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Abstract

Stroke remains a leading cause of disability and death worldwide despite significant scientific and therapeutic advances.
Therefore, there is a critical need to improve stroke prevention and treatment. In this review, we describe several examples that
leverage nucleic acid therapeutics to improve stroke care through prevention, acute treatment, and recovery. Aptamer systems are
under development to increase the safety and efficacy of antithrombotic and thrombolytic treatment, which represent the
mainstay of medical stroke therapy. Antisense oligonucleotide therapy has shown some promise in treating stroke causes that
are genetically determined and resistant to classic prevention approaches such as elevated lipoprotein (a) and cerebral autosomal
dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Targeting microRNAs may be attractive
because they regulate factors involved in neuronal cell death and reperfusion-associated injury, as well as neurorestorative
pathways. Lastly, microRNAs may aid reliable etiologic classification of stroke subtypes, which is important for effective

secondary stroke prevention.
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Epidemiology of Stroke

The latest estimates from the Global Burden of Diseases,
Injuries and Risk Factors Study 2016 (the most comprehen-
sive source of comparable summary population health mea-
sures) have demonstrated a shift from communicable diseases
to noncommunicable diseases as the leading causes for re-
duced disability-adjusted life-years (DALY; i.e., the sum of
years of life lost due to poor health or disability) over the last
2 decades [1]. Among these, cerebrovascular diseases are now
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the second leading cause for DALY [1]. These changes are
driven by an increase in the incidence and prevalence of stroke
in low- and middle-income countries resulting in a significant-
ly higher stroke burden in these countries as compared to
high-income countries [1]. Concerningly, stroke burden has
particularly worsened among younger patients, with a startling
25% increase in the incidence of stroke among adults aged 20
to 64 years representing 31% of all people with incident stroke
[2]. In 2010, there were 16.9 million incident cases of stroke
(~70% ischemic strokes and ~30% hemorrhagic strokes)
worldwide [2] and approximately 800,000 people suffer a
stroke in the USA each year [3, 4]. Despite significant scien-
tific and therapeutic advances, stroke remains the fifth leading
cause of death in the USA and there has been a recent flatten-
ing, and even increase, in death rates among all age groups [4,
5]. Stroke-associated socioeconomic costs are immense, and
given our aging society, it has been estimated that the total
direct medical stroke-related costs will more than double from
$36.7 billion to $94.3 billion from 2015 to 2035 [4]. Hence,
there is a critical need to improve stroke prevention and treat-
ment. In the following pages, we will provide a narrative
overview of select, promising strategies that leverage nucleic
acid therapeutics to improve stroke care through the 3 main
pillars prevention, acute treatment, and recovery (Table 1
summarizes key aspects of the discussed agents) [6, 7]. In this
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Table 1 (continued)

Developmental stage

Benefits/adverse effects

Mode of action

Molecule

Preclinical
(in vivo)

Increased microvascular and BBB integrity,

Increased expression of SMAD 35, Rictor, eNOS, and Rheb

anti-miR-155

attenuated neuronal injury, and increased

functional recovery

Ischemic stroke biomarkers

Observational

Increased ratio identified patients with

circRNA-284-to-miR-221 ratio

symptomatic carotid disease

carotid endarterectomy; eNOS =

blood brain barrier; CEA =

interleukin 17, LRP-1 =low-density lipoprotein receptor-related protein-1, Lp(a) = lipoprotein(a),

antisense oligonucleotide; BBB

aquaporin-4; ASO =

apolipoprotein B; AQP-4

Act-1 =nuclear factor (NF)-kB activator; apoB-100

endothelial nitric oxide synthase; IONIS-APO,ry = antisense apolipoprotein A inhibitor, II-17

mTOR

mitogen-activated protein kinase kinase 3, NGFI-B= nerve growth factor inducible protein-B,

mitogen-activated protein kinases, MAP2K3

mechanistic target of rapamycin, MAPK

ras homolog enriched in brain, Rictor=

mothers against decapentaplegic homolog 5, sox8 = sex determining region Y-box 8,

risk evaluation and mitigation strategy, Rheb

neurogenic locus notch homolog protein 3, REG1 = pegnivacogin + anivamersen, REMS =

NOTCH3

rapamycin-insensitive companion of mammalian target of rapamycin, ROS =reactive oxygen species, SMAD 5

TLR-4 =toll like receptor-4, tPA

tissue-type plasminogen activator, vVWF-GPIb = von Willebrand factor—glycoprotein Ib interaction

chapter, we will focus on ischemic stroke because the majority
of nucleic acid therapies have been tested in this stroke type
and because ischemic stroke represents the most common
stroke form. For details regarding nomenclature, chemistry,
and challenges in delivering nucleic acid therapeutics to the
central nervous system, we refer the interested reader to the
companion chapters in this special edition.

Stroke Prevention

Antithrombotic Therapy for Primary and Secondary
Stroke Prevention

The 3 major ischemic stroke mechanisms include
cardioembolism, large artery atherosclerosis, and cerebral
small vessel disease related pathology [8, 9]. The majority of
all ischemic strokes are caused by arterial thromboembolism.
Hence, prophylaxis with antithrombotics (i.e., anticoagulants
and antiplatelet agents) is the mainstay of medical therapy to
reduce stroke risk. However, despite the proven benefit of
antithrombotic therapy, many recurrences are not prevented.
Additionally, the use of antiplatelets and anticoagulants carries
the risk of bleeding complications particularly if used in com-
bination [10—-13]. Accordingly, there is a need to refine anti-
thrombotic regimens and to develop novel agents to increase
benefit while attenuating hemorrhage risk.

One promising approach for inhibiting platelet function is
to block the interaction between von Willebrand factor (VWF)
and the platelet receptor glycoprotein 1b (GP1b) to minimize
recruitment, activation, and aggregation of platelets at an in-
jured arterial wall. Preclinical studies found that inhibition of
GPIb or absence of VWF confers profound antithrombotic
effects as well as attenuates infarct size in a mouse transient
middle cerebral artery occlusion stroke model without increas-
ing the risk for hemorrhagic transformation of the brain infarct
[14—17]. Under pathological conditions (that cause high shear
force in the arterial circulation), vWF is activated through
physical deformation that exposes its A1 domain and enables
binding to the GP1b receptor resulting in thrombosis [18].

The first aptamer against vVWF was ARC1172, a DNA
oligonucleotide that bound to the Al-domain of vWF [19].
Subsequently, the anti vVWF RNA/DNA hybrid aptamer
ARC1779 was developed. ARC1779 binds to the A1 domain
of activated vWF, blocking the interaction of vWF with GP1b
on platelets, inhibiting the vVWF-mediated pathological throm-
bosis, and leaving the coagulation system and other pathways
of platelet activation intact [20]. A clinical phase 1 study in
healthy volunteers demonstrated that ARC1779 dose-
dependently reduced vWF activity and platelet function. A
subsequent small randomized, double-blind, placebo-
controlled phase 2 trial in patients undergoing carotid endar-
terectomy (CEA) demonstrated that patients treated with
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ARC1779 had significantly later occurrence of postoperative
embolic signals as detected by transcranial Doppler during the
3 h of monitoring. Moreover, the number of patients without
any embolic signals was significantly lower in the treatment
group and there was a trend towards overall fewer embolic
signals in ARC1779 patients. Also, none of the 8 subjects in
the ARC1779 group who underwent brain MRI had evidence
of postoperative ischemic stroke as compared to 2 of 5 patients
in the placebo group. Lastly, the number of clinical overt
strokes was similar between groups (one each) [21].
Bleeding events were more common in ARC1779-treated
subjects [21] for which reason phase II and III trials will be
required to establish safety and efficacy of ARC1779 for is-
chemic stroke prevention particularly in the perioperative set-
ting. In this respect, a possible approach to mitigate hemor-
rhage risk in the surgical setting as well as to control bleeding
complications in patients treated with aptamers targeting vWF
is to use an aptamer inhibitor. It has been shown that the RNA
aptamer Ch-9.14-T10 maintained arterial patency in the
mouse ferric chloride-induced carotid artery thrombosis mod-
el [22]. The authors demonstrated that surgically challenged
mice (tail transsection) treated with Ch-9.14-T10 dose-
dependently exhibited significantly enhanced bleeding as
compared with control mice. However, by using a comple-
mentary antidote oligonucleotide based on the sequence of
aptamer Ch-9.14-T10, they were able to reverse vWF aptamer
activity both in vitro and in vivo, resulting in substantial atten-
uation of bleeding in surgically challenged mice (with similar
blood loss as in control animals) [22].

Long-term oral anticoagulation remains the mainstay for
preventing ischemic stroke in patients at high risk for
cardioembolism such as in the setting of atrial fibrillation,
the most common pathological arrhythmia [23-25].
Although stroke prevention with oral anticoagulation is key
to AF treatment [26-29], up to 40% of treatment-eligible older
atrial fibrillation patients are untreated due to complex
decision-making [30-40]. It is particularly challenging for cli-
nicians to advise frail patients about anticoagulation given
their high risk for both ischemic stroke and anticoagulation-
related bleeding [41—44]. Currently available oral anticoagu-
lants include vitamin K antagonists (e.g., warfarin) and non-
vitamin K oral anticoagulants (NOAC) including the direct
thrombin inhibitor dabigatran and factor Xa inhibitors such
as apixaban, rivaroxaban, and edoxaban [45]. Aptamer—
antidote systems have been developed as a fundamentally
attractive regimen to achieve rapid and selective
anticoagulation with the ability for graded reversal in patients
requiring safe and effective anticoagulation including in the
setting of procedures. One of these systems is REG1, which
consists of an active anticoagulant (pegnivacogin, RB006)
and a complementary oligonucleotide antidote (anivamersen,
RBO007) that neutralizes the anticoagulant effect as needed,
serving as a molecular “on—off” switch [46, 47]. Because
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anivamersen restores hemostatic capacity by preventing the
association of pegnivacogin with factor IXa, the maximal gen-
erated levels of factor [Xa are limited to pre-existing levels of
native factor IX/IXa assuaging concerns that reversal results in
exceeding intrinsic factor IXa activity and trigger thrombosis
[46, 48]. Following a comprehensive preclinical development
program, REG1 was tested as the first-in-human aptamer-
based direct factor IXa inhibitor [47-50]. To achieve
prolonged duration of effect, pegnivacogin was chemically
stabilized by conjugation to a 40-kDa polyethylene glycol
(PEG) carrier. Pegnivacogin selectively blocks the conversion
of factor X to factor Xa. In the first phase 1a study that en-
rolled 85 healthy volunteer subjects, REG1 was overall well
tolerated and adverse bleeding events were similar to placebo
(mostly consisting of minor bleeding and ecchymoses at the
intravenous access site) [47]. Notably, one pegnivacogin-
treated patient developed transient speech impairment, mood
alteration, confusion, and ptosis that spontaneously resolved.
However, given the patient’s personal history (drug abuse),
circumstances of symptom occurrence (emotional exchange
with study staff), and absent overt mechanistic link, it was
uncertain whether the event was caused by the study drug
[47]. In a second phase 1 trial, testing repeat dosing of
REGI components in 39 healthy volunteers, no significant
adverse events were observed [51]. In anticipation of phase
2 trials of revascularization therapy, the subsequent phase 1b
study enrolled 50 subjects with stable coronary artery disease
on maintenance single or dual antiplatelet therapy to deter-
mine the clinical safety and pharmacodynamic profiles of
REGI [46]. Similar to the phase 1 studies in healthy volun-
teers, REG1 was overall well tolerated without major bleeding
or other serious adverse events or signs of acute encephalop-
athy [46]. Transient cutaneous reactions (flushing and/or pru-
ritus) were noted in 2 subjects within a few minutes after drug
injection. Pegnivacogin resulted in dose-dependent, rapid-on-
set, and durable anticoagulation that was rapidly reversed with
anivamersen. The RADAR phase 1Ib trial tested different
levels of reversal of pegnivacogin by anivamersen compared
with heparin in 640 patients with acute coronary syndrome
undergoing cardiac catheterization. This trial found that with
at least 50% reversal of pegnivacogin, bleeding rates were
similar to heparin (enrollment in the 25% reversal arm was
stopped due to excess bleeding) and there was a trend towards
less frequent acute ischemic complications in REG1 as com-
pared to heparin anticoagulation [52]. However, 3 patients
developed serious unexplained allergic reactions and study
enrollment was terminated after the third event. Based on
the encouraging results of a reduction in the incidence of is-
chemic events to 3.0% compared with 5.7% in the heparin
arm REGULATE-PCI, a large clinical phase III trial com-
menced with the goal to determine the efficacy of REG1
versus bivalirudin for percutaneous coronary intervention in
more than 13,000 patients [53]. In light of the observed
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allergic reactions in the prior trials, specific guidelines were
provided to investigators and patients. The data and safety
monitoring board reviewed in real time and periodically all
serious allergic events. Although stent thrombosis by day 30
occurred less frequently with REG1, there was no difference
in the primary efficacy endpoint (death, myocardial infarction,
stroke, or unplanned target lesion revascularization by day 3).
Secondary composite or individual efficacy endpoints and
bleeding were more frequent among patients receiving
REGI. However, this study was halted following enrollment
of approximately 3200 participants after 10 serious allergic
reactions to pegnivacogin occurred (including 1 fatality)
[53]. This observation prompted additional post hoc studies
to determine the cause of these adverse events. These found a
strong correlation between the incidence of allergic reactions
and the presence of pre-existing circulating anti-PEG antibod-
ies. Moreover, patients from REGULATE-PCI who experi-
enced the most severe reaction had the highest levels of pre-
existing anti-PEG antibodies [54, 55]. It was concluded that
the PEG moiety and not the aptamer component of
pegnivacogin was responsible for the severe allergic reactions
[54, 55]. Although further clinical development of
pegnivacogin has been discontinued, the overall results gained
from the clinical trials provided highly insightful information
for future drug and trial design. It also showed that aptamer-
based inhibition of factor IXa can provide effective
anticoagulation providing the rational for ongoing efforts to
develop novel aptamer-based anticoagulant strategies [56].

Atherogenic Stroke Prevention

Prospective longitudinal studies have established the impor-
tance of major atherogenic risk factors including hyperten-
sion, diabetes mellitus, obesity, obstructive sleep apnea, and
smoking [57]. Dyslipidemia is another well-established mod-
ifiable risk factor that contributes to the development of cere-
brovascular disease and stroke. The use of HMG-CoA reduc-
tase inhibitors (statins) is recommended by the American
Heart Association to reduce the risk of stroke and cardiovas-
cular events particularly in patients where the stroke was re-
lated to atherosclerotic disease [57, 58]. These recommenda-
tions are based on the SPARCL trial that demonstrated a 16%
relative risk reduction of recurrent strokes in patients treated
with 80 mg atorvastatin [59]. However, it is interesting to note
that a meta-analysis of 45 prospective studies including ~
450,000 subjects did not find a significant association between
total serum cholesterol level and stroke incidence [60].
Similarly, observations from the Framingham Heart Study
indicated that a low high-density lipoprotein (HDL) but not
total serum cholesterol and low-density lipoprotein (LDL)
cholesterol relate to stroke risk [61]. Nevertheless, total serum
cholesterol and LDL cholesterol have been shown to directly
contribute to extracranial carotid artery atherosclerosis

whereas HDL cholesterol has been found to exert protective
effects [62—64]. Accordingly, it remains presently unclear
whether the beneficial effects of statins are mediated through
its proven LDL-lowering properties, through anti-inflamma-
tory, neuroprotective, and neurorestorative attributes, or by
targeting other (clinically less frequently assessed) lipoprotein
fractions.

For example, a meta-analysis suggested that atorvastatin
may lower lipoprotein (a) (Lp(a)) [65]. Lp(a) is a unique
LDL-like particle that is comprised of a moiety essentially
identical to LDL, which is covalently linked to the
distinguishing protein component apolipoprotein(a) [66—69].
Lp(a) is an attractive target for reducing stroke risk through
nucleic acid therapies because (1) Lp(a) concentrations in the
atherogenic range are highly prevalent, affecting an estimated
20 to 30% of the worldwide population; (2) Lp(a) has a proven
causal association with cardiovascular diseases and ischemic
stroke [70-77]; and (3) plasma Lp(a) concentrations are large-
ly determined by genetic factors confined to the apo(a)
encoding gene LPA [78], which renders it resistant to dietary
and other lifestyle modifications as well as treatment with
classic lipid-lowering agents (such as niacin and statins) [66,
79]. Furthermore, though several trials demonstrated feasibil-
ity to modestly lower Lp(a) concentrations using classic lipid-
lowering agents, none have provided evidence that the
achieved degree of Lp(a) reduction leads to reduced cardio-
vascular events and stroke [76, 79, 80]. Yet, proof of principle
that Lp(a) lowering in maximally treated patients may im-
prove outcome stems from a prospective observational multi-
center study demonstrating that lipid apheresis effectively re-
duced the frequency of cardiovascular and cerebrovascular
events over a follow-up period of 2 years [81].

Antisense oligonucleotide (ASO) therapy has shown some
promise in treating elevated Lp(a). For example, plasma Lp(a)
levels have been consistently and significantly reduced with
mipomersen (ISIS 301012). Mipomersen is a second-
generation antisense oligonucleotide that specifically binds to
the apolipoprotein B-100 mRNA, which was the first agent to
enter clinical trials utilizing an antisense mechanism for reduc-
ing the production of apolipoprotein B. By inhibition of mes-
senger ribonucleic acid translation, mipomersen blocks the
hepatic protein synthesis resulting in dose-dependent lowering
of the concentration of the apoB-100 containing atherogenic
lipoproteins including Lp(a) in patients with varying extents of
hyperlipidemia who are at high risk for cerebrovascular events
(such as in patients with familial hypercholesterolemia and on
the background of treatment with statins and other convention-
al lipid-lowering drugs) [82—89]. Specifically, several phase 111
clinical trials have shown that mipomersen lowers Lp(a) by
approximately 17 to 30% [85-89]. Importantly, an individual
patient analysis of subjects that had participated in one of the 3
phase III trials of the mipomersen program [85-87] found a
significant reduction in major adverse cardiac events from
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25.7 of 1000 patient-months of follow-up before mipomersen
treatment to 3.9 of 1000 patient-months of follow-up during
approximately 24 months of mipomersen treatment (odds ratio
0.053 [95% CI, 0.016-0.168], P < 0.0001) [88]. Nevertheless,
despite the compelling 84% relative reduction in major cardio-
vascular events, it needs to be emphasized that mipomersen
treatment related to a significant reduction in all atherogenic
lipid fractions. Thus, it remains uncertain to what extent the
lowering of Lp(a) contributed to the risk reduction. Moreover,
major predictors of mipomersen-associated Lp(a) reduction
were white race and lower baseline values, which is of clinical
importance because approximately 30% of whites, yet 60% to
70% of blacks, have elevated Lp(a) levels of > 30 mg/dL [90].
Lastly, despite the proven efficacy in lowering Lp(a) and other
atherogenic lipids, mipomersen possesses a significant side
effect profile including risk for hepatotoxicity, for which rea-
son it is unlikely to find wide acceptance for the specific treat-
ment of isolated elevations of Lp(a) (and for which reason it is
restricted for use in homozygous familial hypercholesterol-
emia through a risk evaluation and mitigation strategy program
in the USA and was rejected by European Medicines Agency)
[79, 91]. Nevertheless, subsequent investigations into opti-
mized ASOs for treatment of increased Lp(a) identified
IONIS-APO(a)ry, Which achieved a dose-dependent mean
Lp(a) reduction of 78% in healthy volunteers [70]. In this first
phase I study, IONIS-APO(a)r, did not cause any serious or
severe adverse events and there were no significant changes in
liver function assays. Common less severe events included
mild injection site reactions as well as flu-like symptoms
[70]. The results from this study provide the rationale for fu-
ture clinical trials to determine whether lowering Lp(a) plasma
concentrations reduces cardiovascular events including ische-
mic stroke.

Prevention in Inherited Stroke Syndromes

The majority of ischemic strokes are multifactorial in nature,
and any genetic contributions are likely the result from multi-
ple risk alleles each with small effects [92]. Nevertheless, a
small subset of ischemic strokes have monogenic causes, pos-
ing a substantial challenge for clinicians because standard ap-
proaches to risk factor modification and secondary prevention
measures, while partially beneficial, are not sufficient in
preventing disease progression [92]. A prominent example is
cerebral autosomal dominant arteriopathy with subcortical in-
farcts and leukoencephalopathy (CADASIL). It is caused by
mutations in the NOTCH3 gene on chromosome 19 first re-
ported in European families. Today, CADASIL has been re-
ported from all continents and in hundreds of families of
European, American, African, and Asian descent. It is estimat-
ed to inflict 1 in 25,000 to 50,000 people. Patients with the
disease tend to be middle aged who classically develop mi-
graine with aura as the earliest clinical manifestation. While
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migraine with aura may be the prominent symptom in some
families, stroke is the most frequent clinical manifestation
over a patient’s lifetime, with approximately two thirds of
symptomatic subjects having had a stroke/transient ischemic
attack. Additional symptoms include mood disturbances as
well as dementia relating to chronic, progressive brain injury
due to white matter disease and strokes. Cognitive distur-
bances are typically in multiple domains including visuospa-
tial and speech as well as memory. Specific imaging findings
include MRI hyperintensities in the bilateral temporal horns,
the external capsule, and the corpus callosum indicating ex-
tensive cerebral small-vessel disease-related pathology.
Whereas imaging findings and clinical presentation are sug-
gestive, diagnosis is made through genetic testing or skin bi-
opsy, revealing loss of the media tunica and fibrosis of the
adventitia, with cytoplasmic inclusions in the vascular smooth
muscles. It has been shown that mutations in the NOTCH3
gene lead to cell surface aggregates, yet the intracellular cyto-
skeleton is affected. Ultimately, the vascular smooth muscles
are unable to contract causing aberrancies in autoregulation of
small vessels in the central nervous system [93]. To date, there
are no specific treatments for this devastating disease and
therapy rests on supportive measures [94-96]. CADASIL
treatment has been met with difficulties as NOTCH3 is ubiq-
uitously expressed and functions in multiple organ systems,
even at early stages of embryogenesis [97, 98]. Several ongo-
ing trials testing the use of antibodies in order to alter the
activation of notch-3 cascade have been promising [98, 99].
Silencing the gene through shRNA, transfected via a lentivi-
rus, causes similar pathology [93]. In a proof-of-concept ex-
periment, smooth muscle cells from CADASIL patients were
treated using ASOs to alter the pre-mRNA splicing and cor-
rect the even number of cystein molecules at the extracellular
epidermal growth factor-like repeat (EGFr) domain. The re-
maining notch-3 protein was functional and did not form path-
ologic aggregates [100]. Although in vivo validation of this
approach is warranted, nucleic acid-based therapies may be an
exciting novel approach to treating this as well as other mono-
genic stroke causes and related sequelae.

Acute Ischemic Stroke Therapy

The brain relies on a constant supply of oxygen and high-
energy substrates (predominantly glucose) to satisfy its high
metabolic demands to maintain functional and structural in-
tegrity. Simplistically, focal brain ischemia results from occlu-
sion or stenosis of a brain supplying vessel through embolism
of material originating elsewhere in the vasculature or from in
situ vascular pathology such as atherothrombosis [101].
Vascular occlusion and thus interrupted delivery of substrates
to a vascular territory of the brain quickly result in ischemia
that progresses to irreversible infarction if blood flow is not
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reinstated in a timely fashion [102]. It has been estimated that
with each minute of ischemia, 1.9 million neurons are perma-
nently lost [103]. Accordingly, rapid reperfusion of the ische-
mic but not yet infarcted tissue is paramount to mitigate brain
injury. Indeed, the only proven efficacious acute stroke treat-
ment strategies are based on this principle. Although there are
a multitude of preclinical studies that have utilized nucleic
acid therapeutics to investigate pathophysiology and establish
proof of principle therapeutic targets, there are presently no
well-developed clinical nucleic acid therapeutic programs
similar to those presented in the preceding sections on stroke
prevention. Therefore, we will focus on general principles of
acute stroke therapy and opportunities for intervention sup-
ported by discussion of select targets of potential interest.

Thrombolysis

The most commonly used therapy that is effective and safe
for acute ischemic stroke therapy is intravenous recombi-
nant tissue plasminogen activator (tPA). Since its initial
approval for treatment of patients within a narrow time
window of 3 h from symptom onset [104—106], its indica-
tion has been safely expanded for use in the 4.5-h time
window in patients selected on additional clinical criteria
[107], and more recent studies demonstrate the possibility
to treat even longer after symptom onset by using ad-
vanced neuroimaging criteria [108]. Nevertheless, despite
proven benefit and overall safety, thrombolysis with tPA is
only partially effective in many patients and it increases the
risk for intracranial hemorrhage [109—111]. Furthermore,
preclinical studies indicated that tPA may exert neurotoxic
properties and exacerbate ischemic lesions via several dis-
tinct pathways [112—114]. Hence, minimizing tPA-
mediated toxicity is a potential strategy to increase the
benefit-to-risk ratio. A recently proposed strategy is to tar-
get the interaction of tPA with the low density lipoprotein
receptor related protein-1 (LRP-1) [115], which is a trans-
membrane receptor expressed on several cell types includ-
ing neurons, vascular endothelial cells, pericytes, smooth
muscle cells, and astrocytes. The LRP-1 interaction with
tPA appears to be an important mediator of adverse effects
after tPA-mediated thrombolysis. For example, LRP-1-
dependent blood-brain barrier (BBB) disruption as well
as hemorrhagic transformation has been shown after tPA
administration [114, 116]. Indeed, tPA-binding RNA
aptamers have been developed that inhibit the tPA/LRP-1
complex formation and subsequent receptor-mediated en-
docytosis of tPA without substantially affecting the fibri-
nolytic properties of tPA in vitro [115]. These observations
provide proof of principle that aptamer technology can be
leveraged to attenuate potential tPA-mediated tissue toxic-
ity while preserving its beneficial thrombolytic properties.

This observation opens the door to developing novel strat-
egies to increase the safety of thrombolytic agents.

Neuroprotection

After the onset of focal brain ischemia, the brain region with
impaired cerebral blood flow contains subregions that prog-
ress to irreversible infarction at differing amounts of time de-
pending primarily upon the severity of the initial cerebral
blood flow decline, but metabolic factors and temperature
can affect the rapidity of infarct development [117]. The is-
chemic region that is already infarcted at any given time point
after the onset of ischemic stroke is the ischemic core, whereas
the ischemic region at risk for becoming infarcted over time is
known as the ischemic penumbra. The ischemic penumbra is
the tissue target of acute stroke therapies, mediated either by
reperfusion or neuroprotection, because therapeutic interven-
tion can salvage ischemic tissue destined to become infarcted
and thereby preserve functional capacity, leading to a better
clinical outcome [118]. The cellular consequences of reduced
or absent blood flow to the brain are manifold and referred to
as the ischemic cascade [119].

However, in contrast to the increasingly positive outcomes
with pharmacological (i.e., tPA-treatment) or mechanical
thrombolysis in ischemic stroke [104—108, 120—128], clinical
trials testing putative neuroprotective drugs targeting the var-
ious key factors in the ischemic cascade have been disap-
pointing. Although well over 1000 compounds have shown
promise in preclinical studies as neuroprotective agents, none
of them were found to be effective in phase III clinical trials
in which they were compared to placebo [129, 130]. Many
reasons were identified for the failure of translation of mono-
therapy neuroprotection from successful animal models in
clinical trials, which led to a number of suggestions as to
how to improve neuroprotective drug testing [131-136]. In
addition, the major advances in reperfusion therapy for acute
ischemic stroke require reassessment of neuroprotection. This
should now be viewed as an adjunctive therapy to be
employed before, during, or after systemic thrombolysis and
mechanical thrombectomy rather than standalone treatment
because the convincing efficacy of reperfusion therapy would
make it unethical to withhold these proven therapies. Several
scenarios for using neuroprotection in conjunction with reper-
fusion can be envisioned including the expansion of the time
window for definite reperfusion (“penumbral freezing”).
Proof of principle for extending penumbral survival, and thus
the therapeutic time window for tPA-mediated reperfusion,
has been shown with several pharmacological interventions
as well as with inhaled nitric oxide and high-flow oxygen
therapy to function as neuroprotective gas treatments
[137-139]. Such observations raise the intriguing possibility
of'testing neuroprotective drugs as a way to keep the ischemic
core from expanding and the ischemic penumbra from
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shrinking prior to definite reperfusion therapy, for example,
as patients are being transported to tertiary stroke centers for
treatment.

In this respect, nucleic acid therapies targeting microRNA
(miRNA) may be attractive because distinct miRNA expres-
sion patterns have been found in patients with ischemic stroke
with both up- and downregulation of miRNAs as assessed in
the blood [140], and also because miRNAs have been impli-
cated in the regulation of factors involved in neuronal cell
death as well as reperfusion-associated injury [141-143].
For example, miR-215 has been found upregulated in preclin-
ical models of neuronal ischemic injury and overexpression of
miR-215 inhibited apoptosis and autophagy in vitro, as well as
attenuated the infarct volume and improved functional deficits
in a mouse ischemic stroke model [144]. It has been posited
that decreased levels of miR-215 in ischemic conditions lead
to upregulation of nuclear factor (NF)-kB activator (Act)l
based on bioinformatics modeling, which ultimately leads to
activation of interleukin 17 (Il-17) causing enhanced apopto-
sis and autophagy.

Targeting Inflammation

Inflammation plays a pivotal role at all stages of cerebral is-
chemia and is initiated via activation of platelets, complement,
and endothelial cells. Leukocytes are subsequently activated
by the release of cytokines and adhesion molecules, which
includes tumor necrosis factor alpha among others. The hu-
moral response is subsequently propagated by all cell types in
the neurovascular unit, including endothelial cells, glia (astro-
cytes, microglia, oligodendrocytes), and neurons. With break-
down of the BBB due to the release of proteases including
matrix metalloproteinases (MMPs), an influx of immune cells
occurs, in turn leading to exacerbation of the initial insult, and
formation of vasogenic edema and reactive oxygen species,
which further compounds brain injury [145-147]. Although
aspects of the inflammatory cascade, particularly in the early
phase, can mediate detrimental effects, inflammation in the
restoration phase is important to further tissue repair. The re-
lease of anti-inflammatory cytokines such as interleukin 10 is
crucial in halting the inflammatory process, and thence the
release of growth factors by immune cells [145]. Preclinical
studies demonstrated that ischemic cells release molecules
designated as danger-associated molecular patterns, which
act in promoting an inflammatory response via pattern recog-
nition receptors, of which toll-like receptor-4 (TLR-4) is a
member. Indeed, mice lacking TLR-4 as well as animals treat-
ed with a TLR-4 antagonist have smaller infarct volumes and
improved neurological function as compared to wild-type
controls [148, 149].

In a mouse middle cerebral artery occlusion (MCAO)
stroke model, differential expression of miRNAs in the infarct
zone compared to the peri-infarct zone has been observed.
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This lead to the notion that miRNA regulation of gene expres-
sion and/or protein translation in the peri-infarct zone
could decrease the inflammatory cascade and improve out-
comes. Several groups identified differential miRNA expres-
sion showing a proinflammatory array in the infarct zone in-
cluding miR-181a, and an anti-inflammatory array in the peri-
infarct zone including miR-1906, which suppresses TLR-4
and its downstream cascade [148—150]. In the same MCAO
model, it was shown that exogenous administration of miR-
1906 attenuated the inflammatory cascade, which could be a
therapeutic intervention in stroke patients [148—150].
Moreover, in vitro studies utilizing the oxygen/glucose depri-
vation model revealed a therapeutic effect in downregulating
the proinflammatory miR-613, which is typically upregulated
after an ischemic stroke. The beneficial results were attributed
to decreased reactive oxygen species, which relate to lipid
peroxidation as well as DNA damage [151]. Lastly, upregula-
tion of miR-21 decreased stroke-related cerebral inflammatory
responses thereby increasing BBB integrity, neuronal cell sur-
vival, and overall better functional outcomes in a rat model of
cerebral ischemia and reperfusion [152]. Preclinical studies
reported the efficacy of an herbal extract of Milletia
(Spatholobus suberectus [DUNN]) to ameliorate oxygen—
glucose deprivation-mediated cell death in vitro as well as
improve histological and biological outcomes in a mouse
model of cerebral ischemia. The mechanisms were shown to
be related to a decrease in miR-494 levels that led to down-
stream overexpression of Sox8 and activation of the mTOR
and MAPK pathway [153]. Recent observations indicated
clinical improvement in stroke patients after oral administra-
tion of Spatholobus suberectus [DUNN] extract [154]. This
preliminary data suggests that oral administration of medica-
tions targeting miRNA may have the potential to alter gene
transcription and expression leading to alteration of the in-
flammatory response. Randomized trials will be required to
confirm these initial observations.

Cerebral Edema

A major clinical challenge is the treatment of inflammation-
mediated vasogenic edema, particularly after large hemispher-
ic strokes because of associated high mortality exceeding 70%
with maximal conservative management [147]. Currently,
hemicraniectomy is the only proven therapy to improve out-
comes and reduce mortality; however, even with this highly
invasive neurosurgical intervention that requires removal of a
large aspect of the skull covering the infarcted hemisphere to
relieve swelling, less than 20% of patients will be disability
free 1 year after their stroke [155]. Accordingly, novel thera-
peutic avenues are critically needed to improve outcome in
this patient population. In this respect, the water channel
aquaporin-4 (AQP-4) and the sulfonylurea receptor 1
(SURT1) and transient receptor potential melastatin 4 (SUR1-
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TRPM4) channels have been identified as key targets that
promote cerebral edema representing potential targets for ear-
ly treatment in stroke. Recently, the double-blind, random-
ized, placebo-controlled phase 2 trial Glyburide Advantage
in Malignant Edema and Stroke-Remedy Pharmaceuticals
(GAMES-RP) sought to determine whether treatment with
the selective SURI inhibitor glyburide prevents major disabil-
ity and death without undergoing decompressive craniectomy
in patients with large ischemic infarcts [156]. However, while
this trial demonstrated feasibility and safety, there was no
difference in the primary outcome between patients receiving
glyburide versus placebo [156]. Therefore, further study is
warranted to assess the potential clinical benefit of a reduction
in swelling by targeting these water channels.

AQP-4 acts in 2 distinct patterns depending on the time and
cause of edema. AQP-4 enhances early cytotoxic edema by
facilitating the transport of water molecules across the cell
membrane in astroglial cells. With disruption of the sodium—
potassium pump, sodium accumulates in the cells and water
molecules traverse the cell membrane through AQP-4 into
cells following the concentration gradient. Conversely, AQP-
4 has been shown to function in the reabsorption of water
molecules from the parenchyma in later-developing vasogenic
edema. Hence, inhibiting the AQP-4 water channel is a prom-
ising step in decreasing cytotoxic, but more importantly,
vasogenic edema [157, 158]. Using an in vitro system,
siRNAs have been shown to effectively halt AQP-4 transla-
tion. In this model, it was shown that water homeostasis was
disrupted and downstream gene regulation altered. The silenc-
ing of the AQP-4 gene lead to upregulation of c-fos as well as
nerve growth factor inducible protein-B (NGFI-B), both of
which related to apoptosis [159]. Accordingly, utilizing
nucleic acid-based approaches may aid our understanding of
the precise mechanisms driving cerebral edema formation and
thus identify novel therapeutic approaches.

Stroke Recovery

As stated initially, stroke remains a leading cause of disability
worldwide [1], which relates to the fact that many patients do
not reach the hospital in time to be eligible for acute reperfu-
sion therapies as well as that even those who receive treatment
often have significant residual deficits. Therefore, there is a
critical need to improve rehabilitative efforts. Restorative ther-
apies that can harness neuroplasticity are a particularly prom-
ising strategy because they would be accessible by a large
proportion of affected subjects and thus benefit a substantial
number of stroke survivors.

While stroke triggers the ischemic cascade leading to tissue
injury and inflammation, it also triggers a number of molecu-
lar events that aid spontaneous repair via alterations in recep-
tor expression, synaptic and dendritic growth, axonal

remodeling, and angiogenesis in the perilesional as well as
connected remote brain tissues [160—167]. Hence, there is
hope that by modulating these endogenous pathways, such
as by small molecules, functional recovery may be improved.
Although pharmacological augmentation is important to help
manage stroke-related complications such as spasticity, pain,
depression, anxiety, and cognitive impairment, almost no
strategies exist to truly enhance recovery by pharmacological
means. The strongest evidence stems from the Fluoxetine for
Motor Recovery After Acute Ischemic Stroke (FLAME)
study, which randomized 118 patients 1:1 to receive standard
rehabilitative therapies with either placebo or the serotoniner-
gic agent fluoxetine. This trial demonstrated significant im-
provement in motor function in the fluoxetine group [168],
and there are now several phase 3 clinical trials underway to
confirm whether the routine administration of fluoxetine after
an acute stroke improves patients’ functional outcome [169].

A different strategy to improve functional recovery after a
stroke is based on observations that ischemic stroke induces
widespread changes in gene expression within the
neurovascular unit [170, 171]. Thus, there is heightened inter-
est to determine whether it is possible to shift gene expression
towards a more proregenerative state such as by modulation of
miRNA, which have been shown to be highly expressed in the
vasculature, subserve critical vascular cell functions, and their
expression profiles are substantially altered in the wake of an
ischemic stroke [172—176]. Indeed, several studies indicated
that in vivo manipulation of cerebral miRNA activity with
synthetic miRNA inhibitors and mimics can attenuate ische-
mic injury and has strengthened the rationale for the develop-
ment of miRNA-based therapeutic drugs to treat stroke-related
brain injury and promote neurological recovery [177-179].
For example, it has recently been shown that axonal alter-
ations of the miR-17-92 cluster expression relate to axonal
outgrowth of embryonic cortical neurons [180]. Intravenous
injection of mesenchymal stromal cell exosomes containing
elevated miR-17-92 cluster into rats 24 h after 2 h of middle
cerebral artery occlusion stroke increased neural differentia-
tion, plasticity, and enhanced recovery after stroke [181].
Although infarct volume was not determined in this study,
the used stroke model is highly reproducible and typically
causes complete infarction within 2 h [182, 183].
Accordingly, one would expect similar infarct volumes at
the time of treatment initiation. Consistent with this,
poststroke functional deficits prior to treatment were similar
between treated and untreated animals as assessed by the mod-
ified neurological severity score and foot-fault tests [181]. A
further miRNA that has been found significantly altered after
brain ischemia is miR-155 [176]. It has been associated with
endothelial and vascular function including a role in vascular
inflammation, atherogenesis, endothelial cell morphology,
and migration, as well as wound healing [179]. Hence, miR-
155 may be a suitable target for both modulating postischemic
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inflammation and tissue regeneration [179]. Indeed, in a
mouse model of focal cerebral ischemia, inhibition of miR-
155 by approximately 50% by intravenous injection of an
anti-miR-155 miRCURY locked nucleic acid (LNA) inhibitor
48 h after middle cerebral artery occlusion resulted in in-
creased expression of several miR-155 target genes. This im-
proved microvascular perfusion in the peri-infarct brain tissue
and reduced vasogenic edema through increased tight junction
integrity, which related to less extensive acute infarction as
well as delayed neuronal damage and overall improved func-
tional recovery and outcomes [179]. Importantly, the initial
infarct volume as assessed by in vivo brain MRI showed sim-
ilar infarct sizes between treated and untreated mice. This is an
important observation because the infarct extent is one of the
strongest predictors of functional outcome after acute ische-
mic stroke [184—186]. Together, these studies demonstrate
that targeting miRNA may be a novel means to enhance
neurorestorative properties of the brain.

Ischemic Stroke Biomarkers

Reliable etiologic classification is critical for effective second-
ary stroke prevention. However, more than 100 pathological
conditions have been implicated in the pathogenesis of ische-
mic stroke and in a significant proportion of patients, the cause
of stroke remains uncertain even after extensive diagnostic
evaluation [9, 101, 187, 188]. In addition, many patients have
2 (and more) not mutually exclusive possible stroke causes
[101, 187, 188]. In this respect, nucleic acids have been pro-
posed as novel biomarkers that may aid identification of the
specific ischemic stroke cause. For example, carotid plaque
rupture has been linked to alterations in miRNA expression
and several RNAis have been functionally associated with
plaque rupture due to thinning of the fibrous cap. The thinning
is induced by decreased function and/or levels of miR-221/
miR-222, which function in vascular smooth muscle cell pro-
liferation [189]. Similar to these observations, a study includ-
ing a modestly sized cohort of patients with stable and unsta-
ble carotid artery plaques found increased serum miR-221
while circular RNA (circRNA)-284 was elevated in the serum
of patients undergoing urgent carotid endarterectomy for
symptomatic plaque rupture as compared to asymptomatic
patients undergoing the same surgery for a stable plaque. If
confirmed, the circRNA-284-to-miR-221 ratio could serve as
a noninvasive blood marker for carotid disease [155]. Aside
from potentially aiding disease monitoring including the pro-
gression of plaque pathology, the development of risk-factor-
specific biomarkers could aid clinical decision-making when
patients have competing potential stroke mechanisms.
Presently, physicians typically resolve to taking a pragmatic
approach and treat both conditions. However, this may result
in avoidable adverse events such as risk for hemorrhagic
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complications with a combination of antithrombotic regimens
or procedural risk with an intervention of an uncertain level of
benefit.

In summary, this article provides an overview of the unique
chances and possible advantages of nucleic acid-based thera-
pies as promising future novel treatments across the main
phases of ischemic stroke (ranging from stroke prevention to
recovery after stroke), and as putative innovative noninvasive
blood biomarkers in stroke. Except for antithrombotic and
antiatherogenic therapies to stroke prevention, most promis-
ing compounds are still within the preclinical discovery and
safety stage of development. Considering that the typical drug
approval timeline takes approximately 15 years from the ear-
liest stages to clinical approval (~5 years drug discovery, ~
2 years for preclinical testing, ~ 7 years for clinical trials, and
~ 1 year for approval) [190], substantial additional work re-
mains to be completed before most discussed nucleic acid
therapies can be safely implemented in daily practice. We
hope that this review will serve as an incentive to forward
current scientific efforts in the field of nucleic acid therapy
to attenuate the devastating consequences of ischemic stroke.
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