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Abstract

The hypothalamus is involved in the regulation of homeostatic mechanisms and migraine-related trigeminal nociception
and as such has been hypothesized to play a central role in the migraine syndrome from the earliest stages of the attack. The
hypothalamus hosts many key neuropeptide systems that have been postulated to play a role in this pathophysiology. Such
neuropeptides include but are not exclusive too orexins, oxytocin, neuropeptide Y, and pituitary adenylate cyclase activat-
ing protein, which will be the focus of this review. Each of these peptides has its own unique physiological role and as such
many preclinical studies have been conducted targeting these peptide systems with evidence supporting their role in
migraine pathophysiology. Preclinical studies have also begun to explore potential therapeutic compounds targeting these
systems with some success in all cases. Clinical efficacy of dual orexin receptor antagonists and intranasal oxytocin have
been tested; however, both have yet to demonstrate clinical effect. Despite this, there were limitations in these cases and
strong arguments can be made for the further development of intranasal oxytocin for migraine prophylaxis. Regarding
neuropeptide Y, work has yet to begun in a clinical setting, and clinical trials for pituitary adenylate cyclase activating
protein are just beginning to be established with much optimism. Regardless, it is becoming increasingly clear the prom-
inent role that the hypothalamus and its peptide systems have in migraine pathophysiology. Much work is required to better
understand this system and the early stages of the attack to develop more targeted and effective therapies aimed at reducing
attack susceptibility with the potential to prevent the attack all together.

Keywords Hypothalamus - migraine - orexin - oxytocin - neuropeptide Y (NPY) - pituitary adenylate cyclase activating protein
(PACAP)

Introduction

The hypothalamus is involved in the modulation of a number
of fundamental physiological processes, including sleep, cir-
cadian rhythms, appetite, thirst, urination, and the regulation
of the autonomic, cardiovascular, endocrine, and trigeminal
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pain systems [1]. Modulation of such a variety of physiolog-
ical processes is achieved through multiple peptide systems
working synergistically and disruption of these systems can
result in physiological dysfunction. Migraine is largely con-
sidered a disorder of disrupted homeostasis where distur-
bances in circadian rhythms, sleep, feeding (and thus peptide
systems that regulate these systems), can both trigger and be
symptomatic of the attack. As many of these functions are
under hypothalamic control, aberrant hypothalamic mecha-
nisms likely play a role in migraine pathogenesis from the
early stages and throughout.

The opportunity to identify and target the early stages of the
attack is an exciting step forward in migraine management and
treatment. Currently, the majority of therapies are ineffective
or poorly tolerated and largely focus on treating the head pain
component of the disorder [2]. By shifting our focus to the
early mechanisms, there is potential to identify novel treat-
ment targets aimed at reducing attack susceptibility and ulti-
mately preventing the attack all together.
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Hypothalamic Involvement in Migraine

As alluded to in the introduction, the hypothalamic involve-
ment in migraine is complex with dysfunction evident from
the earliest stages and throughout the different phases of the
migraine attack. The first section of this review will thus high-
light the general hypothalamic involvement throughout each
phase before exploring the unique roles of its peptide systems
and the current targeted pharmacotherapies.

Premonitory and Autonomic Symptoms

Premonitory symptoms occur up to 72 h before the onset of
migraine pain [3]. Such symptoms are likely hypothalamic in
origin and include changes in sleep, arousal, mood, appetite,
urination, and yawning [4, 5]. Maniyar et al. [6] first described
abnormal activation of the hypothalamus during the premon-
itory phase, before the onset of head pain. Here, in a model of
experimental migraine, migraine patients were observed to
have an increase in hypothalamic blood flow during the pres-
ence of premonitory symptoms and in the absence of head
pain [6]. This aberrant hypothalamic activity in preictal phase
was corroborated in spontaneous attacks. Here, Schulte et al.
[7] identified increased hypothalamic activation, in addition to
increased activation of the spinal trigeminal nucleus and mid-
dle pons, in the 24 h before the onset of migraine head pain
[71, thus confirming a functional role for the hypothalamus in
generating migraine attacks.

As the attack progresses, autonomic symptoms, including
nausea, nasal congestion, and lacrimation, may develop in
addition to head pain. Aberrant hypothalamic activity, partic-
ularly a hypersensitivity to dopamine, may largely account for
symptoms of nausea, vomiting, and excessive yawning. This
has been supported experimentally, where administration of
dopamine agonists increase these symptoms in migraine pa-
tients [8]. Furthermore, autonomic symptoms may also arise
through hypothalamic descending projections activating the
superior salivatory nucleus, which is thought to regulate auto-
nomic function [9-11].

Migraine Nociception

Migraine pain is centered around aberrant activation of the
trigeminovascular system leading to an overall dysregulation
of sensory processing. Pseudo-unipolar trigeminal afferents
innervate pain-sensing extracranial structures while sending
central projections to the trigeminal cervical complex (TCC)
of'the brainstem [12, 13]. Second-order neurons from the TCC
send ascending afferents to the thalamus where periphery sen-
sory and nociceptive information is integrated and processed
before being relayed to somatosensory, visual, auditory, and
motor cortical areas via third-order thalamocortical neurons.
The TCC also sends additional projections directly to other
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pain-modulating structures, such as the hypothalamus, locus
coeruleus (LC), and periaqueductal grey (PAG) [12, 14, 15].
Additionally, the TCC is under descending control from direct
cortico-hypothalamic projections [15, 16] or indirectly
through PAG—rostroventromedial medulla projections that
can further act to facilitate or inhibit TCC activity and thus
nociceptive signaling [3, 17].

The hypothalamus is known to be involved in nociceptive
processing and is linked with key areas of the pain neuro-axis,
including the cortex, thalamus, amygdala, PAG, and the spinal
cord dorsal horn [18]. As such, stimulation of several hypo-
thalamic nuclei such as the lateral, anterior, and
paraventricular nucleus of the hypothalamus have been shown
to be antinociceptive [19-22].

In specific regard to migraine-related pain, imaging studies
have shown hypothalamic activation during the pain phase of
the migraine attack [23]. The hypothalamus is thought to mod-
ulate trigeminal pain through reciprocal connections with the
TCC and further direct and indirect descending pathways
through other pain regulatory structures such as the PAG and
the LC [15, 24, 25]. This is supported experimentally, where
modulation of the hypothalamus has been shown to regulate
trigeminal nociceptive processing [15, 24, 25] and reciprocal-
ly, stimulation of pain sensing extracranial structures produces
c-Fos, a neuronal marker of activation, in hypothalamic nuclei
[14, 26]. Furthermore, it has been shown that in spontaneous
attacks, functional connectivity switches from the TCC to
PAG synchrony in the 24 h leading up to the head pain [27],
suggesting that this change could possibly drive the transition
between migraine phases.

Increased Migraine Susceptibility

Hypothalamic-related perturbations, such as sleep distur-
bances, changes in arousal, and appetite dysregulation, can
increase the probability of an attack in addition to being an
indication of early symptoms. Sleep and feeding behaviors are
regulated by both circadian periodicity and individual mech-
anisms of which dysfunction could contribute to migraine
pathophysiology.

Increasing evidence from clinical and basic scientific re-
search suggests that circadian rhythm dysregulation plays a
significant role in migraine susceptibility. The hypothalamus,
specifically the suprachiasmatic nucleus, controls the circadi-
an periodicity of biological processes such as sleep—wake,
appetite, metabolism, and thermoregulation [28]. Alterations
in circadian cycle may alter the threshold for attack initiation,
which is supported by hypothalamic modulation of nocicep-
tive processing [24, 25]. Furthermore, migraine shows a pro-
nounced circadian pattern of attack onset with a population
preponderance in the morning [29, 30], especially in chronic
migraine, whereas patients exhibit abnormal circadian levels
of cortisol [31].
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In clinical practice, patients with migraine commonly re-
port sleep disturbances and circadian disruption as reliable
triggers. This can include too much or too little sleep, jetlag,
and shift work [32, 33]. Patients also complain about abnor-
mal sleeping patterns [34] but praise sleep itself as an abortive
strategy [35, 36]. Additionally, migraine and other headache
disorders are associated with sleep disorders, such as insomnia
[37] and narcolepsy [38], and circadian sleep disorders of
advanced [39] and delayed [40] sleep phase.

Feeding and appetite also exhibit circadian rhythmicity
controlled by the hypothalamus and have been implicated in
increased migraine susceptibility and attack symptomology.
For example, skipping meals is a common migraine trigger,
and attack frequency and severity have been seen to increase
with body mass index [5, 41-43]. Furthermore, migraineurs
show altered fasting glucose and insulin levels [44—46] and,
anatomically, appetite regulating hypothalamic nuclei make
connections with the TCC and are thought to contribute to
migraine symptoms such as loss of appetite in addition to pain
modulation [47].

Hypothalamic Neuropeptides in Migraine

As we have seen in the previous section, the hypothalamus is
deeply involved in the migraine attack, including increasing
susceptibility, attack triggering, and symptomology. What we
have not explored yet is how the hypothalamus is able to
control and regulate such a wide variety of physiological func-
tions. The hypothalamus is an extremely heterogeneous nu-
cleus that synthesizes many neuropeptides. Each uniquely
contribute to the regulation of physiological functions such
as sleep—wake regulation, appetite, and nociceptive process-
ing, and thus individual peptide systems have been proposed
to play a key role in the pathogenesis of migraine. This section
will explore the role of orexins, pituitary adenylate cyclase
activating protein (PACAP), oxytocin, and neuropeptide Y
(NPY), and highlight preclinical and clinical therapies specif-
ically targeting these systems.

Orexins
Orexin Physiology

The orexins (alternatively called hypocretins) are a pair of
hypothalamic neuropeptides synthesized in cell bodies exclu-
sively in the lateral hypothalamus [48, 49]. The 2 peptides,
orexin A (OXA) and orexin B (OXB), are cleaved from the
same precursor, prepro-orexin, and undergo post-translational
modifications to result in a 33- and a 28-residue peptide, re-
spectively. Both peptides have an excitatory effect on 2 G
protein-coupled receptors (GPCRs), orexin receptor 1
(OXR1) and orexin receptor 2 (OXR2). While OXA shows

equal affinity for both receptors, OXB shows a 10-fold pref-
erential affinity for OXR2 [49]. Orexinergic neurons project to
a wide variety of brain areas with receptor expression largely
in agreement with fiber projections [50]; however, some brain
areas can exclusively express either OXR1 such as the LC, or
OXR?2 such as tuberomammillary nucleus and rostral ventro-
medial medulla [51].

Such widespread projections implicate the orexins and thus
the hypothalamus in the modulation of homeostatic functions,
including appetite, sleep—wake, hormone secretion, and auto-
nomic regulation [52—55]. With regard to feeding, activation
of the arcuate nucleus by orexins can stimulate feeding behav-
ior [49, 56-58], which, in turn, is modulated by peripheral
feeding hormones such as leptin and glucose, thus highlight-
ing a possible role in energy homeostasis [58, 59]. Conversely,
under conditions of food deprivation, orexin receptor and pro-
tein expression increase, with prepro-orexin levels seen to rise
48 h after fasting [60, 61].

Orexin levels experience a circadian periodicity where they
tend to be highest during awake periods [54, 55]. Furthermore,
the role of orexin in sleep and wakefulness is thought to be
centered on stabilization of the sleep—wake transition. Direct
excitation of monoaminergic and cholinergic hypothalamic
brainstem networks such as noradrenergic neurons in the LC
actively promotes wakefulness [62—65], whereas a general
loss of orexin neurotransmission results in disrupted sleep—
wake regulation as seen in the sleep disorder narcolepsy [66].

Orexins and Migraine

The central role that orexins play in the regulation of homeo-
static mechanisms points to a potential role for orexin disrup-
tion in migraine pathophysiology. Such a role has been sup-
ported by increasing clinical and anatomical evidence.
Migraineurs, both chronic and episodic, have shown altered
levels of orexin as measured in the cerebrospinal fluid (CSF).
Episodic migraineurs have been shown to have lower levels,
whereas patients with chronic and medication overuse head-
ache exhibit higher levels [67], both of which support a dys-
function in orexin physiology.

Perhaps the most convincing clinical association is in the
increased prevalence of migraine in narcoleptic patients (fe-
males 64% and males 45% vs 30% and 8% in the general
population) [38], indicating that loss of orexinergic neuro-
transmission may contribute to the pathogenesis of migraine
in these individuals.

Anatomically, the orexin system is closely integrated with
other brain systems involved in migraine pathophysiology.
Hypothalamic orexinergic afferents widely project to many
brain areas involved in trigeminal nociception, including the
cerebral cortex, cingulate cortex, paraventricular thalamic nu-
clei, LC, PAG, nucleus raphe magnum, and spinal and trigem-
inal dorsal horns [50, 68, 69]. Specifically, hypothalamic
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orexinergic afferents have been shown to project to the TCC
in the brain stem both directly and indirectly through the PAG,
which has previously been shown to modulate trigeminal no-
ciceptive processing [70]. Orexins are also thought to be in-
volved in the transition of hypothalamic functional connectiv-
ity from the TCC to the PAG 24 h prior to the onset of an
attack, as previously mentioned. Here, orexins are thought to
promote the switch from direct modulation of TCC to the PAG
by recruiting descending antinociceptive PAG networks in an
attempt to combat increased TCC activity that increase as an
attack approaches [27]. Furthermore, orexinergic cells receive
robust efferents from limbic structures [71], suggesting a fur-
ther point of convergence for the integration of emotional
stimuli on arousal and pain states relevant to migraine.

Taken together, disrupted orexinergic systems can contrib-
ute to altered homeostatic mechanisms that can influence at-
tack susceptibility, premonitory and associated symptoms,
and migraine nociception; as such, this system has been iden-
tified as a potential therapeutic target for migraine.

Migraine Drugs Targeting Orexins

Dual orexin receptor antagonists (DORAs) have already been
developed for the treatment for insomnia [72] and given that
migraine and sleep are intimately interconnected [32—-34, 36],
it was hypothesized that dual orexin receptor antagonism may
also be therapeutic in migraine.

Preclinical Studies As the name suggests, DORAs have equal
affinity for both orexin receptors. DORA-12, commonly
known as suvorexant, antagonizes an orexin-induced calcium
increase in cells expressing OXR1 or OXR2 [73].
Preclinically, suvorexant is orally bioavailable, highly brain
penetrant, and has high orexin receptor occupancy [73]. In
preclinical models of migraine nociception, DORA-12 has
been shown to attenuate trigeminal nociceptive activity.
Cady et al. [74] showed that DORA-12 inhibited sensory neu-
ronal activation in the trigeminal ganglion after the injection
of Complete Freund’s Adjuvant to induce inflammation into
the temporomandibular joint in the rat [74], and Hoffman et al.
[75] saw DORA-12 to further attenuate trigeminal neuronal
activation in response to electrical stimulation of dural trigem-
inal afferents. In a preclinical model of migraine aura measur-
ing cortical spreading depression, DORA-12 was also suc-
cessful in increasing the thresholds required to induce cortical
spreading depression events [75]. Taken together, these data
suggest that targeting the hypothalamic orexinergic system
may offer a novel mechanism for preventative treatment of
migraine with and without aura.

However, there has been some concern over the clinical
efficacy of dual orexin receptor antagonism in migraine ther-
apy. The selective targeting of individual receptors may prove
to be more efficacious as OXA and OXB have consistently
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shown to have differential experimental effects on trigeminal
nociception. Bartsch et al. [24] demonstrated that microinjec-
tion of OXA into the posterior hypothalamus inhibited dural-
evoked trigeminal activation, whereas OXB facilitated the re-
sponse. Systemic OXA also produced an antinociceptive ef-
fect and administration of OXA, but not OXB, resulted in the
inhibition of vasodilation in a model of neurogenic dural va-
sodilation [76, 77]. Both mechanisms were determined to be
modulated by OXR1 activation, as selective OXR1 antago-
nism blocked the effects. Conversely, microinjection of OXA
and OXB into the nucleus raphe magnum, a structure involved
in the tonic descending modulation of neuronal firing in the
TCC, facilitates neuronal activity in the TCC—an effect pre-
dominately driven by OXR2 receptors [78].

Clinical Studies Although several preclinical studies have
demonstrated the possible beneficial therapeutic effect of
orexin-related chemicals, only 1 randomized, double-blind,
placebo-controlled clinical study has been conducted. Chabi
et al. [79] investigated the effectiveness of filorexant (MK-
6069), a dual (OXR1 and OXR2) receptor antagonist
(DORA), in migraine prophylaxis. They found that, of 97
patients treated with filorexant (10 mg nightly) and 101 treat-
ed with placebo, there was no statistically significant differ-
ence between treatments for change from baseline in mean
monthly migraine days [filorexant=—1.7, placebo =—1.3, dif-
ference =—0.4 (95% confidence interval —1.3 to 0.4)] or head-
ache days [filorexant =—1.7, placebo =—1.2, difference =—0.5
(95% confidence interval —1.4 to 0.4)]. The authors concluded
that the study failed to provide evidence that antagonism of
orexin receptors with filorexant, when administered at night,
is effective for migraine prophylaxis. However, these negative
results may be caused by the nighttime dosing and short half-
life (3-5 h) of filorexant [79, 80], and selective targeting of
individual receptors as mentioned above may offer potential
therapeutic benefit and is worth investigating further.

Oxytocin
Oxytocin Physiology

Oxytocin is a hypothalamic neuropeptide and peptide hor-
mone that plays a diverse role in physiological functions, in-
cluding social bonding, sexual reproduction, childbirth, and
modulation of pain processing. Oxytocin is a small polypep-
tide of only 9 amino acids and is synthesized in magnocellular
neurosensory cells in the supraoptic and paraventricular nuclei
of the hypothalamus [81, 82]. As oxytocin can have both
endocrine and neuronal functions, it is released either into
systemic circulation from the posterior pituitary [83] or by
paraventricular neurons projecting to brain areas where it ac-
tivates a class I GPCR [84].
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Oxytocin and Migraine

Many brain areas involved in pain modulation have been
shown to express oxytocin receptors such as the dorsal root
and trigeminal ganglia, thus suggesting a role in migraine-
specific pain modulation [85]. In clinical experience, high
levels of oxytocin have been anecdotally linked to a reduc-
tion in migraine frequency. For example, female patients
with migraine report a reduction in migraine attacks while
pregnant [86, 87]; those who breast feed their babies dem-
onstrate a lower rate of postpartum migraine recurrence
than those who bottle feed [88, 89]; and 46% of women
report that sex can provide migraine relief [90, 91].
Furthermore, in one particular case study of a woman with
severe migraine, oxytocin infusion to induce uterine con-
traction alleviated migraine pain [92].

In support of this postulated role for oxytocin migraine
nociception, trigeminal afferents have been shown to co-
express oxytocin receptors and calcitonin gene-related peptide
(CGRP) [85], a neuropeptide that has proven to be critical in
the pathogenesis of migraine [93-95]. Furthermore, adminis-
tration of oxytocin in vitro has been shown to block CGRP
release, indicating that oxytocin agonists may be a novel ther-
apeutic target for migraine [85].

Preclinical studies have subsequently demonstrated analge-
sic effects of oxytocin in pain processing with some indication
of efficacy on trigeminovascular nociception. In agreement
with animal models of pain having previously demonstrated
oxytocin to be a strong analgesic [22, 96, 97], oxytocin atten-
uates firing of trigeminal nerves in vitro and produce analgesia
in vivo in pre-existing states of inflammation or injury [98].
Furthermore, oxytocin, through its receptor, was seen to in-
hibit peripheral-evoked neural activity at the level of the TCC
in rat [99]. Therefore, taken together, it is reasonable to hy-
pothesize that targeting oxytocin may have therapeutic effect
in migraine treatment.

Migraine Drugs Targeting Oxytocin

Recent work has begun to investigate intranasal oxytocin as a
viable treatment for migraine. Intranasal administration has
been chosen as the treatment route of choice as oxytocin is a
small polypeptide with a short half-life of 3 to 4 min [100],
making oral or parenteral administration unfeasible.

Preclinical Studies A preclinical study conducted by Tzabazis
et al. [85] has shown intranasal oxytocin to be effective in
reaching the trigeminal system and brain regions implicated
in migraine and other pain. High levels were detected in all 3
branches of the trigeminal nerve, the trigeminal ganglion, tri-
geminal nucleus caudalis, as well as other brain areas, includ-
ing cortical areas, caudate/putamen, septal nucleus, hippocam-
pus, thalamus, hypothalamus and midbrain, and the pons and

medulla [85]. Once the route of administration was validated,
electrophysiological and gene expression experiments went
on to show that intranasal oxytocin is able to attenuate noci-
ceptive response in the trigeminal nucleus caudalis in response
to peripheral noxious stimulation. However, it was later deter-
mined that efficacy of oxytocin in modulating trigeminal pain
is affected by inflammatory states, which have an effect on
oxytocin receptor expression in the trigeminal system [85].
For example, in preclinical models of trigeminal nociception
where there is pre-existing cranial inflammation, oxytocin ex-
hibited a strong efficacy in attenuating pain behavior versus
models without inflammation [98], indicating that inflamma-
tion is critical in determining the level of analgesic efficacy.
This finding may explain the lack of acute efficacy in low-
frequency migraineurs and suggests that oxytocin treatment
may therefore may be more beneficial in more chronic mi-
graine cases.

Clinical Studies Clinical studies, both case studies and clinical
trials, provide good evidence for the further investigation of
the therapeutic effect of oxytocin in migraine treatment. In
20006, Phillips et al. [92] reported the beneficial effect of in-
travenous oxytocin in ameliorating migraine headaches in 2
cases, 1 adult and 1 pediatric. Pain relief in both cases was
rapid and temporally related to oxytocin administration.

A clinical trial investigating the effectiveness of oxytocin in
migraine was reported in 2017. Tzabazis et al. [101] conducted
a pilot double-blind, placebo-controlled, single-dose study to
assess the pain relief after giving either placebo (38 subjects)
or intranasal oxytocin (42 subjects; Syntocinon NasalVR, 32
IU) at the onset of headache in low-frequency episodic
migraineurs. The results showed that there was no statistically
significant difference in the pain reduction at 2 h between the
oxytocin-treated and control groups (33% and 26%, respec-
tively). Reduction of photophobia and phonophobia was evi-
dent in the oxytocin-treated group, but the difference was not
statistically significant. However, despite the lack of a statisti-
cally significant difference at the 2-h period, there was a strong
trend of superiority for the oxytocin-treated active group in
terms of subject satisfaction at 24 h.

The same group also conducted the study in patients with
chronic migraine. Forty patients with chronic migraine were
randomized to receive either 32 IU of intranasal oxytocin
(Syntocinon NasalVR; 22 subjects) or a matched placebo in-
tranasal spray (18 subjects). They found that although there
was not a significant difference in the proportion of subjects
experiencing substantial pain relief (reduction from moderate
or severe pain to mild or none) at 2 h), there was a significant
difference by 4 h after treatment. Interestingly, the effective-
ness of oxytocin was compromised by prior taking of nonste-
roidal anti-inflammatory drugs. These series of studies also
tested the effect of intranasal oxytocin on migraine frequency.
Two hundred and eighteen migraine sufferers (161 high-
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frequency episodic; 56 chronic migraineurs) were included in
a multinational double-blind, placebo-controlled study. One
hundred and forty-three subjects were in the oxytocin treat-
ment group and 75 in the placebo treatment group. The inter-
vention consisted of a 28-day baseline phase followed by 56
days of “as needed” dosing with either 30 U of intranasal
oxytocin or matching placebo. The primary endpoint was
the reduction in migraine headache days from the baseline
period to the final 28 days. The results showed a clear reduc-
tion in headache frequency as well as responder rate in the
oxytocin treatment group. Unfortunately, the study did not
meet the primary endpoint owing to an extremely high place-
bo rate at one study site. The authors concluded that their
studies provide a strong argument for further development of
intranasal oxytocin for migraine prophylaxis.

PACAP
PACAP Physiology

PACAP is a neuropeptide that was first identified from the
hypothalamus of sheep [102]. PACAP belongs to the same
family as vasoactive intestinal polypeptide (VIP), glucagon,
and secretin. PACAP can exist as 2 separate forms, PACAP-
38 (a 38-amino acid peptide) and PACAP-27 (a truncated 27-
amino acid peptide). Both share 68% homology with VIP at
the N-terminal domain [102]. PACAP-38 is more prevalent
than PACAP-27 in mammalian tissue [103, 104], and is wide-
ly expressed in both the central and peripheral nervous sys-
tems. The main functions include neuroprotection,
neurotrophism, neurotransmission, neuromodulation, and va-
sodilation [105—108]. PACAP is distributed at several levels
in the ascending and descending pain transmission pathways,
suggesting its role in nociception and pain modulation.
Immunohistochemical studies revealed a high density of
PACAP-immunoreactive fibers in the superficial lamina I
and II of the spinal dorsal horn, an area important in nocicep-
tive transmission and modulation of somatosensory informa-
tion processing [109-112] .

PACAP binds with 3 different receptors, namely pituitary
adenylate cyclase activating polypeptide 1 (PAC1), vasoactive
intestinal polypeptide receptor 1 (VPACI), and vasoactive
intestinal polypeptide receptor 2 (VPAC2) [113, 114].
Similar to VIP, receptors for PACAP belong to the GPCR
family. PACAP binds potently and specifically to the PACI
receptor, which is coupled to multiple intracellular signaling
cascades, including ERK activation and phospholipase C ac-
tivation [115, 116]. Both PACAP and VIP bind with near-
equal affinity to VPAC1 and VPAC2 receptors that are
coupled principally to adenylyl cyclase [102, 106, 117]. An
in vitro study showed that PACAP-responsive receptors in rat
trigeminal neurons and glia were pharmacologically distinct.
PACAP-38, but not PACAP-27, activated ERK in glia,
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whereas both forms stimulated cellular cyclic adenosine
monophosphate production [116]. All types of PACAP recep-
tors have been found in parasympathetic, sympathetic ganglia,
and sensory ganglia in humans [118].

PACAP and Migraine

Owing to its vasodilating property and its presence in para-
sympathetic and specifically trigeminal ganglia [119], PACAP
is hypothesized to be involved in the pathogenesis of vascular
headache, including migraine. In support of this, an increased
level of PACAP, measured in the external jugular vein, was
reported during the migraine attacks [120] and compared with
headache-free subjects, migraineurs have a lower level of
PACAP during the attack-free period, with this level rising
substantially during the attack [121]. Furthermore, a negative
correlation between PACAP level and attack duration has also
been reported [122]. However, 1 study showed no significant
change of serum PACAP level in a large series of chronic
migraine sufferers [123].

Several studies have shown that administration of PACAP
can induce migraine-like headache [124, 125]. Although
PACAP-38 infusion caused acute headache and vasodilatation
in both healthy subjects and patients with migraine, the de-
layed migraine-like headache occurred much more frequently
in migraine sufferers [124]. PACAP-38-induced cranial vaso-
dilation was long lasting (> 2 h) and confined solely to extra-
cranial arteries [125]. This incidence of migraine-like head-
ache tends to relate with the dose of PACAP-38 [126].
Functional magnetic resonance imaging showed that
PACAP-38-induced migraine attacks are associated with al-
teration in brain connectivity. An increase in connectivity was
seen in the bilateral opercular part of the inferior frontal gyrus,
the right premotor cortex, left primary auditory, secondary
somatosensory, premotor, and visual cortices. Decreased con-
nectivity was observed in the left visual cortex, right cerebel-
lum, and left frontal lobe [127]. A recent study in patients with
migraine without aura showed that PACAP-38 infusion ele-
vated the plasma levels of VIP, prolactin, S100 calcium bind-
ing protein, and thyroid-stimulating hormone but not CGRP
and tumor necrosis factor-o«. There was no association be-
tween the development of delayed migraine-like attacks or
the presence of the MEF2D gene variant (the mutation that
increases risk of migraine without aura) with preictal changes
in plasma levels of neuropeptides, tumor necrosis factor-«,
and pituitary hormones [128, 129].

Migraine Drugs Targeting PACAP

Considering that PACAP-38 is a trigger of migraine at-
tacks, antagonizing PACAP receptors, especially PACI1 re-
ceptor, can be a potential mechanism for antimigraine
drugs [130, 131].
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Preclinical Studies Preclinical studies confirm the role of
PACAP in controlling cranial vascular tone. Electrical stimu-
lation of nerves in the superior sagittal sinus increased levels
of PACAP and CGRP in the cranial circulation in the cat
[120]. PACAP-38 administered in increasing concentrations
caused a concentration-dependent CGRP-release in the tri-
geminal nucleus caudalis but not in trigeminal ganglion
(TG). The PACAP-38 induced CGRP release is not mediated
via the PACI receptor as it cannot be altered by PAC1 receptor
agonist maxadilan or the PAC1 antagonist M65 [132].

Both VIP and PACAP-38 cause short-lived meningeal va-
sodilation mediated by VPAC2 receptors, which did not coin-
cide with activation of central trigeminovascular neurons.
Administration of PACAP¢_3g, a PACI receptor antagonist,
significantly inhibited neurogenic dural vasodilation.
Given that the PACI1 receptor is not responsible for direct
vasodilatory actions on the vessels, this inhibition is likely
to be mediated via PAC1 receptors located on presynaptic
nerve terminals of the trigeminal innervation of the dural
vasculature [133]. The PAC1 receptor may also be respon-
sible for PACAP-38 induced dilatation of the middle men-
ingeal artery [134].

On the neuronal side, PACAP-38 causes delayed activation
and sensitization of central trigeminovascular neurons. After a
90-min delay, PACAP-38 increased ongoing spontaneous fir-
ing and hypersensitivity to intra- and extracranial somatosen-
sory stimulation without a late response of meningeal artery
vasodilation. The dural nociceptive-evoked action poten-
tials in central trigeminovascular neurons was inhibited on-
ly by intracerebroventricular administration of the PACI
receptor antagonist [133]. Microinjection of PACAP-38 in-
to the paraventricular nucleus of the hypothalamus en-
hanced spinal trigeminal sensory nucleus caudalis basal ac-
tivity, and this enhancing effect was blocked by a PACAPg_
3g receptor antagonist [15].

Clinical Studies Evidence confirming clinical efficacy of drug
affecting PACAP in migraine treatment is not present at this
moment. A phase Ila randomized, double-blind, placebo-
controlled study to evaluate the efficacy and safety of AMG
301, a PAC1 receptor monoclonal antibody, in migraine pre-
vention has been registered but has not yet recruited
(ClinicalTrials.gov Identifier: NCT03238781).

NPY
NPY Physiology

NPY is a 36-amino acid peptide hormone that is expressed in
the central and peripheral nervous systems [135, 136]. In the
central nervous system, NPY is expressed in the cell bodies of
neurons and is most highly concentrated in the cerebral cortex,
brainstem, and hypothalamic nuclei (paraventricular and

ventromedial nuclei, and the lateral hypothalamus)
[137-139]. NPY is considered to play an important role in
multiple physiological processes, including food intake, cog-
nition, epileptic seizure activity, learning, stress sensitivity,
and mood [140, 141]. In the peripheral nervous system,
NPY is expressed in sympathetic postganglionic neurons,
chromaffin cells or pheochromocytes of the adrenal medulla,
platelets, and adipose tissue [142—144] . NPY is co-localized
with tyrosine hydroxylase, suggesting its involvement in car-
diovascular control [145, 146].

NPY receptors are a group of GPCRs, which are classi-
fied into 5 subtypes known as Y1, Y2, Y4, Y5, and Y6
[147]. The Y1 and Y2 receptors have been the most inten-
sively investigated receptors in studies of nociception [148,
149]. NPY receptors are present in the central nervous sys-
tem, including in the trigeminal ganglion and caudal tri-
geminal nucleus, suggesting a role in migraine pathophys-
iology. NPY receptors are present on distinct populations of
sensory neurons, and receptor activation can modulate the
activity of nociceptive neurons. Activated NPY receptor
inhibits adenylate cyclase through inhibitory G proteins
leading to reduced cyclic adenosine monophosphate levels
in target cells [150, 151].

NPY and Migraine

The premonitory symptoms in migraine such as changes in
appetite have been proposed to involve NPY [5, 152] and
NPY has been demonstrated in human cranial vessels,
reflecting its role in controlling cranial vasculature and its
implication in migraine pathogenesis [153, 154]. Despite this,
studies investigating the association between level of NPY and
migraine showed conflicting results. A study in juvenile mi-
graine (both with and without aura) showed significantly low-
er plasma levels of NPY in the interictal period, with respect to
the control group. Plasma NPY levels tended to significantly
increase during attacks in patients with migraine with aura
[155]. On the contrary, Goadsby et al. [156] showed that the
NPY immunoreactivity in the external jugular venous blood
did not alter during migraine attacks in patients with migraine
with or without aura [156]. Vecsei et al. [157] also reported
that the NPY concentrations in plasma of the patients with
migraine during the attack and attack-free period did not differ
significantly from each other, or from the “mixed neuropsy-
chiatric group” [157].

The data concerning the alteration of level of NPY in the
CSF of migraineurs are also inconclusive. The NPY immu-
noreactivity in the CSF was reported to be higher in
migraineurs during the attacks than in controls [158],
whereas another research group did not observe an NPY
immunoreactivity elevation in the suboccipital CSF plasma
during attacks and attack-free periods of patients with mi-
graine without aura [157].
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NPY may be involved in pathogenesis of weight gain seen
in patients with migraine under preventive medication. Plasma
NPY levels in migraine patients taking flunarizine or amitrip-
tyline were markedly increased, with the highest levels during
the second and third months [159]. The mechanism underly-
ing this drug-induced weight gain may involve the alteration
of leptin transport system or leptin sensitivity.

Migraine Drugs Targeting Hypothalamic NPY

As of yet, no drugs have been developed specifically or
otherwise applied to targeting the NPY system in mi-
graine; however, preclinical studies antagonizing the Y1
receptor show that this may prove to be a potential thera-
peutic target.

Preclinical Studies NPY is localized in the superficial laminae
of'the spinal dorsal horn and inhibits nociceptive processing at
this site. In the dorsal root ganglia in rats, Y1 receptors are
extensively co-localized with CGRP or substance P (SP). Y1
receptors contribute to the antihyperalgesic effects of NPY by
inhibiting SP release, and Y1 receptor signaling in the dorsal

PACAPg ;5 (PAC1 antagonist)
Inhibits neurogenic dural vasodilation
via presynaptic receptor

NPY (via Y1 receptor)
decreases nociception by inhibiting
the release of substance P

DORA12 R WL/ e
\ inhibits neuronal activation in the {\\ > K \f’
! — 4&,’ \ \ WS
> ' PACAPg 35 (PAC1 antagonist)
Q q’ | attenuates spinal trigeminal nucleus

trigeminal ganglion induced by chemical
nociception

Trigeminal ganglion

®

Sphenopalatine ganglion

Cervical ganglion

Fig. 1 The effect of hypothalamic pharmacological interventions on
migraine-related brain processing. PACAP = pituitary adenylate cyclase
activating protein; PAC1 = pituitary adenylate cyclase-activating
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horn is increased during inflammatory nociception [160]. In
rats, activation of the Y1 receptor can inhibit capsaicin-
sensitive nociceptors in the spinal cord or hindpaw tissue
[161, 162].

Y1 receptors are enhanced after intraplantar injection of
complete Freund’s adjuvant in rat. NPY administered intrathe-
cally in rats inhibits hyperalgesia associated with nerve injury
and inflammation, and the expression of Fos, a protein marker
of neuronal activity [163—166]. Both of these effects of NPY
were blocked by Y1 receptor antagonists suggesting NPY
plays a role in nociceptive transmission.

NPY acts on Y1 receptors in the spinal dorsal horn to
decrease nociception by inhibiting SP release, and that this
effect is increased by inflammation [148, 167]. NPY de-
creases capsaicin-evoked SP-like immunoreactivity in
microdialysate from the dorsal horn. Systemic administra-
tion of NPY and a Y1 receptor agonist inhibited dural
stimulus-evoked and spontaneous neuronal firing in the
trigeminocervical complex. However, Y2 and Y5 receptor
agonists, and a Y1 receptor antagonist had no significant
effects on dural stimulus-evoked or spontaneous neuronal
firing in the trigeminocervical complex [168].
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Clinical Studies Unfortunately, no clinical trial investigating
effectiveness of NPY-related compounds in migraine has been
conducted.

Concluding Remarks

The prominent role that the hypothalamus and its peptide sys-
tems have in migraine pathophysiology is becoming increas-
ingly clear. The above evidence, mainly preclinical, suggests
that modification of hypothalamic peptides may be potential
targets in migraine pharmacotherapy (Fig. 1, Table 1). At this
moment, information regarding clinical efficacy is still very
limited. Although targeting hypothalamic peptides in migraine
drug development is theoretically sound, the issue of adverse
effects should be considered. Hypothalamic peptides are usu-
ally involved in a wide range of homeostatic control; therefore,
using drugs targeting these peptides may have some limitation
or undesirable adverse effects. For example, in the case of
orexin, the sedative effect of filorexant limits the use to be only
once daily (before bedtime) to avoid daytime somnolence.
This drug administration may explain the negative results of
the study [80], and further investigation into orexin therapies
should not be discounted. Oxytocin and PACAP show prom-
ising therapeutic efficacy and the results of the PACAP clinical
trial are much anticipated. Additionally, other targets, such as
NPY have shown inconclusive preclinical results regarding
attenuation of trigeminal nociception; however, there remains
a strong clinical association and most notably in the

premonitory stage, suggesting a possible therapeutic applica-
tion when applied to other phases of the migraine attack.

In addition to the above, other related peptides such as
melatonin and melanin-concentrating hormone (MCH) may
also play a role in controlling the excitability of trigeminal
nociceptive neurons and thereby may be involve in the mi-
graine pathogenesis. Melatonin is synthesized in the pineal
gland rather than hypothalamus, but is involved in the circa-
dian regulation of sleep [169] and has been postulated to play
arole in migraine. Melatonin levels are seen to be decreased in
patients with migraine [170], and a recent clinical study
showed that melatonin 3 mg is better than placebo for mi-
graine prevention, and more tolerable and effective than the
migraine preventative amitriptyline (25 mg) [171]. MHC,
however, is another hypothalamic hormone that has been pro-
posed to involve in the interactions between food intake,
drowsiness, and migraine. This hypothesis is based on the
findings of the presence of hypothalamic MCH terminals on
thalamic trigeminovascular neurons; however, this system has
not yet been targeted pharmacologically with regard to mi-
graine or other headaches [172], but further investigation
may reveal a role for MCH in migraine pathophysiology.

In conclusion, it is clear that perturbed hypothalamic pep-
tide networks play a role in migraine pathogenesis from the
earliest stage of the attack. Evidence that these peptides are
able to modulate trigeminovascular nociception and thus the
potential remains to develop new therapies to alleviate head
pain. However, where the true potential lies is in the ability to
identify and target the hypothalamic-driven premonitory
phase, by focusing our attention on better understanding these

Table 1 Preclinical evidence for hypothalamic neuropeptides effect on the trigeminovascular nociceptive pathway
Neuropeptide System Pharmacological Intervention Effecton Trigeminovascular Nociceptive Pathway
Inhibittrigeminal sensory neuronal activationin the
trigeminal ganglion induced by chemical nociception
DORA-12 [74]
Increasethe thresholds required to induce cortical
spreadingdepression [75]
. Inhibitneurogenic dural vasodilation [76,77]
Orexin inhibittrigeminal activation induced by dural stimulation
[24]
No effect on neurogenic dural vasodilation [76,77]
Activate trigeminal activation induced by dural
stimulation [24]
Attenuate nociceptiveresponseinthe TNC inresponse
Oxytocin Intranasal oxytocin to peripheral noxious stimulation especially
inflammation [85]
PACAP38 Short-lived meningeal vasodilation mediated by VPAC2
receptors [134]
PACAP-38 C?use_delayed activation and sensitization of central
trigeminovascular neurons [133]
Enhance spinal trigeminal sensory nucleus caudalis basal
PACAP PACAP-38paraventricular nucleusinjection activity and this enhancing effect was blocked by a
PACAP 6-38 receptor antagonist[15]
PACAP6-38, a PAC1 receptor antagonist, Inhibitneurogenic dural vasodilation via presynaptic
receptor [133]
NPY NPY (viaY1 receptor) Decrease nociception by inhibiting SP release [148,167]
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early mechanisms there is great opportunity to stop migraine
in its tracks.

Required Author Forms Disclosure forms provided by the au-
thors are available with the online version of this article.
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