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Abstract

Accurate stroke recognition during triage can streamline care and afford patients earlier access to life-saving interventions.
However, the tools currently available to clinicians for prehospital and early in-hospital identification of stroke are limited.
The peripheral immune system is intricately involved in stroke pathology and thus may be targetable for the development of
immunodiagnostics. In this preliminary study, we sought to determine whether the circulating antibody pool is altered early in
stroke, and whether such alterations could be leveraged for diagnosis. One hundred microliters of peripheral whole blood was
sampled from 19 ischemic stroke patients, 17 hemorrhagic stroke patients, and 20 stroke mimics in the acute phase of care. A
custom-fabricated high-density peptide array comprising 125,000 unique probes was used to assess the binding characteristics of
blood-borne antibodies, and a random forest-based approach was used to select a parsimonious set of probes with an optimal
ability to discriminate between groups. The coordinate antibody binding intensities of the top 17 probes identified in our analysis
displayed an ability to differentiate the total pool of stroke patients from stroke mimics with 92% sensitivity and 90% specificity,
as well as detect hemorrhage with 88% sensitivity and 87% specificity, as determined using a same-set cross-validation. These
preliminary findings suggest that stroke-associated alterations in the circulating antibody pool may have clinical utility for
diagnosis during triage, and that such a possibility warrants further investigation.
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Background diagnosis during triage have the potential to streamline care

and improve patient outcomes. In the prehospital setting,
Due to the time-efficacy relationship associated with acute  confident recognition of stroke by emergency medical ser-
stroke interventions, tools which allow for accurate stroke vices (EMS) personnel allows for direct transport to certi-
fied stroke centers, which not only saves time, but also
affords patients access to advanced treatment options not
available at smaller medical facilities. Beyond the initial
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30% of stroke patients are misdiagnosed during initial presen-
tation, leading to life-threatening delays in care [1-3].
Because of this, there has been a push for the identification
of stroke-associated peripheral blood biomarkers which could
be rapidly measured at the point-of-care to better inform early
clinical decision-making.

The peripheral immune system plays a central role in stroke
pathology; not only is there a rapid systemic inflammatory
response to the acute injury [4], but emerging evidence sug-
gests that peripheral immune changes may precede symptom
onset and in some cases trigger the acute event itself [5].
Recent studies by our group and others have demonstrated
that this phenomenon can be targeted diagnostically;
genome-wide transcriptomic profiling of circulating immune
cells has identified RNA-based biomarker panels with the
ability to accurately identify ischemic stroke and predict var-
ious post-stroke complications [6—10]. However, due to tech-
nical limitations, RNA-based biomarkers have limited utility
in prehospital and emergency care settings; viable methods for
accurate measurement of nucleic acids at the point-of-care are
lacking, as existing platforms for rapid blood biomarker
screening are largely geared towards immunoassay-based pro-
tein detection. Unfortunately, prior stroke proteomics investi-
gations have been relatively small in scope, often examining
only a small number of predetermined targets, and have pro-
duced few candidate protein biomarkers with clinically useful
levels of diagnostic accuracy [11].

However, recent advances in high-throughput protein array
technologies may allow for broader scale proteomic analyses
in stroke, and open the door for the discovery of
translationally relevant biomarkers which would be well suit-
ed for point-of-care detection. In the cancer field, recently
developed high-density non-native peptide arrays which allow
for large-scale profiling of the circulating antibody pool are
being increasingly used to identify diagnostically robust bio-
marker panels [12, 13]. This methodology, often referred to as
immunosignaturing, utilizes microarrays comprising hun-
dreds of thousands of unique pseudo-random peptide probes
ranging from 10 to 20 amino acids in length [14]. Arrays are
exposed to patient serum or soluble whole blood fractions to
allow for peptide-antibody interaction, rinsed, and bound an-
tibodies are subsequently detected using fluorescently labeled
pan antibody against human immunoglobulin. The overall
pattern of binding across the array is then analyzed, and bind-
ing patterns can ultimately be compared between disease
states to identify features which may have utility for diagnosis
(Supplementary Fig. 1).

Given the known involvement of the peripheral im-
mune system in stroke pathology, it is possible that
stroke induces changes to the circulating antibody pool
which could be targeted diagnostically. In this study,
we used a custom-fabricated high-density peptide array
to investigate the feasibility of antibody-based stroke

diagnosis within an experimental context relevant to
triage.

Materials and Methods
Experimental Design

A cohort of acute ischemic stroke patients (n =19), hemor-
rhagic stroke patients (n=17), and stroke mimics (n = 20)
were recruited at an urban tertiary care medical center
(University of Cincinnati Medical Center, Cincinnati, OH).
One hundred microliters of peripheral whole blood was sam-
pled at either emergency department admission or upon inter-
hospital transfer. Circulating antibody profiles were generated
from whole blood samples using a custom-fabricated peptide
array, and a two-step machine-learning approach was subse-
quently used to select peptide probes suitable for stroke diag-
nosis. First, random forest was used to rank all probes by
importance in terms of their ability to discriminate between
ischemic stroke, hemorrhagic stroke, and stroke mimic sam-
ples. Then recursive feature selection was used to identify the
minimum number of top-ranked probes which could provide
optimal discriminatory performance. In order to evaluate the
robustness of our analysis in terms of its ability to select opti-
mally discriminatory probes, a permutation analysis was per-
formed in which the diagnostic ability of the top-ranked
probes was compared to that of probes selected at random.

Patients

All ischemic and hemorrhagic stroke patients presented with
clinical symptoms consistent with acute stroke and displayed
definitive radiographic evidence of ischemic or hemorrhagic
pathology on magnetic resonance imaging (MRI) or comput-
ed tomography (CT). Patients admitted or referred as
suspected strokes based on the overt presentation of stroke-
like symptoms, but receiving a definitive negative diagnosis
for stroke upon neuroradiological imaging and clinical evalu-
ation was identified as acute stroke mimics [15]; the final
discharge diagnoses of the stroke mimic group can be found
in Supplementary Table 1. All diagnoses were adjudicated by
an experienced stroke physician. Patients were excluded if
they received a non-definitive diagnosis, were diagnosed with
transient ischemic attack (TIA), reported a prior hospitaliza-
tion within 30 days, were under 18 years of age, or were more
than 12 h past symptom onset. Time from symptom onset was
determined by the time the patient was last known to be free of
neurological symptoms. Injury severity was determined ac-
cording to the National Institutes of Health Stroke Scale
(NIHSS) at the time of blood draw. Demographic information
was collected from either the subject or a significant other by a
trained clinician.
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Blood Collection

Peripheral whole blood samples were obtained by venipunc-
ture and collected via K,EDTA vacutainer. EDTA-treated
blood was aliquoted and stored immediately at — 80 °C until
analysis.

Peptide Array

Silicon wafer peptide arrays, each comprising 125,000 unique
probes, were synthesized via photolithography as described
previously [14]. Probes were 12 amino acids long and com-
posed of pseudo-random combinations of the 20 natural ami-
no acids, excluding threonine, methionine, isoleucine, and
cysteine. Arrays were blocked with 1 mM phosphate-
buffered saline containing 3% bovine serum albumin, 0.05%
Tween 20 (PBST), and 0.014% mercaptohexanol for 1 h at
25 °C in a darkened humidified chamber prior to use.

One hundred microliters of whole blood was thawed, dilut-
ed 1:1 in glycerol to stabilize antibodies, and held at —20 °C
during processing. Hemocytes and debris were sedimented via
centrifugation, and supernatants were collected and diluted
1:1000 in PBST. Diluted soluble whole blood fractions were
then incubated on arrays for one hour at 37 °C with gentle
agitation to allow for antibody binding. Following incubation,
arrays were washed three times for five minutes each with
1 mM tris-buffered saline containing 0.05% Tween 20
(TBST). Arrays were then incubated with 4 nM AlexiFluor
647-conjugated pan anti IgG antibody in PBST for 1 h at room
temperature with gentle agitation. Following incubation, ar-
rays were washed three times for 5 min each with TBST,
followed by three washes with distilled water. Arrays were
then dried by centrifugation and scanned by an Innopsys
(Carbonne, France) Innoscan 910 0.5-um color scanner.
Images were stored as 16-bit uncompressed TIFFs and aligned
using GenePix Pro 6.0 (Molecular Devices, Santa Clara, CA).
Raw probe intensities were quantile normalized via the
normalize.quantiles() function of the “preprocessCore” pack-
age for R (R project for statistical computing) [16].

Random Forest

Machine learning—based analysis of peptide array data was
performed using a similar approach as described previously
[17]. Random forest models were generated via the
“randomForest” package for R [18]. Representative decision
trees associated with random forest models were selected and
visualized using the “reprtree” package [19].

For ranking of probe importance, five replicate random
forest models were built, each discriminating between ische-
mic stroke, hemorrhagic stroke, and stroke mimic samples
using the log, transformed normalized intensity values of all
125,000 probes as input. 1.5 million decision trees were
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generated for each model, and probe importance was assessed
in terms of node purity metrics, as quantified by mean de-
crease Gini coefficient. Mean decrease Gini coefficient for
each probe was averaged across all five models and subse-
quently used for ranking. The script used for assessment of
probe importance is depicted in Supplementary Fig. 2.

For recursive feature section, successive combinations of
the top-ranked probes were evaluated for their ability to dis-
criminate between experimental groups using random forest
starting with the top probe, and sequentially preceding
through the top 1000. Models were built using 50 times the
number of decision trees relative to the number of input
probes. For each random forest model, cross-validation pre-
diction probabilities were generated according to out-of-bag
vote distributions, yielding a predicted probability of ischemic
stroke, hemorrhagic stroke, and stroke mimic for each sample.
Hemorrhagic stroke and ischemic stroke prediction probabil-
ities were combined to produce a total stroke prediction prob-
ability. Total stroke prediction probability was used to classify
samples as stroke/no stroke, and hemorrhagic stroke predic-
tion probabilities were used directly to classify samples as
hemorrhage/no hemorrhage (Fig. 1). Model classifications
were then compared to true clinical diagnoses to assess accu-
racy. The script used to generate prediction probabilities for
recursive feature selection is depicted in Supplementary
Fig. 3.

For permutation analysis, 100 unique combinations of n
probes were selected from the total probe pool, and the aver-
age diagnostic accuracy across the combinations was com-
pared to that of the top n-ranked probes. For example, the
diagnostic accuracy of the top 10 probes was compared to
the average diagnostic accuracy of 100 combinations of 10
randomly selected probes. Random probe combinations were
generated using the R sample() function. The script used to
generate prediction probabilities for permutation analysis is
depicted in Supplementary Fig. 4.

Analysis of Potentially Confounding Factors

In order to determine whether antibody binding signatures se-
lected in random forest were influenced by intergroup differ-
ences in clinical and demographic characteristics, random forest
prediction probabilities were regressed against clinical diagno-
ses along with potentially confounding covariates using the
Im() function of the R base package. Variance decomposition
was subsequently employed to determine the relative influence
of each covariate on prediction probabilities using the
“relaimpo” package [20] as described previously [6].

Statistics

All statistics were performed using R version 3.4. The level of
significance was established at 0.05 for all statistical testing.
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Fig. 1 Paradigm used for sample classification. Cross-validation predic-
tion probabilities were generated from random forest models according to
out-of-bag vote distributions, yielding a predicted probability of ischemic
stroke (IS), hemorrhagic stroke (HS), and stroke mimic for each sample.
Hemorrhagic stroke and ischemic stroke prediction probabilities were

Fisher’s exact test was used for comparison of dichotomous
variables. Student’s ¢ test or one-way ANOVA was used for
comparison of continuous variables in which appropriate.
Hierarchical clustering was performed using the get dist()
function of the “factoextra” package, in combination with
the hclust() function of the R base package. The performance
of binary classifiers was assessed via receiver operator char-
acteristic analysis (ROC) via the “pROC” package [21]. The
level of significance was established at 0.05 for all statistical
testing. P values were adjusted using Benjamini-Hochberg
method to account for multiple comparisons [22].
Parameters of all statistical tests performed are outlined in
detail within the figure legends.

Results
Clinical and Demographic Characteristics

The hemorrhagic stroke group included 15 final clinical diag-
noses of subarachnoid hemorrhage and 2 final clinical diag-
noses of intracerebral hemorrhage. Final clinical diagnoses of
the stroke mimic group can be found in Supplementary
Table 1. Both ischemic and hemorrhagic stroke patients were
significantly older than stroke mimics. Furthermore, ischemic
and hemorrhagic stroke patients displayed a greater history of
cardiovascular disease than stoke mimics, and a higher prev-
alence of cardiovascular disease risk factors, especially dys-
lipidemia. Ischemic stroke and hemorrhagic patients were rel-
atively similar in terms of clinical and demographic character-
istics; however, the ischemic stroke group displayed a higher
prevalence of dyslipidemia and contained a higher proportion
of female subjects (Table 1).

Model Selection and Diagnostic Performance

The top-ranked peptide probes, as determined by mean de-
crease Gini coefficient, are depicted in Fig. 2A. The combined
ability of the top-ranked probes to differentiate the total pool
of ischemic and hemorrhagic stroke patents from stoke
mimics in cross-validation is depicted in Fig. 2B. The com-
bined ability of the top-ranked probes to differentiate hemor-
rhagic stroke patients from ischemic stroke patients and stroke
mimics in cross-validation is depicted in Fig. 2C. The top-

combined to produce a total stroke prediction probability. Total stroke
prediction probability was used to classify samples as stroke/no stroke,
and hemorrhagic stroke prediction probability was used directly to clas-
sify samples as hemorrhage/no hemorrhage

ranked probes displayed a markedly better discriminatory
ability with regard to both identification of stroke and detec-
tion of hemorrhage relative to probes selected at random, sug-
gesting that our analysis was successful in terms of selecting
probes with optimal diagnostic characteristics. With respect to
both comparisons, cross-validation accuracy appeared to pla-
teau at 17 probes, and thus the model including the top-ranked
17 probes was selected as the final model.

The top 17 probes used in combination were able to dis-
criminate the total pool of ischemic and hemorrhagic stroke
patients from stroke mimics with 91.7% sensitivity (95% CI =
77.5-98.2%) and 90.0% specificity (95% CI=68.3-89.8%,
Fig. 3A). The same 17 probes were able to detect hemorrhage
with 88.2% sensitivity (95% Cl=63.6-98.5%) and 87.1%
specificity (95% CI=72.7-95.7%) when considering all sub-
jects (Fig. 3B), and 93.3% sensitivity (95% CIl = 68.1-99.8%)
and 90.0% specificity (95% CI =68.3-98.8%) when only
considering patients first classified as stroke (Fig. 3C).

Differential Antibody Binding of Top-ranked Probes

A comparison of the antibody binding intensities across the
top 17 probes between ischemic stroke patients, hemorrhagic
stroke patients, and stroke mimics is shown in Fig. 4A.
Significant differences in antibody binding intensities were
observed between groups with regard to each of the top 17
probes after controlling for multiple comparisons with the
exception of one. Hierarchical clustering of the top 17 probes
based on the correlational relationship between their antibody
binding intensity levels produced three predominant clusters:
one which displayed higher binding intensities in ischemic
stroke patients relative to hemorrhagic stroke patients and
stroke mimics, one which displayed lower binding intensities
in ischemic stroke patients relative to hemorrhagic stroke pa-
tients and stroke mimics, and one which displayed higher
binding intensities in ischemic and hemorrhagic stroke pa-
tients relative to stroke mimics.

Visualization of the final model’s most representative
decision tree revealed logical node splitting in terms of
both the probe importance rankings generated in our
probe selection paradigm, as well as the differential anti-
body binding intensities observed across the top-ranked
peptides. For example, the root node of the tree was a
split determined by the binding intensity of the top-
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Table 1 Clinical and demographic characteristics

Group P value

Stroke mimic ~ Ischemic stroke ~ Hemorrhagic stroke ~ Main test  SM v IS SMvHS ISvHS

(n=20, SM) (n=19,1S) (n=17, HS)
Age® (mean + SD) 57.6+13.9 722+14.2 70.4+124 0.002*  0.002* 0.005* 0.996
Female®, n(%) 12 (60) 10 (52.6) 3(17.6) 0.023*  0.751 0.017* 0.041*
Caucasian®, n(%) 13 (65) 14 (73.7) 13 (76.5) 0.756 - - -
African American®, n(%) 7 (35) 5(26.3) 4(23.5) 0.756 - - -
NIHSS? (mean + SD) 1.5+2 11.3+6.8 12.3+£9.2 <0.001* <0.001* <0.001*  0.683
Minutes to blood draw® (mean + SD) ~ 348.8+155.8  425.6+236.6 508.2+158.7 0.008*  0.096 < 0.001* 0223
History of stroke®, n(%) 0 (0) 6 (31.6) 2 (11.8) 0.009*  0.008%* 0.204 0.235
History of mycardial infarction, n(%) 1 (5) 8 (42.1) 2 (11.8) 0.013* 0.008* 0.584 0.065
History of atrial fibrillation®, n(%) 3(15) 8 (42.1) 2 (11.8) 0.069 - - -
Hypertension®, n(%) 9 (45) 15 (78.9) 11 (64.7) 0.089 - - -
Dislipidemia®, n(%) 3 (15) 13 (68.4) 5(29.4) 0.002*  0.001°%* 0.428 0.043*
Diabetes®, 1(%) 5(295) 4(21.1) 3(17.6) 0.920 - - -
Current smoking®, 71(%) 6 (30) 7 (36.8) 2 (11.8) 0.214 - - -

* Means compared via one-way ANOVA with subsequent planned group-wise comparisons using two-sample two-tailed t-test;

® Proportions compared via 2 x 3 Fisher’s exact test with subsequent planned group-wise comparisons using 2 x 2 Fisher’s exact test; SD, standard

deviation;

* statistically significant.

ranked probe, NVAVAQDENLAG, which displayed lower
binding intensities in ischemic stroke patients relative to
hemorrhagic stroke patients and stroke mimics. Consistent
with this pattern of differential binding, splitting the sub-
ject pool based on the root node criterion produced a
relatively pure daughter node comprised almost exclusive-
ly of ischemic stroke patients, and another daughter node
comprised predominantly of hemorrhagic stroke patients
and stroke mimics (Fig. 4B).

Influence of Potentially Confounding Factors
on Diagnostic Signature

Combined ischemic and hemorrhagic stroke prediction prob-
abilities generated by the final 17-probe random forest model
were significantly associated with a clinical diagnosis of
stroke independently of age, sex, time to blood draw, history
of stroke, history of myocardial infarction, and dyslipidemia
in multiple regression. Although stroke prediction probability
was also significantly associated with sex, variance decompo-
sition revealed that this association only accounted for a min-
imal amount of explained variance (Fig. 5A). In addition,
hemorrhage prediction probabilities generated by the random
forest model were significantly associated with clinical diag-
nosis of hemorrhage independently of both sex and dyslipid-
emia when considering the total subject pool, and exhibited no
significant association with either potentially confounding
factor (Fig. 5B). Collectively, this suggests that the diagnostic
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signature identified in our analysis was not largely influenced
by intergroup differences in clinical and demographic
characteristics.

Discussion

Accurate stroke recognition during triage can streamline care
and afford patients earlier access to life-saving interventions.
Unfortunately, the tools currently available to clinicians for
identification of stroke in the prehospital and early in-
hospital setting are limited. The purpose of this study was to
investigate the feasibility of antibody-based stroke diagnosis
within an experimental context relevant to triage. Our results
provide preliminary evidence that the circulating antibody
pool is altered in stroke, and that these alterations can be
targeted diagnostically. Albeit in a limited sample size, the
antibody-based signature identified in this analysis displayed
levels of diagnostic performance which exceed those reported
in a majority of prior stroke biomarker investigations, as well
as those commonly reported as being achievable using the
stroke recognition and severity scales which are currently used
in prehospital and emergency medicine settings.

Although it is important to note that no direct comparisons
were made, few prior studies have reported similar levels of
diagnostic accuracy to those which we observed in this inves-
tigation in terms of discriminating between stroke patients and
true clinical stroke mimics. Most notably, Dambinova et al.
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Fig.2 Selection of top-ranked probes. (A) Top-ranked probes, ordered by
mean decrease Gini coefficient, averaged across five independent random
forest models. (B) Combined ability of the antibody binding intensities of
the top 50-ranked probes to discriminate the total pool of ischemic and
hemorrhagic stroke patients from stroke mimics using random forest,

recently reported that plasma levels of brain-derived NR2
peptide could be used to differentiate between stroke patients
and a combination of acute stroke mimics and neurologically
asymptomatic controls with 93% accuracy [23]. However, a
majority of blood samples in this prior study were obtained
between 24 and 72 h post symptom onset, and it is currently
unknown if NR2 peptide would exhibit an equivalent level of
diagnostic performance early in the acute phase of care. The
antibody-based signature identified in our analysis was tested
earlier in the progression of acute pathology and thus exhibits
an obvious advantage in that it has the potential to provide
actionable diagnostic information at an early enough time
point to influence acute care decisions. With respect to

0
N
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compared to those of probes selected at random. (C) Combined ability
of the antibody binding intensities of the top 50-ranked probes to identify
hemorrhagic stroke patients using random forest when considering all
subjects, compared to those of probes selected at random

detection of hemorrhage, a small number of biomarker panels
comprising circulating proteins have been previously de-
scribed which have been reported to discriminate between
hemorrhagic stroke patients and ischemic stroke patients with
levels of accuracy approaching 90% [24, 25]; however, none
of them have displayed the ability to simultaneously differen-
tiate between stroke patients and clinical stroke mimics, which
diminishes their value for use as a stand-alone diagnostic test.

In addition to displaying robust performance relative to
candidate stroke biomarkers reported in prior investigations,
the antibody-based signature identified in our analysis exhib-
ited levels of diagnostic accuracy which exceed those com-
monly reported with respect to the tools currently being used
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Fig. 3 Diagnostic ability of the top 17 probes. (A) ROC curve depicting
the combined ability of the antibody binding intensities of the top 17-
ranked probes to discriminate the total pool of ischemic and hemorrhagic
stroke patients from stroke mimics using random forest. (B) Combined
ability of the antibody binding intensities of the top 17-ranked probes to

guide early triage decisions in clinical practice. A majority of
early transport, transfer, and referral decisions are dependent
on stroke recognition using rudimentary symptom-based as-
sessments such as the National Institutes of Health Stroke
Scale (NIHSS) and the Cincinnati Prehospital Stroke Scale
(CPSS). In the hospital setting, the accuracy of such assess-
ments has been reported to range between 58 and 85%

identify hemorrhagic stroke patients using random forest when consider-
ing all subjects. (C) Combined ability of the antibody binding intensities
of'the top 17-ranked probes to identify hemorrhagic stroke patients using
random forest when only considering subjects first classified as stroke

depending on the type of clinician and their level of experi-
ence [26]. In the prehospital setting, these assessments are
even less effective, in which some studies have documented
levels of accuracy as low as 51% [27]. Although it is impor-
tant to note that no direct comparisons were made, the
antibody-based signature identified in our analysis displayed
levels of accuracy which, if validated, would constitute a
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Fig. 4 Differential antibody binding across the top 17 probes. (A)
Antibody binding intensities of the top 17 probes associated with
samples from ischemic stroke patients, hemorrhagic stroke patients, and
stroke mimics. Binding intensities were statistically compared using one-
way ANOVA and P values were corrected for multiple comparisons using
the Benjamini-Hochberg method. Probes were hierarchically clustered by
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similarity in binding intensities as assessed by Spearman’s rho. (B)
Classification of each subject in the total patient pool according to the
final random forest model’s most representative decision tree. Each dot
represents a single subject. Superscript labels on probes indicate impor-
tance ranking
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A
Model: R?=0.668 p<0.001*
Intercept 0.615 0.135 <0.001* -
Clinical stroke diagnosis 0.514  0.061 <0.001* 0.531 (79.4%)
Age -0.003 0.001 0.145 0.034 (5.1%)
Sex -0.139 0.046  0.004* 0.031 (4.7%)
Time to blood draw -0.001  0.001 0.853 0.036 (5.4%)
Previous stroke -0.086 0.063  0.182 0.010 (1.6%)
History of myocardial infarction -0.015 0.065 0.814 0.005 (0.7%)
Dyslipidemia -0.048 0.053  0.376 0.020 (3.0%)
B
Model: R?=0.563 p<0.001*
Intercept  0.231 0.035 <0.001* -
Clinical hemorrhage diagnosis 0.372  0.045 <0.001* 0.541 (96.1%)
Sex -0.083 0.042 0.054 0.020 (3.6%)
Dyslipidemia 0.022  0.041 0.589 0.002 (0.3%)

Fig. 5 Relationships between potentially confounding factors and
diagnostic signature. (A) Multiple regression model generated by
regressing combined ischemic and hemorrhagic stroke prediction
probabilities produced by the final 17 probe random forest model
against clinical stroke diagnosis and potentially confounding clinical
and demographic characteristics. (B) Multiple regression model

substantial improvement over these symptom-based recogni-
tion tools. This suggests that antibody-based stroke diagnos-
tics may have true utility for clinical use if future larger-scale
investigations show similar results.

In terms of the biological significance of our findings, our
results suggest that the circulating antibody pool is altered in
stroke; however, the timing and mechanism of these alter-
ations are unclear. The scalability and unbiased nature of
non-native peptide arrays make them well suited for use as
diagnostic tools, but because they are not comprised of bio-
logically occurring proteins, it is difficult to elucidate the true
antigens associated with differential binding. Previous studies
have suggested that stroke-induced blood—brain barrier dis-
ruption exposes the peripheral adaptive immune system to
novel central nervous antigens [28], which can lead to the
production of self-reactive antibodies. Increased circulating
levels of antibodies with strong blinding affinity towards neu-
ral antigens such as myelin basic protein and NMDA receptor
have been reported in both human and experimental stroke,
however typically days after symptom onset [29-31]. Due to
the time it takes the adaptive immune system to produce ma-
ture humoral responses [32], it is unlikely that the alterations
to the circulating antibody pool which we observed early in
acute pathology are a result of a fully formed response against

Clinical stroke diagnosis

Y

% of R?

Time to blood draw

Previous stroke
History of myocardial infarction
Dyslipidemia

Clinical hemorrhage diagnosis

% of R?

< Sex
—_—

—_— Dyslipidemia

generated by regressing the hemorrhage prediction probabilities
produced by the final 17 probe random forest model against
hemorrhage clinical diagnosis and potentially confounding clinical and
demographic characteristics. The relative influence of covariates on
prediction probabilities as determined by explained variance are
graphically depicted

such antigens; however, they may be a result of the early
antibody selection process involving the production of non-
homogeneous suboptimal affinity immunoglobulins.
Alternatively, it is possible that the circulating antibody pool
is altered prior to acute symptom onset; such alterations could
either occur in the immediate days or weeks leading up to the
acute injury due to stroke-triggering inflammatory events, or
could be the result of long-term immune responses which have
developed against precipitating chronic risk factors. A multi-
tude of acute and chronic inflammatory states including infec-
tion [33], vasculitis [5], antiphospholipid syndrome [34], rheu-
matoid arthritis [35], and inflammatory bowel disease [36] are
associated with increased risk of stroke. These inflammatory
states all involve the adaptive immune system, and can promote
thrombosis, alter vascular reactivity, and advance atherosclero-
sis, which are the direct pathogenic drivers of stroke [5, 37].
Furthermore, chronic risk factors for stroke such as dyslipid-
emia and atherosclerosis can result in long-term alterations to
the complexion of the adaptive immune system. If the diagnos-
tic signature which we measured is in fact already present prior
to the acute event due to immune responses which have devel-
oped against underlying risk factors as opposed to occurring as
a result of an acute response to the injury, it would explain the
ability of the profile to discriminate between ischemic and
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hemorrhagic stroke, as both pathologies are associated with
different risk factor clusters.

In terms the potential for future clinical implementation,
the biomarker discovery paradigm which we employed in this
investigation included several innovative aspects which make
it an optimal starting point for translational development. Prior
biomarker discovery studies in stroke have almost exclusively
utilized control groups consisting of healthy controls or neu-
rologically normal controls with cardiovascular disease risk
factors, and few have sampled blood at ultra-early timepoints
[11]. Unsurprisingly, candidate biomarkers identified in these
previous studies have repeatedly failed to demonstrate useful
levels of diagnostic accuracy when subsequently tested in
clinically relevant acute care scenarios. In this investigation,
we utilized a control group consisting of true stroke mimics,
and sampled blood at emergency department admission, in-
creasing the odds that our findings will generalize in terms of
real-world clinical populations.

Furthermore, our use of peptide array as a discovery plat-
form offers additional translational advantages from an assay
development perspective. Several commercially available di-
agnostic devices currently support rapid immunoassay-based
blood testing; because a peptide array essentially consists of
thousands of parallel sandwich immunoassays consisting of a
capture peptide and detection antibody, it should be possible
to extract the individual immunoassays deemed most diagnos-
tically useful and develop them for point-of-care detection
using existing hardware or established technological princi-
ples. Our results suggest that a relatively small number of
assays, as few as 17, may be suitable for stroke diagnosis;
although the most commonly used point-of-care devices cur-
rently found in emergency medicine settings do not support
this level of multiplex detection, newer next-generation de-
vices have demonstrated the ability to perform as many as
90 assays in parallel [38]. Thus, it is realistic to think that if
a blood-borne antibody-based diagnostic profile for stroke can
be validated, it could be developed into a tool ready for clin-
ical use fairly quickly using existing technologies.

It is important to note that this study was not without limita-
tions, many of which were attributable to the preliminary nature
of our analysis. Because of our limited sample size, we had to
assess the diagnostic performance of our model via same-set
cross-validation using out-of-bag error, as opposed to using a
more ideal paradigm implementing independent training and
validation cohorts. However, due to the use of bootstrap agglom-
eration, random forest is relatively resistant to overfitting, and
out-of-bag error estimates tend to be good predictors of future
performance given that the training sample is representative of
the overall population of interest [39]. In addition, the small
sample size drove our choice to exclude patients with a final
diagnosis of TIA; because TIA diagnoses can be ambiguous,
and the biological differences between TIA and ischemic stroke
are less clearly defined, a much larger subject pool would likely
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be needed to generate a model which would could reliably make
such distinctions. In spite of these limitations, the collective re-
sults reported here are exciting, and a future larger-scale investi-
gation capable of addressing such shortcomings is warranted.

Taken as a whole, our results provide preliminary evidence
that there are alterations to circulating antibody pool associat-
ed with stroke, and that these alterations can be targeted diag-
nostically during triage. The antibody-based signature identi-
fied in this analysis displayed levels of diagnostic perfor-
mance which well exceed those reported in previous stroke
biomarker investigations, as well as those commonly reported
as being achievable via the stroke recognition and severity
scales which are currently used in triage scenarios. These
findings, taken with the fact that blood-borne antibodies are
amenable to point-of-care detection, imply that antibody-
based stroke diagnostics could be developed into clinically
viable tools with the potential to inform critical decision-
making in the acute phase of care.
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