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ABSTRACT

Introduction: The aim of the analysis was to
characterize the population pharmacokinetics
(PKs) and exposure-response (E-R) for efficacy
(fasting plasma glucose, glycated hemoglobin)
and safety/tolerability [hypoglycemia, genital
infections, urinary tract infection (UTI), and
volume depletion] of the sodium glucose
cotransporter 2 inhibitor, empagliflozin, in
patients with type 2 diabetes mellitus. This
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study extends the findings of previous analyses
which described the PK and pharmacodynamics
(PD) wusing early clinical studies of up to
12 weeks in duration.

Methods: Population pharmacokinetic and E-R
models were developed based on two Phase I,
four Phase II, and four Phase III studies.
Results: Variability in empagliflozin exposure
was primarily affected by estimated glomerular
filtration rate (eGFR) (less than twofold increase
in exposure in patients with severe renal
impairment). Consistent with its mode of
action, the efficacy of empagliflozin was
increased with plasma
glucose levels and attenuated with decreasing

elevated baseline

renal function, but was still maintained to
nearly half the maximal effect with eGFR as
30 mL/min/1.73m?  All  other
investigated covariates, including sex, body

low as

mass index, race, and age did not alter the PK
or efficacy of empagliflozin to a clinically
relevant extent. Compared with placebo,
empagliflozin administration was associated
with an exposure-independent increase in the
of genital

change in the

infections and no
risk of UTI,
hypoglycemia, or volume depletion.

incidence
significant
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Conclusion: Based on the results from the PK
and E-R analysis, no dose adjustment is
required for empagliflozin in the patient
population for which the drug is approved.
Funding: Boehringer Ingelheim.
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INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a progressive
disease, and currently available oral antidiabetic
agents, although initially effective, often fail to
maintain long-term glycemic control or are
associated with side effects, such as
hypoglycemia, weight gain, and edema [1, 2].
Hence, there remains a need for new or alternative
therapies that can be wused alone or in
combination with other antidiabetic agents, and
provide sustained improvements in glycemic
control without clinically limiting side effects.

A new approach to the management of
T2DM involves the reduction of renal glucose
reabsorption through inhibition of the sodium
glucose cotransporter 2 (SGLT2), found in the
brush border of the proximal convoluted tubule
of the renal nephron [3]. The inhibition of
SGLT2 lowers the renal threshold for glucose
reabsorption and increases urinary glucose
(UGE) [4-6]. Thereby, SGLT2
inhibition lowers postprandial and fasting
plasma glucose (FPG) [7], and reduces glycated
hemoglobin (HbAlc) [8]. Empagliflozin is an
SGLT2 inhibitor that has been evaluated in
Caucasian [9] and Japanese [10] healthy
volunteers, and patients with T2DM [7, 11],
and demonstrated dose-proportional drug

excretion

exposure and an increasing UGE with rising

empagliflozin doses, up to 10-25 mg [12]. Phase
[II studies of empagliflozin, administered as
monotherapy or add-on to other antidiabetic
shown

in addition to modest
reductions in body weight and blood pressure.
Placebo-corrected reductions in HbAlc have

therapies, have improvements in

glycemic control,

been demonstrated both with empagliflozin
monotherapy (—0.7% for 10 mg and —0.9% for
25 mg) [13], and as add-on therapy (—0.4% to
—0.7% for 10mg and —-0.5% to —0.7% for
25mg) [14-17], in addition to reductions in
FPG (monotherapy, —1.7 mM for 10 mg, and
—2.0mM for 25 mg; add-on therapy, —0.9 to
—1.5mM for 10 mg and —1.2 to —1.8 mM for
25 mg) [13-17].

The aim of the present analysis was to
characterize the population pharmacokinetics
(PK) and exposure-response (E-R) for efficacy
and safety/tolerability endpoints of
empagliflozin in patients with T2DM. This
study extends the findings of previous analyses
[18, 19], which described the PK and
pharmacodynamics (PD) (UGE, FPG, and
HbA1c) based on Phase I and II data only. The
focus of the present study was to evaluate the
impact of covariates, including age, body mass
index (BMI), sex, and estimated glomerular
filtration rate (eGFR) on the PK and E-R of
empagliflozin. The model was used to simulate
HbAlc lowering in patient subpopulations of
special interest, including elderly patients and
individuals with renal impairment.

METHODS

Population PK Analysis

Model Development
A previously developed two-compartment

model with a lagged first-order absorption and
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first-order elimination [19] was updated and
served as the structural model for the covariate
analysis. The effects of the following covariates
on the PK of empagliflozin were investigated:
age, BMI, sex, race, smoking status, total serum
protein, and eGFR using the modification of
diet in renal disease formula (MDRD), alanine
transaminase (ALT), aspartate transaminase
(AST), alkaline phosphatase (AP), and lactate
dehydrogenase (LDH). Covariate analysis was
conducted using a full covariate modeling
approach, testing all of the covariates for their
influence on apparent oral clearance (CL/F).
The influence of age, sex, race, total protein,
and BMI was assessed for the volumes of
[apparent central volume of
(V,/F), apparent peripheral
volume of distribution (V3/F)], and age, sex,

distribution
distribution

and race were evaluated for influence on the
absorption rate constant (k,) (Table S1 in the
supplementary material). The absorption lag
time was fixed to 0.5h, and data obtained
within the first hour after dosing were excluded
from analysis.

The covariates were chosen based on one or a
combination of the following: findings from
previous analysis (CL/F: age, BMI, race, total
protein, eGFR; V,/F: sex, race, total protein,
BMI; k,: race), scientific interest and relevance
to the development programme (V,/F: age, race;
ka: sex), physiological/mechanistic plausibility
(CL/F: eGFR; k,: age). Additionally, some
covariates were identified during the graphical
covariate analysis (CL/F: sex, smoking status).
Laboratory tests were included in the full
plausible
on PK

covariate analysis only if a

mechanism for their influence
variability was known.

The full covariate modeling approach that
was implemented is a simplification of a
previously described global model approach

[20], which emphasizes parameter estimation

rather than
Predefined covariate parameter relationships
were identified based on exploratory graphics,

stepwise hypothesis testing.

scientific interest, mechanistic plausibility, or
prior knowledge, and a full model was

constructed with attention to avoiding

correlation or co-linearity in predictors.
Population typical parameters, including fixed
effects parameters (covariate coefficients and
structural model parameters) and random
effects parameters were estimated using
NONMEM® (Version 7.2, ICON Development

Solutions, Hanover, MD, USA).

i COVyyi O P COVyi
TVP: = Gn.- H( ref,, > H 0 p+m-n)

where the typical value of a model parameter
(TVP) is described as a function of m individual
continuous covariates (cov,,;) and p individual
(0-1) categorical covariates (cov,;), such that 0,
is an estimated parameter describing the typical
PK parameter value for an individual with
covariates equal to the reference covariate
values (cov,,; =ref,, cov,=0); 0Oy, and
Op+m+n) are estimated parameters describing
the magnitude of the covariate-parameter
relationships.

Patient-level random effects were included
for CL/F, k,, and V3/F; these parameters were
assumed to be log-normal distributed. Residual
unexplained error was modeled with a
proportional error model. Further detail is
given in Table S1 in the supplementary
material.

Estimates of the covariate effects were
factors: (1)
statistical significance, and (2) magnitude of
the effect. A
statistically significant if the 95% bootstrap

classified according to two

covariate was considered

confidence interval (CI) around the covariate
effect estimate excluded the no-effect (null)
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considered
non-significant. In line with the
bioequivalence criteria, the 0.8-1.25 region

value, otherwise, it was

was used to rank the magnitude of the
covariate effects. If the median normalized
effect (e, change
relative to the reference covariate group) at the

covariate percentage
extreme covariate levels (as shown in the
covariate forest plots) was within this region,
the covariate was considered to have only a
negligible effect on the PK of empagliflozin.

Model Evaluation

The precision of the PK model parameter
estimates was investigated using a
non-parametric
addition, Monte simulations were
performed  to predictive

performance of the population PK model for

bootstrap  procedure. In
Carlo

evaluate the

dose-normalized maximum and minimum
concentration (Cp,x and Cpyn, respectively).

Exposure-Response Analysis (Efficacy)

Model Development

A population PK/PD analysis was conducted
using the non-linear mixed-effects modeling
software, NONMEM®, to investigate the impact
of empagliflozin exposure and selected
covariate on FPG and HbAlc. In the
population PK/PD model, an increase in
empagliflozin exposure was associated with an
increase in glucose elimination leading to a
reduction in FPG over time (Eq. 1), and thereby,
a reduction in HbAlc (Eq.2). The model
structure used in the present study was based
on a previously developed PK/PD model [18]
and is similar to a model reported for an
analysis of multiple treatments for T2DM [21].

d(FPGy))

qr — Keecu, — Keec,, - FPGij - (14 STIM;) - (1)

where kgpg, ; is the zero-order production rate
constant for FPG, Kkgpg,, is the first-order
elimination rate constant, and STIM;; is the
non-linear E,,,; expression describing the effect
of exposure (AUCg; ;) on FPG elimination.

Gmaxi : AUCSS,‘,/
AUCsy + AUCSS”

STIM;; =

where G,y is the maximal effect for stimulating
FPG removal for the ith individual, AUCs, was
the AUC, (area under the concentration-time
curve at steady-state) that resulted in half the
and AUCg;; was the
empagliflozin exposure in the ith patient at

maximal effect,
the jth collection time affecting the stimulation

in FPG removal. A steady-state (d(Fg%"):O)

assumption was made to solve for kgpg_, under

in,i

initial conditions. This parameterization
included the estimation of a baseline FPG

(BFPG), as shown in the equations below.
kec,,; = BFPG; - Kreg,,

In turn, changes in FPG over time were
modeled to impact HbAlc production, as
described by Eq. 2.

d(HbAlc;))

dr = kHbAlci.,,,- X FPGi,i — KubAlcy,,

HbA1Climic
-HbAlg;; - (1 — m) (2)
where Kkppaie,; was the first-order production
rate constant of HbAlc, HbAlc;; was the HbAlc
value for the ith patient at the jth collection
time, Kupbaic,,, was the first-order elimination
rate constant, and HbA1lcy,;; was the boundary
condition.

Based on this structural model, a covariate
analysis was performed. The covariates of sex,
race, BMI, eGFR, BFPG, duration of T2DM, and
concomitant antidiabetic therapies [metformin,
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sulfonylurea (SU),
investigated as predictors for the extent of FPG
reduction (Gpax). Covariates for Kppaic,, were

pioglitazone] were

concomitant metformin, duration of T2DM,
eGFR, BMI, Asian race, and sex. For the PK/PD
covariate analysis, covariates were included
based on the knowledge from previous
(BFPG: observed FPG baseline;
Kubaie,,;: Asian race), scientific interest, and

analysis

relevance to development programme (BFPG:
duration of diabetes, sex; Gmax: demographics;
Kubalc,;: ©GFR, sex, duration of diabetes,

concomitant metformin), mechanistic/
physiological plausibility (BFPG: age, BMI,
concomitant medication, number/types of

previous treatments; Gpax: €GFR, observed
BFPG; concomitant antidiabetic medication,
duration of diabetes), and graphical analysis
(BFPG: eGFR; kmpaic,, : demographics).

Model Evaluation
The model development was performed in a
stepwise manner. First, an initial model was
developed excluding studies 6 and 10 (as a
result of data availability). For this initial
model, an external simulation check was
performed, where the HbAlc reductions in
study 6 were predicted and compared with
the original data from this trial. Study 6 was
selected for external evaluation as its patient
population was similar to the one used for
model development. Finally, the model was
updated using all studies, including studies 6
and 10. The precision of the final PK/PD model
parameter estimates was investigated using a
non-parametric

addition, Monte
performed to

bootstrap  procedure. In

Carlo simulations were
evaluate the predictive
performance of the final population PK/PD

model for change in HbAlc.

Simulations

The simulations performed for the final
predictive check provided guidance on the
typical magnitude and time-course of HbAlc
response. Additional simulations (7= 1000
including inter-individual + residual
variability) were performed to assess HbAlc
lowering after 24 weeks
subpopulations of special interest, i.e., patients
with renal impairment (study 10) and patients
of advanced age (final PK/PD dataset, patients

studies,

of treatment in

aged 75-85 years). The covariate values (such as
BMI, eGFR, and age) that were associated with
the patients in each subpopulation were
accounted for in the simulations. For the
purpose of the simulations, it was assumed that
each patient received either 10 mg (scenario 1) or
25mg (scenario 2) empagliflozin once daily.
Only patients on active treatment in the
original study were considered because the
calculation of the individual AUC, values

required an estimate of CL/F;.
Exposure-Response Analysis (Safety)

Model Development

The safety/tolerability endpoints investigated in
the E-R analysis were confirmed hypoglycemic
adverse events (AEs) (plasma glucose <3.9 mM
and/or assistance required), events consistent
with wurinary tract infection (UTL using a
prospectively defined search of 73 preferred
terms), events consistent with genital infection
(using a prospectively defined search of 89
preferred terms), and events consistent with
volume depletion (all on-treatment AEs, using
eight preferred terms).

The safety/tolerability endpoints considered in
the E-R analysis were included as dichotomous
endpoints (i.e., participant-reported AEs: any AE
during study, single yes/no datapoint), and were
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analyzed using a logistic regression model
[19, 22]. Odds ratios (ORs) for an event on
empagliflozin treatment were calculated and
independent variables were incorporated into
the model via the logit function. The covariates
evaluated included age, Asian race, renal function
stage, sex, concomitant oral (metformin and SU)
and parenteral (insulin) antidiabetic agents, and
empagliflozin exposure. Covariate effects were
included wusing the full covariate modeling
approach [19, 22]. If covariates were included,
they were entered additively using the formula
below.

)vi _ [))0 + ﬁgategorical
+ i1 (Continuous — Continuous,)

AUCgg
Bz (AUCss,ref>

where the logit function, 7; = log (1%) and p; is

the AE probability for the ith patient,
Continuous,s is the reference value for a
continuous covariate, AUCgg ;¢ is the reference
empagliflozin AUC at steady-state, and AUCgs ;
is the AUC at steady-state in the ith patient.
Interaction terms were included in the model
for hypoglycemic AEs when a patient was on
insulin 4+ metformin or insulin + metformin +
SU. Logistic regression models were fitted in R
version 2.12.2 [23] using the glm function for
binomial likelihood and logit link function.

It should be noted that non-exposure related
covariates were only included for the purpose of
adjusting the event rates to allow for proper
assessment of the effect of exposure on the
different AE rates. These non-exposure related
covariates could, therefore, be regarded solely as
adjustment factors and not as points for
inference. Selection of adjustment covariates
was, therefore, data driven and dependent on
the endpoint that was analyzed.

Note also that this article is based on the
analysis of data from previously conducted
studies, and does not involve any new studies
of human or animal subjects performed by any
of the authors.

RESULTS

The population PK analysis was based on 12,503
empagliflozin plasma concentrations from two
Phase I, four Phase II, and four Phase III studies
(2761 patients on active empagliflozin)
(Table 1) [7, 8, 11-13, 15, 17, 24]. Doses of
orally administered empagliflozin ranged from
1 to 100mg, with 1129 patients (40.9%)
receiving 10 mg and 1269 patients (46.0%)
receiving 25mg empagliflozin once daily.
Patients receiving placebo were not included
in the PK analysis.

Population PK Analysis

The PK of empagliflozin was well described by a
two-compartment model with first-order
(Figs. S1 and S2 in the
supplementary material). Model parameters
were estimated with reliable precision and
inclusion of covariate effects within this model

absorption

described a portion of the inter-individual
variability. Typical population PK parameters
(95% CI, based on non-parametric bootstrap)
given the reference covariates (50-year-old,
non-smoking male, non-Asian race; BMI,
25kg/m?% eGFR, 100 mL/min/1.73 m?% total
protein, 70 g/dL; ALT, 20 U/L; AST, 20 U/L; AP,
70 U/L; and LDH, 160 U/L) were: CL/F, 10.6 L/h
(10.1, 11.1); V,/F, 3.14L (0.00128, 4.03);
apparent intercompartmental clearance (Q/F),
6.34L/h (5.72, 6.91); V3/F, 70.6 L (64.4, 76.6);
and first-order k,, 0.196 L/h (0.185, 0.208).
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TP 90 g/dL
TP 75 gldL
TP 60 g/dL
Age 75 years
Age 65 years
Age 45 years
Age 35 years
eGFR 120 mL/min/1.73m?
eGFR 90 mL/min/1.73m? —o—
eGFR 75 mL/min/1.73m? ——
eGFR 60 mL/min/1.73m? =
eGFR 50 mL/min/1.73m? ——
eGFR 30 mL/min/1.73m? ——
eGFR 15 mL/min/1.73m?
BMI 40 kg/m?
BMI 35 kg/m? ——
BMI 30 kg/m? ——
BMI 20 kg/m?
AP 114 U/L — =
AP 43 U/L R
Current smoker
Asian —-—
Female —e—

Reference —

0.40 0.60 0.80 1.00 1.25

Normalized apparent clearance

Fig. 1 Covariate effects on a CL/F and b relative
empagliflozin exposure (AUC, /reference AUC,,). Refer-
ence group: male, non-Asian, non-smoker, total protein
70 g/dL, eGFR 100 mL/min/1.73 m* ALT 20 U/L, AST
20 U/L, AP 70 U/L, LDH 160 U/L, BMI 25 kg/m?, age

50 years. ALT alanine transaminase, AP alkaline
Figure1 shows the estimated covariate
effects on CL/F (Fig.1la) and relative

empagliflozin exposure (Fig.1b) from the
population PK model, and demonstrates a
prominent correlation between decreasing
eGFR and CL/F. Typical AUC, values were
increased in the presence of renal
impairment: AUC increased by 18.5% (95%
CI 13.0, 24.8), 49.2% (39.2, 60.6), and 88.1%
(69.9, 107.0) in patients with eGFR of 60, 30,
15 mL/min/1.73 m?,
compared with a reference patient with an
eGFR of 100 mL/min/1.73 m?.
typical AUC,, values were increased less than
twofold in the presence of renal impairment
(88.1% for an eGFR of 15 mL/min/1.73 m?).

and respectively,

However,

b
L L L
TP 90 g/dL —o—
TP 75 g/dL ——
TP 60 g/dL —e—-
Age 75 years —o—
Age 65 years ——
Age 45 years —
Age 35 years —e—
€eGFR 120 mL/min/1.73m? ——
eGFR 90 mL/min/1.73m? i—o—
eGFR 75 mL/min/1.73m? ——
eGFR 60 mL/min/1.73m? ——
eGFR 50 mL/min/1.73m? —e
eGFR 30 mL/min/1.73m? —_—
eGFR 15 mL/min/1.73m? —_——————
BMI 40 kg/m? ——
BMI 35 kg/m? ——
BMI 30 kg/m? ——
BMI 20 kg/m? |—e—
AP 114 U/L —to—
AP 43 U/L ——
Current smoker —o—|
Asian ==
Female —
Reference ——
0.;30 1.00 1,;5 1.I50 2.;)0

Normalized steady state area under the curve

phosphatase, AST aspartate transaminase, AUC area under
the concentration—time curve, BMI body mass index,
¢GFR estimated glomerular filtration rate, LDH lactate
dehydrogenase, PD pharmacodynamic, PK pharmacoki-
netic, TP total protein

The
significant relationships between BMI, total
protein, age, female sex, current smoking
status, Asian race, and AP and CL/F (95%
Cls for these estimates did not include the
null value). However, the magnitudes of these
covariate effects were minor, with differences

analysis also showed statistically

within these covariate groups between 0.8
and 1.25 of the normalized CL/F or AUC, at
the extreme covariate levels (Fig.1). The
other covariate effects (ALT, AST, LDH, and
previous smoking history) were
non-significant. Estimated covariate effects
on parameters not affecting AUCg, (Vo/F, V3/
F, and k,) are included in Table S1 in the

supplementary material.
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Table 2 Summary of continuous covariates

Covariate PK/PD dataset

Subdataset: renal

Subdataset: elderly

(75-85 years) impairment (study 10)

Age, years (SD)

eGFR, mL/min/1.73 m?

58.0 (36.0, 76.0)
81.8 (33.4, 128)

BMI, kg/m* 29.1 (21.0, 42.4)
Total protein, g/dL 72.0 (64.0, 82.0)
AST, U/L 21.0 (12.0, 52.0)
ALT, U/L )
AP, U/L 73.0 (41.0, 129)
LDH, U/L 162 (114, 247)

77.0 (75.0, 84.7)
61.5 (20.5, 93.0)
29.4 (21.8, 38.3)
71.0 (63.0, 79.7)
21.0 (14.0, 52.7)

)
76.5 (41.0, 147)
170 (123, 258)

63.0 (46.9, 81.4)
60.1 (22.1, 86.8)
30.1 (20.8, 42.3)
71.0 (62.0, 81.0)
21.0 (12.0, 47.0)

72.0 (42.3, 134)
170 (114, 263)

Baseline FPG, mM 8.38 (4.83, 13.6)

(
(
(
(
(
25.0 (10.6, 75.0
(
(
(
Baseline HbAlc, % 7.90 (

6.70, 9.80)

835 (4.57, 14.2)
7.85

7.99 (452, 11.4)

(
(
(
(
(
23.0 (10.3, 67.0)
(
(
(
7.90 (6.73, 9.50)

(
(
(
(
(
215 (11.0, 48.0
(
(
(
(

6.73,9.77)

Data are median (2.5th and 97.5th percentile)
Number of patients in PK/PD dataset: 4065

Number of patients in elderly simulation dataset: 94 (reflects subdataset of PK/PD dataset, filtered for patients aged

75-85 years who were receiving empagliflozin, 10 and 25 mg)

Number of patients in renal impairment simulation dataset: 253 (patients in study 10 on empagliflozin, 10 and 25 mg)

Influence of eGFR on model parameters was estimated based on final PK/PD dataset containing more patients with renal

impairment than those from study 10

ALT alanine transaminase, AP alkaline phosphatase, 4ST aspartate transaminase, BFPG baseline fasting plasma glucose,
BMT body mass index, ¢GFR estimated glomerular filtration rate, FPG fasting plasma glucose, HbAlc glycated hemoglobin,
LDH lactate dehydrogenase, PD pharmacodynamic, PK pharmacokinetic, SD standard deviation

Exposure-Response Analysis (Efficacy)

Fasting plasma glucose measurements from the
same studies were used to develop the E-R
model for FPG (4289 patients), including
patients receiving empagliflozin or placebo.
The population PK/PD dataset for the FPG/
HbA1lc model comprised HbAlc measurements
from studies of >12 weeks’ duration, i.e., three
Phase II trials and four Phase III trials (4065
patients, including placebo arms, with 25,361
FPG values and 22,012 HbA1c assessments).
Two  indirect-response = models  were
implemented to describe the impact of
empagliflozin exposure on the efficacy
endpoints FPG and HbAlc. A rise in
empagliflozin exposure was associated with

increased glucose elimination, which led to a
reduction in FPG, and thereby, a decrease in
HbA1lc. For an initial model, developed without
studies 6 and 10, an external simulation check
was performed showing that the model
adequately predicted the HbAlc reductions in
study 6 (Fig. S3 in the supplementary material).
The performance of the final PK/PD models
comprising all data was evaluated using
goodness of fit plots and visual predictive
checks, which indicated that the model
adequately described the efficacy data
(Figs. S4-S7 in the supplementary material).
The continuous and categorical covariates
for the PK/PD datasets are summarized in
Table 2 and Table S2 in the supplementary
material. For the population PK/PD efficacy
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Fig. 2 Individually estimated AUC values by empagliflozin dose compared with the estimated AUCs, AUCg, and

AUCg. AUC area under the concentration—time curve

analysis, median BFPG was 8 mM (144 mg/dL)
for studies 1, 2, and 6-10, and 9 mM (162 mg/
dL) for studies 3-5. Evaluated covariates (age,
BMI, sex, race, eGFR, concomitant antidiabetic
therapy, and duration of T2DM) had only
minimal impact (<7%) on BFPG. Median
AUCso was 704 nM*h, corresponding to a
median empagliflozin exposure of around
3 mg from a once daily dose (Table S3 in the
supplementary material, and Fig. 2).

The maximum reduction (Gax) in FPG with
empagliflozin therapy was estimated to be 22%.
Gmax Was mainly affected by BFPG and eGFR;
Gmax Was estimated to increase with increasing
BFPG and decrease with decreasing eGFR.
Significant but small effects on Gpa.x were
observed with metformin + SU co-treatment,
sex, BMI, and age. Other
(metformin or co-treatment,
duration of T2DM, and Asian race) had no
significant effect on Gp,x of FPG.

Glycated hemoglobin half-life (calculated

covariates
pioglitazone

from Kppaicout) Was approximately 2.6 weeks

(95% CI 1.7, 3.9), indicating that maximum
changes in HbAlc are reached by around
12weeks (>3 half-lives) of empagliflozin
therapy, and was almost entirely achieved by
24 weeks (>6 half-lives). effects
relating to HbAlc (estimated using Kppaicout)
were generally non-significant (i.e., the CIs
contained the null value), although were not

Covariate

precisely estimated with the exception of
metformin co-medication, which resulted in an
increase in Kppaicout, Tesulting in a lower HbAlc
baseline for patients pre-treated with metformin.

Based on parameter estimates for the final
HbA1c E-R model, targets of 80% and 90% were
obtained for the maximal response for FPG and
HbAlc after 24 weeks of treatment with once
daily empagliflozin doses of approximately 10
and 25mg, respectively (Table S4 in the
supplementary material).

Simulations were performed to illustrate the
impact of the investigated covariates on change
in HbAlc from baseline after 24 weeks of
treatment with empagliflozin 25 mg for each
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of the single investigated covariates. Following
the covariate effects on Gp,,x, HbAlc lowering
was mainly influenced by BFPG and eGFR with
a median change from baseline HbAlc of
—0.59% (95% CI —-0.65, —0.53) for patients
with an eGFR of 60 mL/min/1.73 m? and
—0.89% (—0.98, —0.82) for patients with a
BFPG of 9mM, compared with a median
change of -0.71% (-0.79, -0.65) for a
reference patient (eGFR, 100 mL/min/1.73 m?;
BFPG, 8 mM; Fig. 3).

To investigate the influence of eGFR and age
on HbAlc lowering, deterministic simulations
were performed toillustrate the E-R after 24 weeks
of treatment (Fig. S8 in the supplementary

Reference —_—
+PIO
+SU
+MET
Duration >5 years —e
Duration <1 year —
Baseline FPG 10 mM
Baseline FPG 9 mM
eGFR 90 mL/min/1.73m?
eGFR 75 mL/min/1.73m?
eGFR 60 mL/min/1.73m?
eGFR 45 mL/min/1.73m?
eGFR 30 mL/min/1.73m?
eGFR 15 mL/min/1.73m?
BMI 45 kg/m? —o—
BMI 35 kg/m? -
BMI 30 kg/m? to—
BMI 20 kg/m? —_—
Age 75 years
Age 65 years
Age 45 years —
Age 35 years
Asian —
Black E—
Female

i

—_—

——

-

| o
T

T I I T T
-1.2 -1.0 -0.8 -0.6 -0.4 -0.2
Absolute change from baseline HbA1c at 25 mg (%)

Fig. 3 Covariate effects on HbAlc lowering after
24 weeks of treatment with empagliflozin 25 mg. Refer-
ence: male; non-black, non-Asian; age 50 years; eGFR
100 mL/min/1.73 m* BMI 25kg/m’* BFPG 8 mM;
duration of diabetes 1.5 years with no concomitant
antidiabetic therapy. Points represent the median, hori-
zontal lines the 95% CI of the covariate effect. CIs were
determined from 1000 simulations taking parameter
uncertainty into account. BFPG baseline fasting plasma
glucose, BMI body mass index, CI confidence interval,
¢GFR estimated glomerular filtration rate, FPG fasting
plasma glucose, HbAIc glycated hemoglobin, MET met-
formin, PIO pioglitazone, SU sulfonylurea

material). As these simulations focus only on the
influence of age and eGFR but not the combined
effect of other covariates, stochastic simulations
in the relevant subpopulations [i.e., patients with
renal impairment and elderly patients
(75-85 years)] were performed to characterize
the effect of empagliflozin under more realistic

conditions (Table 3).
Exposure-Response Analysis (Safety)

In total, 4065 patients were evaluable in the
safety/tolerability dataset (2584 on active
empagliflozin therapy and 1481 on placebo).
Overall safety/tolerability event rates were:
11.5% (n=466) for confirmed hypoglycemic
AEs, 8.09% (n = 329) for events consistent with
UTI, 2.85% (n = 116) for events consistent with
genital infection, and 0.839% (n =34 events
reported from a dataset of 4054 patients) for
events consistent with volume depletion. The
impact of empagliflozin exposure on the
tolerability adequately
described by logistic regression models (Fig. S9

endpoints  was

in the supplementary material). The main
covariate influences accounted for in the E-R
analyses were concomitant insulin therapy for
confirmed hypoglycemic events [OR 48.7 (95%
CI 26.5, 89.5)]; female sex for UTI [OR 6.14
(4.60, 8.19)], and genital infection [OR 2.28
(1.55, 3.35)]; and renal impairment [eGFR
60-90 mL/min/1.73 m?% OR 1.75 (0.617, 4.96)];
eGFR <60 mL/min/1.73 m? OR 2.78 (0.829,
9.34), and insulin therapy [OR, 2.60 (1.21,
5.61)] for volume depletion. Compared with
placebo-treated patients, empagliflozin therapy
was associated with an increased incidence of
genital infection [OR 5.08 (2.77, 9.34)] but no
significant change in the risk of UTI [OR 0.941
(0.687, 1.29)], hypoglycemia [OR 1.11 (0.811,
1.52)], or volume depletion [OR 1.44 (0.517,
4.01)]. For patients receiving empagliflozin
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Table 3 Median change from baseline in glycated hemoglobin after 24 weeks of treatment in subpopulations of elderly
patients and patients included in the renal impairment study (study 10)

Patient population 10 mg

Observed
—0.65 (—2.44, 0.40)
—0.40 (—1.70, 0.76)

25 mg
Observed

Predicted Predicted

Elderly (75-85 years)

e¢GFR 60-90 mL/min/
1.73 m*

eGFR 30-60 mL/min/
1.73 m*

eGFR 45-60 mL/min/
1.73 m?

eGFR 30-45 mL/min/ -
1.73 m?

—0.48 (—0.29, —0.65)
—0.53 (—0.67, —0.37)

—0.50 (—2.03, 0.60)
—0.70 (—1.64, 0.90)

—0.53 (—0.36, —0.71)
—0.59 (—0.74, —0.44)

—0.90 (—1.81, 0.12)" —0.45 (—0.60, —0.29) —0.40 (—2.00, 125) —0.49 (—0.65, —0.33)

—0.90 (—1.81, 0.12)* —0.46 (—0.69, —0.26) —0.40 (—1.97, 0.88) —0.51 (—0.75, —0.30)

—0.42 (—0.64, —0.19) —0.30 (—1.83, 1.43) —0.46 (—0.69, —0.23)

¢GFR estimated glomerular filtration rate

The elderly subpopulations included all patients aged 75-85 years (» = 94, with their associated covariate values) and
patients with renal impairment (from study 10, » = 253, with their associated covariates)

For observations, median, 2.5th, and 97.5th percentiles are shown; for simulations, the median and its 95% CI is shown
Metrics are given for patients having a baseline and a 24-weck glycated hemoglobin (HbAlc) measurement only

* Based on observations from five patients who received the 10-mg dose. In study 10, the 10-mg dose was not evaluated in
patients with moderate renal impairment. The five patients who showed mild renal impairment (eGFR > 60 mL/min/
1.73 m®) at screening were assigned to 10-mg empagliflozin, and subsequently, had eGFR values between 49 and 58 mL/
min/1.73 m” at the baseline visit just prior to treatment initiation. These patients were therefore categorized as having
moderate renal impairment, but continued on the randomized 10-mg dose. As simulations are summarized as the change
from baseline (defined as start of treatment) HbAIc values, stratification of the patients with respect to the baseline renal
impairment category was completed, and hence, five patients categorized as having moderate renal impairment were treated
with 10-mg empagliflozin

treatment, increases in empagliflozin AUC;
[OR (95% CI) for AUC normalized to
3500 nM*h increase in AUCg] produced no
significant increase in incidence rates of
confirmed hypoglycemic AEs [0.988 (0.863,
1.13)], events consistent with
depletion [0.770 (0.454, 1.30)], events
consistent with UTI [1.06 (0.935, 1.20)], or
events consistent with genital infection [0.744
(0.574, 0.965)].

volume

DISCUSSION

The population PK and E-R for the efficacy and

safety/tolerability = of  empagliflozin  was

investigated in patients with T2DM. The aims
of the population PK analysis were to describe
the PK of empagliflozin in patients with T2DM
and to quantify the effects of covariates. The PK
of empagliflozin was well described by a
two-compartment model with first-order
absorption. The covariate analysis indicated
that no dose adjustment is necessary for the
evaluated covariates. Variability in the CL/F,
and hence, AUC
statistically significantly affected by eGFR,
BMI, total protein, age, female sex, current

smoking, and Asian race, but their clinical

of empagliflozin was

impact on empagliflozin exposure was minor
(i.e., 80-125%). The only statistically significant

I\ Adis



468

Diabetes Ther (2016) 7:455-471

effect that reached beyond 125% was the
impact of eGFR on CL/F, and hence, AUC;
values. CL/F values were reduced with declining
eGFR with an expected 46.8% (95% CI 51.8,
41.1) reduction in CL/F and 88.1% (95% CI
69.9, 107) increase in AUCg for patients with
eGFR of 15 mL/min/1.73 m? compared with a
reference patient with eGFR of 100 mL/min/
1.73 m?%. For eGFR >60 mL/min/1.73 m?, the
mean AUCg was not increased by more than
20%, compared with the reference eGFR of
100 mL/min/1.73 m?. This finding is in line
with the results of a study of Japanese patients
with T2DM and renal impairment, as well as a
study in subjects with renal impairment, which
demonstrated an increase in exposure for
patients with renal impairment of less than
twofold [25, 26]. Thus, a dose reduction on the
basis of renal function would not be required
from a PK perspective.

The E-R analyses for efficacy indicated that
the empagliflozin doses of 10 and 25 mg were
near the plateau of the maximal achievable
HbAlc-lowering effect. The main determinants
of the efficacy of empagliflozin therapy were
BFPG levels and renal function. The maximal
achievable effect was estimated using the G«
parameter, and was shown to increase with
increased BFPG and decrease with declining
These observations are
consistent with the physiology of glucose
excretion, where an increased amount of
glucose available for renal filtration will lead
to an increase in UGE resulting from SGLT2

renal function.

inhibition. In the presence of renal impairment,
decreased glomerular filtration would be
expected to result in a reduction in UGE, a
reduced FPG response, and subsequently, a
lesser reduction in HbAlc with empagliflozin
therapy, compared with individuals with
normal renal function [27]. Nonetheless, even

with eGFR values as low as 30 mL/min/1.73 m?,

the efficacy of empagliflozin was maintained to
nearly half-maximal effect on FPG. Simulations
were performed to better characterize the
impact of these considerations on HbAlc
lowering. As shown in Fig. 3, the simulations
showed a median change from baseline HbAlc
of —0.58% (95% CI —0.65, —0.52) for patients
with an eGFR of 60 mL/min/1.73 m?, and
—0.89% (95% CI —0.98, —0.82) for patients
with a BFPG of 9mM. The analysis also
demonstrated a reduced effect on HbAlc
lowering with advanced age, independent of
renal function (Fig. 3). Since advanced age is
often associated with a reduction in renal
function, the combined effect of both was
assessed by simulating HbAlc lowering based
on real patient data from the subset of patients
aged 75-85 years [median eGFR 63 (95% CI 21,
93) mL/min/1.73 m?], as well as in a subset of
patients with renal impairment (study 10). The
simulations indicated that for patients with
an eGFR of 45-60 mL/min/1.73 m?, the
empagliflozin 10- and 25-mg doses produced
clinically meaningful reductions from baseline
HbAlc values. This also holds true for the
population of elderly patients (Table 3).

When comparing observed with simulated
HbAlc changes from baseline, the observed
change from baseline in the subgroups with
moderate or severe renal impairment (eGFR
30-60 and 45-60 mL/min/1.73 m?) should be
interpreted with caution, in view of the small
number of patients with moderate renal
impairment who received 10-mg empagliflozin
(n=5) in the evaluated population. The
simulations themselves were based on final
parameter estimates from the overall FPG/
HbAlc
patients with chronic kidney disease (CKD)
stage 3 (n =608 patients) and stage 4 (n=82
patients) was available for identification of the
influence of eGFR on FPG/HbA1c lowering, and

dataset, where information from
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hence, covariate influences could be reliably
estimated. Overall, results from the simulations
are in line with clinical findings, which showed
that in patients with T2DM and stage 2 or 3
CKD, the addition of empagliflozin as an
therapy
produced significant reductions in HbAlc.

add-on to existing antidiabetic

These clinical observations also included
reductions in blood pressure and body weight
in patients with stage 3 CKD [28]. However, for
patients with severe renal impairment (stage 4
CKD), no reduction in HbA1lc was observed [28].

For patients receiving background SU
therapy, a greater reduction in FPG and HbAlc
was demonstrated compared with a reference
patient with no background antidiabetic
therapy. Although this observation might be
the result of a study effect (since most patients
taking background SU therapy came from two
and 9), data suggest that
empagliflozin may improve B-cell function
[29], and hence, might lead to a better

response to pre-existing SU treatment. In

studies: 6

contrast, concomitant metformin therapy did
not show a significant influence on the effect of
empagliflozin on FPG and HbAlc lowering. The
finding of an increase in kypaic,out Of 50.6% for
patients on metformin is most probably related
to a slightly reduced baseline HbAlc among
patients receiving prior metformin treatment.

CONCLUSIONS

In conclusion, the population PK and E-R
models adequately described the PK, efficacy
(reductions in FPG and HbA1c), and tolerability
(hypoglycemia, genital infections, UTI, volume
depletion) of empagliflozin. Variability in
empagliflozin exposure was primarily affected
by eGEFR (increase in exposure less than twofold
in patients with severe renal impairment).

Compared with placebo, empagliflozin therapy
was associated with an exposure-independent
increase in the incidence of genital infection
and no significant change in the risk of UTI,
hypoglycemia, or volume depletion. Consistent
with the mode of action, the efficacy of
empagliflozin was increased with elevated
glucose levels and attenuated with decreasing
renal function despite an increase in its
exposure (less than twofold), but was still
maintained to nearly half the maximal effect
with eGFR as low as 30 mL/min/1.73 m?. All
other investigated covariates including sex,
BMI, race, and age did not alter the PK or
efficacy of empagliflozin to a clinically relevant
extent. Overall, no dose adjustment is required
for empagliflozin in the patient population for
which the drug is approved.
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