed an-
timicrobial peptide 2 (LEAP2), was recently uncovered [203],
and unexpectedly, LEAP2 exhibits potent inverse agonism
toward GHS-R1a [204].

GHS-R1a predominantly mediates Gq signaling. GHS-
R1a exhibits strong constitutive activity in vitro [205-207]
which is thought to also have physiological implications
in vivo [22, 208, 209]. GHS-R1a is enriched in the anterior
pituitary gland and in different nuclei of the hypothalamus.
GHS-R1a is also expressed in brain circuits involved in moti-
vation, reinforcement, impulsivity, and emotional processes
[199, 200, 210]. Of note, brain and peripheral administration
of ghrelin stimulates the mesolimbic dopamine system and
brain GHS-R1a activation induces hyperlocomotion and en-
hances motivation-related behaviors [211].

While ghrelin regulates various neurobiological functions,
its synthesis within the brain remains debated [212] and it is
also unclear whether endogenous blood ghrelin can access
deep brain structures [213]. Nonetheless, the ghrelin system
is largely considered as a key element of the gut—brain axis
and represents a potential druggable target for drug- and
alcohol-related disorders [211, 214-219]. Interestingly, genet-
ic human studies have detected associations between SNPs in
both GHRL (e.g., r1s696217) and GHSR (e.g., 1s2948694 and
rs2232165) genes and different features of AUD [211,
220-222]. In addition, preclinical and clinical studies substan-
tiate a causal implication of the ghrelin system in key alcohol-
related outcomes [211, 215, 223].
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Mutant mice along with pharmacological agents were ap-
propriately combined to explore the contribution of endoge-
nous ghrelin and its receptor in the development and the ex-
pression of key alcohol-related behaviors. Both heterozygous
and homozygous mutant mice with gene disruption of the
Ghsr gene, encoding GHS-R1a, showed a reduction in loco-
motor activity and a strong inhibition of accumbal dopamine
release following intraperitoneal administration of alcohol. In
addition, alcohol CPP is reduced in Ghsr null mice. However,
compared to wild-type mice, knockout mice consumed ap-
proximately the same amount of alcohol in a two-bottle choice
limited access [59]. In contrast, Godlewski et al. [23] recently
observed that Ghsr null mice had lower alcohol preference
and consumption in a continuous access procedure with no
difference in total fluid and food intake. Using three different
paradigms, Zallar et al. [223, 224] also recently evaluated
alcohol drinking in a newly developed GHS-R1a knockout
rat model. These animals showed a reduction in sweetened
alcohol self-administration and break point while water and
non-alcoholic sweet solution responding were not affected. In
the drinking in the dark limited access paradigm, only high
drinker mutant rats consumed less unsweetened alcohol com-
pared to the wild-type high drinkers. However, no difference
in total alcohol intake was detected between the two rat geno-
types in a two-bottle choice 24-h intermittent access paradigm.
Fluid intake was not measured 30 min after the beginning of
the drinking session which is an alternative way to evaluate
excessive alcohol consumption [225-228]. Together, these
results suggest that the GHS-R1a/alcohol consumption inter-
play is complex in rodents and could be revealed using only
certain paradigms such as the ones that model the initial intake
of a high amount of alcohol [224]. This is a possibility in line
with the physiological role of neuronal GHS-R1a signaling
which is important for inducing feeding and is sensitive to
the palatable and energetic properties of food [200, 223,
229]. Besides the use of mutant mice, pharmacological dis-
ruption of GHS-R1a signaling with antagonists consistently
led to the reduction of alcohol consumption as well as other
alcohol-reinforced behaviors in rodent models [198, 215,
223].

Although the Ghrl gene encodes preproghrelin which gives
rise to several biologically active peptides, its disruption was
also implemented to evaluate the contribution of endogenous
ghrelin in alcohol-related behaviors [23, 61, 62].
Heterozygous and homozygous Ghrl mutant mice exhibited
a reduction in alcohol-induced locomotor activity and
accumbal dopamine release. In addition, ghrelin suppression
led to a decrease in alcohol-induced CPP. Regarding voluntary
alcohol consumption, once again, varying results were obtain-
ed depending on the alcohol drinking paradigm. Jerlhag et al.
[61] did not observe any genotype effect in a two-bottle choice
limited access (90-min) procedure. In contrast, two other stud-
ies reported that alcohol consumption and preference were
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lower in mutant mice subjected to a two-bottle choice contin-
uous access paradigm [23, 62]. Interestingly, this decrease
appeared to be selective for alcohol as no genotype effect
was statistically detected for total fluid, saccharin, and quinine
consumption [23, 62]. Besides preproghrelin and GHS-R1a
mutant rodents, voluntary alcohol drinking was also recently
examined in mice lacking the GOAT enzyme, which is re-
sponsible for the acylation of ghrelin. Targeted disruption of
Mboat4, using CRISPR/Cas9-mediated genome engineering,
generated Mboat4—/— mice with reduced alcohol preference
and consumption in a continuous access procedure but with
similar fluid and food intakes with respect to their wild-type
littermates [23]. These data largely mirrored the
abovementioned studies undertaken with GHS-R 1a and ghrel-
in mutant animals. Overall, both genetic and pharmacological
inactivations of the ghrelin system obviously helped to appre-
hend its neurobiological contribution in the reinforcing effects
of'alcohol. These preclinical studies have been instrumental in
the transition into clinical trials specifically for the GHS-R1a
inverse agonist, PF-5190457 [214, 216, 230].

In light of recent studies identifying LEAP2 as an endoge-
nous ligand of GHS-R1a that counter-regulates ghrelin action
in vivo [203], the generation of mutant LEAP2 mice could be
also exploited in an effort to further explore how the ghrelin
system regulates physiological and behavioral responses for
alcohol. Finally and as mentioned above, Godlewski et al. [23]
recently reported that the endocannabinoid and the ghrelin
systems act in concert peripherally to drive alcohol intake
through activation of a gut-brain axis.

Serotonin Receptors

Serotonin (5-HT) is a monoamine neurotransmitter widely
expressed throughout the central nervous system where it
plays an important role in the regulation of mood. Serotonin
acts via 7 classes of receptors (5-HT;_5). All 5-HT receptors
are coupled to G proteins with the exception of the 5-HT;
receptor, which is an ion channel. The 5-HT system has been
extensively implicated in the regulation of mood disorders and
the reinforcing properties of drugs of abuse, including alcohol.
Within the Gi-coupled 5-HT receptor class, the 5-HT) g re-
ceptor gene (HTR1B) SNPs, the G861C and the A-161T poly-
morphisms, were reported to play important roles in alcohol
dependence in human [231, 232]. Moreover, SNPs within the
5-HT 4 receptor gene (HTR1A) were also associated with al-
cohol dependence [233]. HTR2A and HTR2C genes were also
reported as potential candidate genes for alcohol-related traits
[234]. Due to the complexity of serotonergic neuromodulation
at presynaptic and postsynaptic levels, as well as the plethora
of serotoninergic receptor subtypes that leads to various and
contrasting effects of serotoninergic ligands [33], transgenic
methods appeared as very useful tools for the investigation of
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this system. However, and despite the fact that the first alcohol
study using a genetic-based approach was performed with 5-
HT, receptor knockout mice [35], few studies have yet in-
vestigated the potential implication of specific serotoninergic
receptors using transgenic animal models. Invalidation of the
5-HT, g receptor gene basically led to increased alcohol intake
in two-bottle choice and operant procedures [35, 235].
However, this effect was controverted [74, 236], emphasizing
the crucial importance of the mouse genetic background and
the interaction with other alcohol-related genes (see [33] for
more details). This discrepancy may also reflect the relatively
modest implication of this receptor in the regulation of alcohol
consumption. Finally, the potential implication of the Gs-
coupled 5-HTy receptor was also tested. Null mutant mice
for this receptor did not differ from wild-type mice in terms
of alcohol intake but were more sensitive to the stimulating
effect as well as the sedative effect of alcohol [75]. Although
these studies suggest the implication of 5-HT receptors in
alcohol-related behaviors, this system remains under-
investigated in the field. Undoubtedly, further in-depth inves-
tigations are necessary to dissect out the respective contribu-
tion of each receptor as well as the importance of their
sublocalization, in order to fully capture the influence of this
complex system on alcohol-related behaviors.

Dopamine Receptors

Although DA is clearly involved in the reinforcing effect of
alcohol [237] as well as in the mechanisms underlying alcohol
dependence and addiction [238], delineating the specific con-
tribution of each DA receptor remains challenging. Indeed, it
is difficult to find agonists or antagonists able to discriminate
between DA receptor subtypes, as they are closely, structural-
ly related within each subfamily (i.e., DIR and D5R for the
DI1R-like families which are coupled to Gs proteins, and D2R,
D3R, and D4R for the D2R-like families which are coupled to
Gi/o proteins). In addition, the complex presynaptic and post-
synaptic sublocalization and neuroanatomical localization of
DA receptors, as for 5-HT receptors, lead to strong paradoxi-
cal effects of DA ligands, as most of them can either increase
or reduce alcohol-related behaviors depending on the dose
and/or the model used (for review, see [239]). In this context,
transgenic approaches, and more particularly conditional
ones, appeared as a tool of choice to dissect the implication
of a specific DA receptor subtype in alcohol drinking
behaviors.

Dopamine D1R-Like Receptors
Although few studies have examined the consequence of de-

leting DIR (encoded by the Drdl gene) on alcohol-related
behaviors, evidence suggests its contribution to alcohol

consumption. Indeed, alcohol intake and preference have been
found to be reduced in DIR knockout mice in limited or con-
tinuous access two-bottle choice paradigms, while overall flu-
id intake is preserved [63]. Accordingly, selective inactivation
of the metabotropic glutamate receptor 5 (mGluR5) in DIR-
expressing neurons prevents escalation of alcohol drinking
after a period of abstinence [240]. In addition, D1R knockout
mice fail to develop locomotor sensitization to repeated ad-
ministration of alcohol [241]. These results are also in line
with the broad implication of DIR in reinforcement (e.g.,
[242]) and accumbal D1R-expressing neurons in the initiation
of reinforcement learning associated with alcohol drinking
[243]. As far as we know, transgenic approaches are yet to
be used in mice to study D5R in relation to alcohol. However,
the psychomotor effect of cocaine has been found to be re-
duced in D5R knockout mice [244], suggesting that this re-
ceptor might be implicated in some effects of drugs of abuse.
DRDI polymorphisms have been shown to play a role in
alcohol dependence. Indeed, DRD1 polymorphism was asso-
ciated with excessive alcohol drinking behaviors in nonhuman
primates in the context of early environmental stress induced
by maternal separation [245].

Dopamine D2R-Like Receptors

Several behaviors related to alcohol have been found to be
reduced or abolished in D2R knockout mice, such as alcohol
sensitization [241] (but see [65]) and place preference [246]
and alcohol drinking in two-bottle choice paradigms [64—67]
as well as in operant procedure [68]. These studies therefore
point toward a pivotal role of D2R. However, due to the rel-
ative specific and complex localization of D2R (e.g., presyn-
aptic autoreceptors on DA neurons or postsynaptic receptors
of medium spiny neurons of the indirect pathway and cholin-
ergic interneurons in the striatum), conditional approaches
appear necessary to investigate the potential multifaceted im-
plication of this receptor in alcohol consumption and addic-
tion. For instance, a recent study has induced a specific over-
expression of postsynaptic D2R in D2R-expressing neurons
in the NAc, by using D2-Cre mice and a floxed virus coding
for D2R, and subsequently found an increase in alcohol intake
in a continuous but not intermittent access two-bottle choice
paradigm [247].

Although pharmacological studies clearly indicate a strong
implication of D3R in alcohol self-administration and relapse
in rodents [239], the use of transgenic mice has yielded con-
flicting results. Whereas some studies have evidenced a near
absence of alcohol sensitization [241] and reduced alcohol
consumption in D3R knockout mice [69], others have found
neither alteration of alcohol rewarding effects for alcohol nor
alteration of alcohol drinking behaviors evaluated in two-
bottle choice or operant self-administration procedures [70,
71]. Despite some methodological differences between these

@ Springer



28

Neasta et al.

studies (see [69] for details), the cause of these discrepancies
remains unclear. It should be noted, however, that the D3R
may be presynaptic or colocalized postsynaptically with DIR
and D2R. Consequently, a complex implication of this recep-
tor in the modulation of DA in response to alcohol may have
mitigated the effects of the genetic intervention. For the future,
and as for D2R, conditional approaches should be favored to
disentangle the potential implication of D3R depending on its
localization.

Ablation of D4R also modifies alcohol-related behaviors,
but in an opposite direction than the other DA receptors.
Indeed, D4R knockout mice are more responsive to the psy-
chomotor effect of alcohol [248] and show increased alcohol
consumption [72].

In human, the D2R gene (DRDZ2) on chromosome 2 [249]
polymorphism and the D4R (DRD4) gene on chromosome 11
[250] polymorphism have been shown to play a role in alcohol
dependence. Two splice variants of the D2R, which differ by a
29-amino acid insert in the third intracellular loop in D2-long
(D2L) that is absent in D2-short (D2S), have been associated
with alcohol dependence in human [251]. Furthermore, the
DRD?2 gene single nucleotide polymorphism rs1076560
which is involved in regulating the splicing of the gene and
modified the presynaptic and postsynaptic ratio of D2R iso-
forms as well as TagqIA polymorphism of the DRD2 gene were
both associated with an increased risk of developing alcohol
dependence [252, 253]. In a mouse model, a study found an
increased alcohol intake among D2L receptor knockout mice
[254]. Polymorphisms of the DRD4 gene, a 48-bp variable
number tandem repeat in the third exon, have been also re-
ported to be associated with heavy-drinking behaviors when
certain social-environmental factors were present [255, 256].

To conclude, these studies clearly point toward a signifi-
cant implication of the different DA receptors in alcohol-
related behaviors and, notably, in its reinforcing effect.
However, the use of state-of-the art conditional approaches
will be a necessary step in order to further decipher the com-
plex contribution of each receptor in alcohol-motivated be-
haviors and AUD.

Metabotropic Glutamate Receptors

Glutamate receptors are divided into two categories: the
ionotropic receptors (iGluR: N-methyl-D-aspartate (NMDA),
«-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA), and kainate) and the metabotropic receptors, named
mGlu receptors (mGIuR) classified in subgroups (groups I, II,
and III), depending on their sequence homology, pharmacol-
ogy, and intracellular signaling pathway activated. Group I
contains the mGluR1 and mGIluRS5 which are primarily
coupled to Gq proteins and mainly localized at the postsynap-
tic level. Group IT (mGluR2 and mGluR3) and group III
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(mGluR4, mGluR6, mGluR7, and mGluR8) are coupled to
Gi proteins and mainly localized at the presynaptic level
where they can regulate neurotransmitter release [257]. The
implication of glutamate receptors, iGluR and mGluR, in ad-
diction has long been demonstrated for a large variety of drugs
of abuse including alcohol [258, 259] (for reviews, see [260,
261]). In human, an association between a polymorphism in
the variable (GT)(n) repeat in the 5'-regulatory region of
NMDA GRIN2A subtype and alcoholism was previously de-
tected [262]. Moreover, higher risk for developing alcohol
dependence was observed in individuals with specific
GRMS5 (mGluR5-encoding gene) polymorphisms [263, 264].

Studies on consequences of mGIuR deletion in mice on
alcohol-related behaviors are relatively sparse. Concerning
group I and, specifically, mGluRS, two studies were published
in 2008 using mGIuR5 null mice. First, Bird et al. [76] gen-
erated mGluRS5 null mice on a C57B1/6J background and sub-
mitted them to various alcohol-related behaviors. In this study,
the authors only used male mice [76]. They found a reduced
alcohol consumption and preference in a two-bottle choice
paradigm as compared to their wild-type littermates using
5% and 10% alcohol solutions. For both concentrations, the
reduction in consumption and in preference reached about
50%. It is noteworthy that the authors did not find any effect
of'the mGluR5 deletion on saccharin consumption, suggesting
a specific role of mGluRS5 in alcohol consumption [76]. Using
a classical protocol of CPP with a relatively low dose of alco-
hol (1 g/kg), they found that the mGluRS null mice were able
to develop place preference for the alcohol-paired compart-
ment whereas the wild-type mice, with such a low dose, did
not show any preference after the conditioning sessions. This
observation suggests a higher sensitivity of the mGluRS5 null
mice to the rewarding properties of alcohol. The same year,
Blednov and Harris [77] published a study using mGIluR5 null
mice on a mixed C57BI/6J x 129/SvJ genetic background and
they used male and female mice. The authors evaluated alco-
hol consumption using five different paradigms of consump-
tion: progressive two-bottle choice (sequentially 3%, 6%, 9%,
and 12% ethanol solutions), four-bottle choice (simultaneous-
ly 0%, 4%, 8%, and 12% ethanol solutions), drinking in the
dark with one bottle, drinking in the dark with two bottles, and
a scheduled fluid access (5% alcohol solution). Overall, they
found reduced alcohol consumption only in the four-bottle
choice and the drinking in the dark procedures in the female
mice. Males were tested only in the progressive two-bottle
choice paradigm with no difference between the genotypes.
Beside the aspects directly correlated to the consumption and
the sedation induced by the administration of alcohol, the
authors have shown in the mGIluRS5 null mice a basal
hyperlocomotion that is not followed by an alcohol-induced
hyperlocomotion. Indeed, after moderate to high doses of al-
cohol (1.5 g/kg, 2 g/kg, 2.5 g/kg), the mGIluRS null mice
exhibit a significantly lower locomotor activity than their
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wild-type littermates in both males and females. All together,
these results are in line with the ones observed by Bird and
colleagues [76], demonstrating the importance of the mGluRS
in the responses to alcohol in a large variety of alcohol-related
behaviors. Recently, Campbell and colleagues [ 78] studied the
role of the mGlIuRS5 specifically within the bed nucleus of the
stria terminalis (BNST), a brain structure part of the extended
amygdala that plays a role in response to stress and to alcohol
[265, 266]. For this study, the authors used a pharmacological
approach in transgenic mice expressing a point mutation of
mGIuR5 (GRM5*44 ys. their wild-type littermates (GRM5™
75)) that cannot be phosphorylated by extracellular signal—
regulated kinases (ERKs) and thus block the association with
the scaffolding protein Homer. By doing so, no further activa-
tion of intracellular signaling pathway is possible. For the
purpose of this review, we will just focus on the behavioral
aspects observed with the GRM5**** mice. Campbell et al.
[78] found that the mutated mice consumed more alcohol in
different drinking paradigms (continuous progressive two-
bottle choice paradigm, single-bottle drinking in the dark par-
adigm, and operant self-administration paradigm). In addition,
in a CPP test with three different alcohol doses tested (1 g/kg,
2 g/kg, and 3 g/kg), the authors found that the GRM5*V** are
less sensitive to the rewarding properties of alcohol at the
lowest dose (1 g/kg) whereas they are insensitive to the aver-
sive properties of the highest dose (3 g/kg). These results are
on the opposite direction than the ones observed with the
mGluSR null mice, suggesting differential mechanisms of ac-
tion of the mGIuRS that do not necessarily imply the associ-
ation with scaffolding protein such as Homer in the regulation
of alcohol-related behaviors. The specific localization of the
inactivation of the mGluRS5 pathway, specifically within the
BNST, also suggests a brain region—specific role for this
mGluR.

The involvement of mGIuR2 has also been studied thanks
to knockout mice. Zhou and colleagues [79] demonstrated that
the mGluR2 null mice show a greater escalation of alcohol
consumption in a progressive two-bottle choice paradigm
3%, 6%, 9%, 11%, 13%, 15%, and 17% over 80 days). The
preference for alcohol was also increased, but more slightly,
with the mGIuR2 null mice for the highest concentrations. It is
noteworthy that saccharin consumption (0.066%) is moderate-
ly decreased in the knockout mice as compared to their wild-
type littermates. Quinine test does not reveal a difference be-
tween the genotypes.

In another study, Blednov et al. [80] evaluated the role of
mGluR4 in a variety of alcohol-related behaviors. In regard to
alcohol consumption, they did not find any difference between
the mGIuR4 null mice and their wild-type littermates (pro-
gressive two-bottle choice paradigm with 3%, 6%, 9%, and
12% alcohol solutions). Another receptor member of group 11
has been studied with mutated mice, namely the mGIuR7
encoded by the Grm?7 gene. In this study, the authors found

that their B6.129/0la-Grm7t™ """ knockout male mice
drank significantly more alcohol in a progressive two-bottle
choice paradigm (3%, 6%, 12%, and 18% alcohol solutions)
and found a trend in female mice [81]. These results should be
interpreted with caution due to the small number of animals
used in this study.

All these studies concerning members of different groups
of mGluR confirmed the relevance of studying these receptors
in alcohol-related behaviors. It is somehow difficult to gener-
alize with this low number of studies, but knockout of mGluR
from group I led to a decrease in alcohol consumption whereas
the knockout of the mGluR from groups II and III led to an
increase or no change in alcohol consumption. This difference
might be related to the synaptic localization with specific seg-
regation of group I receptors on the one side and groups Il and
III on the other side of the synaptic cleft. Together, these stud-
ies highlight the crucial role of metabotropic glutamate recep-
tors in alcohol phenotypes. The use of conditional knockout
will help decipher the role of each mGluR in the development
of AUD.

Metabotropic GABA Receptors

GABA binds to an ionotropic receptor (GABA,) and to a
metabotropic receptor (GABAg). The GABAergic system is
the largest inhibitory neurotransmitter system in the brain.
Accordingly, the GABAg receptors are involved in numerous
behaviors, such as learning [267], and also in pathologies,
such as depression [268, 269], anxiety [268], and drug disor-
ders [270] (for review, see [271]). The GABAg receptors
which coupled to Gi/o proteins are heterodimers that include
a GABAgR; subunit and a GABAg, subunit [272]. The
GABARg,; subunit is very stable across species whereas the
variability of the heterodimer comes from the different iso-
forms of the GABAg; subunit. The two main evolutionarily
conserved isoforms are the GABARg;, and GABAg;;, subunits
[273, 274]. This variability is accompanied by a difference in
location at the synapse level. Indeed, the heterodimer Bla/B2
seems to be located at the presynaptic level while the B1b/B2
receptor is mostly postsynaptic [275].

Several pharmacological studies have underscored the ther-
apeutic potential of manipulating the activity of GABAg re-
ceptors using, for instance, positive allosteric modulators to
mitigate several alcohol-associated behaviors [276-278].
However, even though studies have implicated post-
transcriptional modification of the GABAR; messenger
[279] and mice selectively expressing GABAg;, or
GABAg, subunits were generated [275], no studies were
conducted to evaluate the role of each GABAg subunit in
alcohol-related behaviors. The relevance to bridge this gap
with further studies in the alcohol field is pinpointed by the
results obtained by Ribeiro et al. [280]. Indeed, in this study,

@ Springer



30

Neasta et al.

the authors revealed a differential regulation of the two sub-
units of the GABAg receptors in mice submitted to a three-
bottle choice paradigm and developing a resistance to the
alcohol adulteration. The authors found a greater upregulation
of the transcript for GABAg; in the PFC, hippocampus, hy-
pothalamus, and striatum [280]. In addition, Jacobson et al.
[281] demonstrated a differential response to cocaine in
GABAg, and GABARg;;, knockout mice in an acute locomo-
tor activity test and a place preference paradigm [281], sug-
gesting specific roles for the different subunits in the response
to drugs of abuse. Finally, the GABApR, receptor gene
(GABBR2) SNP 152900512 was recently associated with an
increased risk of developing alcohol dependence [282]. This
association was, however, not confirmed in another study
[283].

Despite the lack of studies using knockout mice, GABAg
receptors seem to be very promising targets for AUD treat-
ment as suggested by several pharmacological studies. Indeed,
beside the controversial use of baclofen at high doses showing
no or poor efficacy, a specific interest in the enantiomer use
can be of particular interest. Few studies have demonstrated
that the racemic form of baclofen (prescribed form) is always
less efficient than the R(+)-baclofen form [284-286]. In addi-
tion, the use of positive allosteric modulators of GABAg re-
ceptors has demonstrated their efficiency in the reduction of
alcohol consumption in preclinical models [277, 287-289].
Thus, overall, further studies investigating the GABAg recep-
tors as therapeutic targets for AUD should show great
potentials.

CRF Receptors

Corticotropin-releasing factor is a 41-amino acid neuropeptide
critically involved in the regulation of neuroendocrine and
behavioral responses to stress. CRF actions are exerted
through two GPCRs: CRF type 1 (CRF1 encoded by the
Crhrl gene) and type 2 (CRF2 encoded by the Crhr2 gene),
which share about 70% amino acid sequence identity [290,
291]. CRF1 expression is found in many brain regions and
neuronal subtypes [292-295]. CRF2 is also widely expressed
in the central nervous system and found peripherally [296].
The complexity of the CRF system is further increased by the
existence of additional endogenous agonists. CRF receptors
can be activated by the urocortin (Ucn) family of neuropep-
tides: Ucnl, Ucn2, and Ucn3. Ucnl binds with similar affinity
to CRF1 and CRF2, whereas Ucn2 and Ucn3 bind primarily
to CRF2 [297, 298]. The role of CRF and their receptors in the
context of addiction, and specifically its importance in alcohol
intake and behavioral traits including locomotor sensitization
that reflect neuroplasticity induced by chronic alcohol expo-
sure, has been broadly studied [299]. Numerous pharmacolog-
ical studies have identified CRF1 as a major driver of alcohol
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consumption in rodents. We do not review this extensive lit-
erature here but instead call attention to several reviews
[300-304] and also to human genetic studies that have iden-
tified association between CRF1 (CRHRI gene) polymor-
phisms and the risk of AUD in certain populations
[305-308]. Studies using CRF knockout mice showed re-
duced rewarding effects of alcohol resulting in increased al-
cohol consumption compared to control mice in both 24-h
continuous access and limited access paradigms [309]. On
the other hand, reduced alcohol intake phenotype was ob-
served in CRF-overexpressing transgenic mice using a 24-h
continuous access procedure [310]. At the receptor level, at
the initial phase, both CRF1 knockout mice and conditional
neuronal knockout (CRF V") mice consumed the similar
amount of alcohol as their corresponding controls [82].
Notably, increased alcohol intake using the continuous access
procedure was observed in CRF1 knockout mice in response
to stress exposure, such as chronic social defeat and forced
swim stress [82, 83]. In contrast, CRFI"*""™ mice showed a
reduced stress-induced drinking behavior compared to their
control littermates [82]. Moreover, following alcohol vapor
exposure, a pronounced escalation of intake in the post-
dependent state was detected in knockout animals compared
to their control littermates [83]. In contrast to these findings,
other studies have come to opposite conclusions and showed
reduced alcohol intake in CRF1 knockout mice compared to
control animals using binge-like drinking in the dark [84, 85]
or 24-h 20% alcohol intake procedures [86]. Moreover, re-
peated swim stress-induced increase alcohol intake and pref-
erence were reduced in CRF1 mutant mice compared to con-
trol littermates [86]. These contradictory results are likely to
be related to the use of distinct animal backgrounds and alco-
hol drinking paradigms in each study (see [299] for review).
Importantly, CRF1 signaling seems to play a role in other
alcohol-related behaviors. For instance, while alcohol-
seeking behavior in operant alcohol self-administration proce-
dure was similar between CRF1 knockout animals and their
controls, withdrawal-induced increase in alcohol-secking be-
havior was reduced in CRF1 knockout mice [87]. In addition,
CRF1-deficient mice showed reduced development of loco-
motor sensitization to alcohol [309, 311]. Altogether, the ma-
jority of the data suggest that CRF1 function is important for
the development of excessive alcohol consumption and criti-
cal for stress-induced changes in alcohol-related phenotypes.
These effects on alcohol intake cannot be explained by differ-
ential taste palatability or differential sensitivity to the
sedative—hypnotic effects of alcohol between CRF 1-deficient
mice and their control animals [86].

Few studies have been conducted to test the role of CRF2
on alcohol-related behaviors using mutant mice. A small and
transient reduction in alcohol consumption was observed in
CRF2 knockout mice that appeared to be mainly in males
[85]. In addition, CRF2 mutant mice showed reduced
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expression of alcohol rewarding effect as measured by the
CPP procedure [312]. However, CRF2-deficient mice develop
normal levels of sensitization, which is in contrast with null
CRF1 animals [311]. To summarize, the CRF1 receptor seems
to be an interesting target in a specific context of stress that is a
common feature of abstinence in patients. It is well known that
this stress associated or not to anxiety can be the trigger by
relapse and, thus, understanding the specific role of CRF1
could lead to better pharmacological tools to block stress-
induced relapse.

Melanocortin Receptors

The melanocortin peptides are produced centrally by the
cleavage of the polypeptide precursor POMC within the arcu-
ate nucleus of the hypothalamus and the nucleus of the solitary
tract [313, 314]. Among these peptides are -, [3-, and y-
melanocyte-stimulating hormones (MSHs), as well as adreno-
corticotrophic hormone (ACTH) [315]. In rodents,
melanocortin peptides act through five GPCR subtypes, i.e.,
MCI-5R, all are known to be coupled to Gs proteins (also to
Gq or Gi in some instances (see [316] for review) that stimu-
late the adenylyl cyclase pathway [317]. MC3R and MC4R
are the most predominant MCR subtypes expressed in the
brain [318], and modulation of the activity of these receptors
impacts hypothalamic-dependent physiological functions
[319].

In rats, acute and chronic exposures to alcohol have been
shown to alter the immunoreactivity of melanocortin peptides
in several brain regions [320-322]. Moreover, AA (alko, al-
cohol) rats, which are selectively bred to prefer alcohol, ex-
hibit abnormal expression patterns of MC3R in several brain
regions compared to ANA (alko, non-alcohol) rats [323].
Multiple pharmacological studies have also revealed the in-
volvement of the melanocortin system in the neurobiological
response to alcohol intake (for review, see [324]). However,
only few studies using genetic mouse models were reported.
In fact, due to developmental compensation in constitutive
knockout mice [325], the contribution of the deleted single
MCR gene in modulating alcohol consumption could be
masked. Thus, the possible role of these receptors in alcohol
phenotypes cannot be totally ruled out by null data. However,
in an effort to examine the role of MC3R and MCA4R in alco-
hol intake behaviors, several studies have thus combined phar-
macological and genetic approaches. For instance, Olney and
colleagues [88] found that binge drinking using the drinking
in the dark procedure was similar between Mc3r knockout
mice and their corresponding controls. However, they also
showed that reduced binge-like alcohol drinking induced by
melanotan II (MTII, intracerebroventricular infusion), a non-
selective MCR agonist, is more pronounced in Mc3r mutant
mice compared to control animals [88]. This observation

indicates that MC3R counteracts the protective action of
MTII against alcohol intake [324]. On the other hand, intra-
cerebroventricular infusion of MTII failed to reduce alcohol
intake in mutant mice lacking MC4R [89], suggesting that this
MCR subtype is necessary for the central actions of MCR
agonists on alcohol drinking behaviors [89]. Interestingly,
several studies indicated a possible interaction between
MCA4R signaling and opioid system [326, 327]. For instance,
MTII increases the effectiveness of naltrexone, an FDA-
approved drug used to treat alcohol dependence, in reducing
excessive alcohol intake in C57BL/6J mice [326]. Thus, it is
still unclear where and how the melanocortin system contrib-
utes to alcohol action and whether combined therapy with
naltrexone holds promise for AUD treatment [324].

Orphan GPCRs

Orphan GPCRs are receptors for which endogenous ligands
have not yet been fully identified. Of the 350 nonsensory
GPCRs, nearly 120 remain orphan GPCRs, whose endoge-
nous ligands and G protein signaling are unknown. Thus,
discoveries of new ligands for these GPCRs profoundly im-
pact our understanding of brain function [328]. Only few of
these orphan receptors have been linked to drug addiction.
Specifically, it was demonstrated that GPR139 receptor
agonism in the habenula, a central structure connecting the
forebrain to midbrain regions with a key role to integrate cog-
nitive with emotional and sensory processing, decreases alco-
hol intake selectively in alcohol-dependent rats [329].
Regarding GPR26, another orphan GPCR, knockout mice
drank more alcohol only at low concentration of alcohol
(7%) compared to wild-type mice in a two-bottle choice par-
adigm. However, no difference between both genotypes was
found for higher alcohol concentrations (i.e., 9% and 12%)
[330]. Recently, the orphan GPCR GPR88 has been proposed
as a new potential target for AUD. GPR88 is robustly
expressed in the striatum throughout the dorsal and ventral
areas [331, 332] as well as in the cerebral cortex, the amyg-
dala, and the hypothalamus [333-336]. GPR88 expression
was shown to be regulated in the CeA following treatment
of several drugs of abuse, including morphine and alcohol
[337]. More direct evidence of GPR88 neurobiological signif-
icance was obtained with knockout mice studies, suggesting
that GPR88 plays an important role in regulating striatal-
related processes. Gpr88 knockout mice demonstrated a
disrupted prepulse inhibition of startle response, a phenotype
mimicking symptoms of schizophrenia, and exhibited DA re-
ceptor hypersensitivity (as evidenced by increased sensitivity
to apomorphine-induced climbing and stereotypy). Gpr88-de-
ficient mice displayed increased locomotion, poor motor co-
ordination and balance, impaired cue-based learning [338,
339], and decreased anxiety-related behaviors together with
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increased approach behaviors [340]. Gpr88 null mice drink
more alcohol than control animals in continuous and intermit-
tent two-bottle choice procedures [90]. The mutant mice also
showed an increase alcohol self-administration and motiva-
tion to drink alcohol as shown by increased performance in
progressive ratio test. Interestingly, lack of GPR88 decreased
the rewarding effects of alcohol as measured by CPP and
reduced alcohol-induced elevations in extracellular DA in
the NAc in response to systemic alcohol injection. This sug-
gests a reduction of alcohol reward in mutant mice that may
explain, at least in part, enhanced alcohol drinking [90]. At
present, our knowledge regarding the implication of orphan
GPCRs in alcohol addiction is still limited but highly essential
and a great deal of effort is needed to clarify the role of these
receptors in the pathophysiology of AUD.

Conclusion and Future Directions

AUD involves long-lasting neurochemical, molecular, and
structural adaptations in several neuronal networks that drive
aberrant motivation to seek and consume alcohol [27]. As
GPCRs constitute key receptors for nearly all major neuro-
transmitters, their crucial role in modulating alcohol actions
was predictable. In this context, pharmacological approaches
were crucial to identify potential GPCR targets and their con-
tribution to diverse alcohol-related behaviors and to under-
stand how modulation of GPCR signaling could be used for
treating alcohol addiction. Then, genetic-based approaches
mostly aimed at deleting individual GPCR genes allowed a
more detailed exploration of the contribution of GPCR sub-
types in alcohol phenotypes. Although such experimental
frameworks are not devoid of weakness, they provided suc-
cessful advances in our basic understanding of the neurobiol-
ogy of alcohol addiction. In addition, these knockout ap-
proaches have been essential to characterize the function of
inherited gene determinants of AUD and to identify candidate
targets for therapeutic intervention. Importantly, data ensuing
from GPCR null mice contributed, together with pharmaco-
logical studies, to the initiation of clinical trials. However,
traditional knockout animals remain insufficient to delineate
at the molecular level how GPCRs in specific circuits drive
alcohol-related outcomes. For instance, these genetically
modified animals are, by themselves, not sufficient to deter-
mine whether the constitutive activity of GPCRs, their oligo-
merization, or their coupling through G protein and/or f3-
arrestins mediates alcohol actions. Combining complex phar-
macological, biophysical tools together with knockout and
conditional mutant mice [7, 22, 24, 25] could help to cast light
on the molecular mechanisms underlying GPCR signaling in
alcohol-related behaviors. As mentioned above, the powerful
potential of such combined strategies was recently illustrated
by Godlewski et al. [23] reporting a functional crosstalk
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between the endocannabinoid and the ghrelin systems to pro-
mote alcohol intake through activation of the gastric vagal—
brain axis. Newly genetically modified mice such as Cre lines
[341] in combination of emerging technologies including
opto/chemogenetic manipulations and neuroimaging will help
to improve the knowledge on circuitry adaptation and re-
sponse to alcohol in specific neuronal population and brain
structure.

There is obviously still a substantial gap to unravel how
other intertwined GPCR systems act in concert to induce
alcohol-related neuroadaptations. In addition, in spite of sig-
nificant progresses made to identify key GPCRs underlying
pathological alcohol phenotypes, only a few GPCR ligands
have been/are under clinical development. More translational
studies using knock-in mice of SNP will be necessary to in-
crease the accuracy to target potential GPCR to treat AUD.
Nonetheless, GPCRs are still considered excellent potential
targets for more selective, efficient, and safer drugs. Indeed,
there is a growing interest in designing biased or allosteric
signaling-selective molecules by taking advantage of the com-
plex functional behavior of GPCRs. For example, GPCR sig-
naling can involve distinct signaling transducers. This versa-
tile signaling is thought to rely, at least in part, on the multitude
of conformational intermediates that can be adopted by
GPCRs. This conformational landscape could be modulated
by biased ligands or allosteric modulators in order to prefer-
entially engage distinct subsets of signaling pathways with
more selective biological actions [342]. The therapeutic po-
tential of biased ligands and allosteric modulators of GPCRs
has to be thoroughly validated in animal models of alcohol
disorder. In addition, deorphanization of the unexploited brain
orphan GPCRs may provide valuable new therapeutic targets
to treat AUD.

Required Author Forms Disclosure forms provided by the authors are
available with the online version of this article.
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