RESEARCH ARTICLE

Nutrient export from Finnish rivers into the Baltic Sea has not decreased despite water protection measures

Antti Räike, Antti Taskinen, Seppo Knuuttila

Received: 8 November 2018/Revised: 29 March 2019/Accepted: 24 June 2019/Published online: 5 July 2019

Abstract To tackle the symptoms of eutrophication in the open Baltic Sea and Finnish coastal waters, Finland has agreed to reduce both total nitrogen (TN) and total phosphorus (TP) inputs. Due to large investments in treatment of municipal and industrial wastewaters, TP loads started to decrease already in the mid-1970s and the respective TN loads in the mid-1990s. During the last two decades, much effort has been spent in decreasing the load originating from diffuse sources. Trend analyses in 1995-2016 showed that, despite various mitigation measures, riverine nutrient export has not substantially decreased, and especially the export from rivers draining agricultural lands remains high. In some areas TN concentrations and export were increasing and we found evidence that it was linked to ditching of peatlands. Several factors connected to climate/weather (e.g. temperature and precipitation) have counteracted the mitigation measures, and therefore Finland will not achieve the nutrient reduction targets by 2021.

Keywords Baltic Sea · Nitrogen · Phosphorus · Point sources · Riverine export · Water protection targets

INTRODUCTION

Despite the measures taken to reduce external inputs of nitrogen (N) and phosphorus (P) to the Baltic Sea, good ecological status has not been reached and nearly the entire sea area is still affected by eutrophication (HELCOM 2018). The deterioration of water quality is also commonly

detected in Finland's coastal and marine waters, and the state of the coastal waters in southern Finland is particularly poor (HELCOM 2018).

In order to tackle the symptoms of eutrophication, the member countries of the Helsinki Commission (HELCOM) have agreed to decrease the nutrient inputs to the Baltic Sea. The nutrient reduction scheme of the HELCOM Baltic Sea Action Plan (BSAP) was revised in 2013, and now the needed reductions are 118 000 t total nitrogen (TN) and 15 200 t total phosphorus (TP) on an annual basis by the 2021 deadline (http://www.helcom.fi/baltic-sea-actionplan/nutrient-reduction-scheme/targets). These correspond to approximately 13% of the mean TN inputs and 41% of the mean TP inputs in the reference period 1997-2003. The respective reduction targets for Finland are 3030 t (4%) of the TN inputs and 356 t (10%) of the TP inputs. Besides BSAP, several European Union (EU) directives aim at improving the state of marine environments. Two central directives in this respect are the Water Framework Directive (WFD), which aims at achieving good ecological and chemical status for inland and coastal surface waters (WFD 2000), and the Marine Strategy Framework Directive (MSFD) aiming at achieving or maintaining a good environmental status of European marine waters by 2020 (MSFD 2008). In order to reach a good ecological and chemical status, countries should implement the WFD's regional River Basin Management Plans (RBMPs), which define the measures needed to achieve this target. According to the RBMPs, Finland should reduce annual TN loads into the coastal waters by 6600 t and the respective TP loads by 440 t of the mean inputs in the reference period 2006-2011 (Laamanen 2016).

Eutrophication-related water quality policy in Europe and the USA has been directed primarily towards P control for freshwater ecosystems (Wong et al. 2018). Nutrient

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s13280-019-01217-7) contains supplementary material, which is available to authorized users.

reduction measures in Finland have also been targeted at P removal since Finnish inland waters have been generally regarded as P limited (Räike et al. 2003). In Finland, P removal from municipal wastewater started in the mid-1970s, though in the pulp and paper industry, Finland's biggest industrial sector, such measures were not taken until the late 1980s. In 2014 the P removal for the whole country was 93% (including municipal and industrial wastewater). Due to efficient P removal from municipal and industrial wastewater, the relative importance of diffuse inputs has increased during the last few decades. Presently, point sources comprise less than 15% of the Finnish nutrient inputs to the Baltic Sea.

N is estimated to be the limiting nutrient in the Finnish sea regions south of the Bothnian Bay (BOB; Tamminen and Andersen 2007). N removal from municipal wastewaters was started in the mid-1990s in some larger municipal treatment plants discharging directly to the Gulf of Finland (GUF). In 2014 the N removal for the whole country was 38% (including municipal and industrial wastewater). According to Finland's national implementation plan of the EU MSFD, the N removal efficiency should be increased to at least 70% in all those municipal treatment plants south of the BOB that have a population equivalent of $> 10\ 000$ and discharge directly into coastal waters (Fig. 1). Furthermore, it should be improved to 90% for larger treatment plants which discharge into coastal waters, whenever this is technically and economically feasible. Most of the achievable N reduction in the point source load can be gained through improvements in the municipal waste water treatment plants (WWTPs).

Anthropogenic nutrient pools can be divided, beside direct discharges into coastal waters and rapidly transported pool (e.g. surface runoff and erosion), into stable legacy pools (strongly bound forms in soil) and mobile legacy pools (loosely bound forms in soils; McCrackin et al. 2018). Rivers' transport constitutes the major part of the N and P inputs to the Baltic Sea (HEL-COM 2011), and beside the Baltic Sea, riverine nutrient export has increased globally (Seitzinger et al. 2010). This increase has taken place also outside the Northern Hemisphere, e.g. Africa (Yasin et al. 2010), Asia (Pedde et al. 2017) and South America (Van Der Struijk and Kroeze 2010). Recent Finnish studies indicate that TP concentrations and flow-normalised TP export into the Baltic Sea from Finnish rivers have decreased, but TN concentrations and flow-normalised TN export have increased (Ekholm et al. 2015; Rankinen et al. 2016). The rivers included in these studies flow through cultivated catchments, which are important contributors of TN and TP loads into the sea, but their catchments cover only 15% of the total Finnish Baltic Sea catchment area. In this study, we examined trends in TN and TP concentrations and flow-normalised and nonnormalised TN and TP export into the Baltic Sea by all Finnish rivers in 1995–2016. Since the BSAP nutrient reduction targets are divided between the Baltic Sea's subregions, we also studied trends by sub-regions. Furthermore, we studied whether the water protection measures taken so far have been effective in reducing nutrient loading from Finland into the Baltic Sea and assessed whether the Finnish nutrient reduction targets will be fulfilled by the 2021 deadline. The focus was on the period from 1995 onwards, as that was the year when Finland joined the EU and the first Agri-Environment Programme was launched.

MATERIALS AND METHODS

Catchment properties

The total catchment area of the studied rivers was 332 000 km² (296 000 km² was monitored), which apart from Finnish territory also includes the transboundary catchment areas of Sweden, Norway and Russia that carry water into Finnish territory (Fig. 1). The average proportion of forests (based on CORINE Land Cover 2012 25×25 m grids) was 47% (range 33–54%) and that of peatlands 18% (3–40%) (Table S1). The percentage of peatlands is highest at latitudes between 63° and 66°N, whereas the share of forests increases towards the south. The proportion of agricultural land in the river basins was on average 7% (1–43%). The majority of cultivated areas are located close to the southern and western coasts. The average proportion of water coverage of the catchments was 10% (0.5–19%) and the average coverage of urban areas was 3% (1-20%).

The mean annual flow of the rivers varied from 4 to $622 \text{ m}^3 \text{ s}^{-1}$, and the annual runoff from 245 to 427 mm (Table S1). The runoff was usually higher in the northern parts of the country where evaporation is lower. Spring peak-flow normally occurs in April in the southern and central parts of the country and in May in the northern regions. More detailed information of the location of sampling stations and basic catchment characteristics can be found in Räike et al. (2012).

Data sources and analytical methods

Point source loads, water quality and water flow data from 1995 to 2016 were obtained from the national databases maintained by the Finnish Environment Institute (SYKE). The sampling depth varied between 0 and 2 m. The total number of analyses was 25 100 (Table S2). The median annual sampling frequency was 12 (5–20 in individual rivers in 2016). Sampling was conducted at monthly

Fig. 1 Map of Finland showing monitored rivers and unmonitored areas of the Baltic Sea catchment. The shaded areas are part of the Barents Sea or White Sea catchment

intervals, except in rivers draining agricultural areas in southern Finland in which nutrient concentrations vary more widely depending on changes in flow. In those rivers sampling frequency was 22–58 (Table S2) and extra samples were taken especially on high flow events. In addition to TN and TP, we also studied changes in their soluble fractions (nitrate, NO_{2,3}-N; ammonium, NH₄-N; phosphate, PO₄-P) and total suspended solids (TSS) as supplementary variables. Nutrients were analysed from unfiltered samples by Finnish standard methods. The only exception was PO₄-P, which was filtered like TSS, with Nucleopore 0.45-µm polycarbonate filters.

Calculation of nutrient export and statistical methods

The annual Finnish riverine material export reported to HELCOM was calculated by utilising observed daily flow values and either monthly mean concentrations or estimated daily concentrations. In the former method, the monthly mean concentrations were multiplied by monthly sums of daily river discharges and the annual loads were summed from monthly loads (HELCOM 2011). In the latter one, the temporally nearest concentration observation was multiplied by the discharge observation of each day (periodic method, e.g. Kauppila and Koskiaho 2003).

The annual export figures calculated by the two different methods were comparable. In this article, we report only the results of the periodic method, because it was found to have the highest general reliability (lowest root-meansquared error, RMSE) for the estimation of TN load (Kauppila and Koskiaho 2003).

The total nutrient export from unmonitored catchments (11% of the total catchment area) was estimated from nearby monitored catchments with similar land cover characteristics using an area-specific export coefficient (kg N or P per km² catchment area).

The nutrient export was flow-normalised with a semiparametric method (Grimvall 2004) and with a method developed by Larsen and Svendsen (2013) for the use of HELCOM's Pollution Load Compilation (PLC) data. The main difference between the normalisation methods is that the semiparametric model directly takes into account the seasonality of the flows and nutrient loads in the model parameters. The seasonality was also included in the calculations of the HELCOM PLC model by applying it for each month over the years. Overall, the flow normalisation methods gave comparable results, with only one exception in a relatively small river in the BOB sub-region. We chose to use the HELCOM PLC.

Trends in export and concentration were analysed with the Mann–Kendall and seasonal Kendall tests (Hirsch et al. 1982, 1991) for annual and monthly export and concentration, respectively, using both non-adjusted as well as flow-adjusted values. If the test statistics were greater or lesser than zero on the 95% significance level, we detected an 'upward trend' or a 'downward trend', respectively. The magnitude of the trend was determined by the Theil–Sen slope estimator (Hirsch et al. 1982). The total change over the whole time series was calculated by multiplying the slope with the number of years minus one in the time series. The changes in point source loads were estimated by comparing the loads in 1995 and 2016.

RESULTS

Trends in direct point source loads, riverine concentrations and export

TN inputs discharged directly to the sea from point sources started to decrease in the mid-1990s and from 1995 to 2016 they decreased by 3756 t (38%) (Figs. S1, 2a). In 2016, direct point source TN load was 6100 t, of which 65% originated from municipal WWTPs, 27% from industrial WWTPs and 8% from fish farms. The major reduction in direct TP inputs from point sources happened before 1995 and from 1995 to 2016 they further decreased by 196 t (54%) (Figs. S2, 2b). This was especially due to decreased loading from the pulp and paper industry and fish farms. In 2016, direct point source TP load was 167 t, of which 33% originated from municipal WWTPs, 42% from industrial WWTPs and 25% from fish farms.

In 1995–2016, upward trends of TN concentrations occurred in five rivers and a downward trend in three rivers (Table S3). NH₄-N concentrations had downward trends in most of the rivers, whereas $NO_{2,3}$ -N concentrations had both upward and downward trends. Upward trends of both TP and PO₄-P concentrations were detected in two rivers with intensive farming in the catchments, and downward trends of TP were found in six rivers, of which three were large rivers in southern Finland. Downward trends of TSS concentrations were discovered in six rivers and an upward trend in one river (Table S3).

The riverine export varied greatly between the years depending on changes in water flow, which in turn reflects the precipitation. The flow-normalised export also varied quite widely (Fig. 2a, b). There was no statistically significant trend in the flow or in the total riverine TN export (non-normalised or normalised) in 1995–2016. On the contrary, the sub-region-wise results indicated that there was an increasing tendency in the non-normalised TN export to the BOB, even though the increase was not statistically significant (Fig. 3). The river-wise examination of the TN export verified this, since the non-normalised

Fig. 2 a TN inputs from Finland into the Baltic Sea in 1995–2016 and b TP inputs from Finland into the Baltic Sea in 1995–2016. Solid red line shows statistically significant trend and the respective dashed line statistically non-significant trend

export increased in four rivers in the BOB catchment (Table 1). The River Oulujoki in the BOB catchment was the only river in which there was a statistically significant upward trend in the flow-normalised TN export. The areaspecific TN export varied from 120 to 985 kg km⁻² between the river basins (Fig. 3). The highest values were observed in the southern and western catchments flowing through cultivated areas.

The total Finnish TP inputs (direct point sources + riverine export) into the Baltic Sea decreased in 1995–2016 (Fig. 2b), but there was no statistically significant trend in the non-normalised TP export. BOB was the only sea-region showing a decrease: the flow-normalised

TP export decreased by 19% (Fig. 4). Three upward trends were detected in the river-wise non-normalised TP export, whereas seven downward and two upward trends were found in the flow-normalised export (Table 2). The area-specific TP export varied from 3 to 85 kg km⁻² between the river basins and the highest values were observed in the intensively cultivated ARC catchment (Fig. 4).

The trends in TN concentrations and non-normalised TN export correlated negatively with the proportional (%) area of cultivated fields and urban areas (Table 3), whereas they correlated positively with the proportional area of peatlands and ditched peat area. The trends in flow-normalised

Fig. 3 TN inputs from Finland into the Baltic Sea in 1995–2016 by sub-regions. Dark green bars show non-normalised export, light green bars direct point sources, grey line flow, black line flow-normalised total inputs. Solid red line shows statistically significant trend and the respective dashed line statistically non-significant trend. The map shows the area-specific (kg km⁻²) TN export of monitored rivers

	TN (19	95-2016)		Non-normal	lised expor	t				Flow-norm.	alised expc	ort			
4 GUF VUOKSI 7870 96 0.15 1878 1878 1878 1878 1878 1878 1878 1878 1878 1878 1878 1878 1878 1873 187	Basin no.	Sea region	River	Export in 1995 (t)	Slope $(t a^{-1})$	d	Change (t)	% Change	Trend	Export in 1995 (t)	Slope (t a^{-1})	d	Change (t)	% Change	Trend
11 GUF WYMONCI 235 -2 0.248 -90 -2.5 0.032 -53 16 GUF KOSENSYLÄNDKI 530 -1 0.297 9.03 -33 0.44 0.297 9.03 -34 0.34 -5 0.167 -181 -2 18 GUF POWVONJOKI 136 -7 0.352 -129 0.344 -9 0 -34 0.5 -131 23 GUF KARJANJOKI 556 -4 0.322 -131 1097 -160 0.35 16 -181 0.44 0.5 16 -160 -16 -13 0.44 0.47 100 -53 0.44 0.35 -13 0.44 0.75 16 -18 0.41 0.41 0.75 16 -10 0.46 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16	4	GUF	VUOKSI	7879	89	0.135	1878			8263	6.1	0.382	128		
14 CUF KYMIOKI 5530 41 0.297 862 -121 0.844 -22 16 CUF KOSKIDKYLÄNDKI 36 -7 0.135 13 -7 0.135 14 -9 05 18 CUF KNSTIDKI 136 -6 0.135 -11 0.53 -18 0.53 -18 21 CUF KNSTIDKI 1394 -5 0.672 -112 0.53 -18 -16 21 CUF KNSTIDKI 1394 -5 0.672 -112 0.53 -18 -16 23 ARC KNAANDKI 556 -17 0.23 0.53 -16 24 KRAANDKI 236 -12 -23 0.71 -23 0.71 -23 0.71 -23 0.71 -26 0.67 -16 0.67 -16 0.67 -16 0.67 0.67 -16 0.67 0.67 0.67 0.67 0.67 <td< td=""><td>11</td><td>GUF</td><td>VIROJOKI</td><td>235</td><td>- 2</td><td>0.248</td><td>- 50</td><td></td><td></td><td>209</td><td>- 2.5</td><td>0.052</td><td>- 53</td><td></td><td></td></td<>	11	GUF	VIROJOKI	235	- 2	0.248	- 50			209	- 2.5	0.052	- 53		
16 GUF KOSKENKYLÄNUKI 361 7 0.18 154 164 123 3.0 0.248 65 18 GUF MUSTIOKI 66 -9 0 0.107 -181 21 GUF MUSTIOKI 66 -10 0.84 -19 21 GUF VANTAANOKI 139 -5 0.44 0.32 -112 0.84 -18 23 GUF KANLANOKI 556 -10 0.84 0.82 -168 23 GUF KANLANOKI 578 -2 0.44 0.32 -13 0.71 -2.35 0.10 0.88 -16 24 AKC USKELANOKI 66 -10 0.86 -10 0.88 -16 25 AKC USKELANOKI 578 -11 0.21 -23 0.91 0.51 -10 24 AKC USKELANOKI 578 -12 0.88 0.16 0.51 -10 <td>14</td> <td>GUF</td> <td>KYMIJOKI</td> <td>5530</td> <td>41</td> <td>0.297</td> <td>862</td> <td></td> <td></td> <td>6324</td> <td>- 1.1</td> <td>0.844</td> <td>- 22</td> <td></td> <td></td>	14	GUF	KYMIJOKI	5530	41	0.297	862			6324	- 1.1	0.844	- 22		
18 GUF PORVOONOKI 1136 - 6 0.52 - 129 1224 - 86 0.167 - 181 21 GUF VANTANIOKI 666 - 7 0.756 - 112 139 - 60 0.844 - 19 21 GUF KARJAANIOKI 556 - 4 0.322 - 112 139 - 90 0.844 - 19 25 ARC KISKONOKI 210 2 0.446 51 - 23 0.76 - 10 27 ARC KISKONOKI 569 - 11 - 23 0.714 - 26 0.67 10 0.88 - 7 27 ARC AIRAJONCI 579 17 - 23 0.714 - 26 0.861 - 10 0.88 - 7 28 ARC AIRAJONCI 579 174 - 23 0.714 - 23 0.76 - 10 0.888 - 7 0 28 BOS LAPUACI 656 - 3 0.714	16	GUF	KOSKENKYLÄNJOKI	361	7	0.185	154			428	3.0	0.248	63		
10 GUF MUSTLOKI 680 -3 0.756 -71 656 -09 0844 -19 21 GUF KANTANOKI 380 -4 0.672 -112 337 -80 -3 0.672 -16 21 GUF KANTANOKI 356 -4 0.87 -81 0.88 -16 0.82 -16 21 ARC USKELANOKI 576 -4 0.37 -7 501 -31 0.46 -66 27 ARC VATAANOKI 576 -4 0.77 53 14 -66 27 ARC VISTAANOKI 626 -1 0.271 -233 071 -023 631 -21 0.067 14 -20 36 NR KORDANOKI 570 11 0.271 -233 031 -033 031 -22 36 SOKEMÄSNOKI 1020 -33 0714 -9 053 233 033	18	GUF	PORVOONJOKI	1136	- 6	0.592	- 129			1224	- 8.6	0.167	- 181		
21 GUF VANTAANOKI 1394 -5 0.672 -112 1397 -80 0.382 -168 23 GUF KANTAANOKI 356 -4 0.382 -168 0.382 -168 23 ARC USKLANOKI 378 -8 0.130 -172 358 0.13 0.388 -17 0.00 0.672 18 25 ARC USKLANOKI 56 -11 0.211 -235 501 -100 0.888 -17 38 ARC VIKONOKI 590 -11 0.211 -255 501 -10 0.888 -17 38 KORMÁENOKI 1020 -58 0.592 -1209 965 -48 0.57 -100 37 BOS KAPVÁKINOKI 101 0.33 354 -12 369 -11 0.36 -23 0.30 380 KAPVÁKINOKI 112 0.592 -1209 985 -120 375	19	GUF	MUSTIJOKI	680	- 3	0.756	- 71			656	-0.9	0.844	- 19		
21 GUF KARIAANUKI 556 -4 0.382 -83 518 0.0 0.672 18 25 ARC RISKONOKI 210 2 0.446 51 -10 0.888 3 25 ARC PLAMONCKI 578 -8 0.714 -62 501 -31 0.66 -6 -66 -7 0.714 -63 -48 0.517 -100 28 ARC AURAJOKI 666 -3 0.714 -59 651 -10 0.888 -17 36 BOS KORMOKI 510 17 -0.28 0.734 -59 651 -10 0.888 -17 37 BOS KORMOKI 510 17 0.23 354 -56 0.88 118 -22 37 BOB KARÓNOKI 350 141 0.55 -10 0.554 -22 40 RALAOKI 173 0.33 34 0.13	21	GUF	VANTAANJOKI	1394	- 5	0.672	- 112			1397	- 8.0	0.382	- 168		
24 ARC KISKONJOKI 210 2 0.446 51 228 0.1 0.888 3 27 ARC USKELANIOKI 578 -8 0.130 -172 501 -3.1 0.446 -66 27 ARC USKELANIOKI 578 -1 0.271 -235 501 -9.8 0.38 -17 36 NRZ USKELANIOKI 663 -3 0.714 -50 563 -10 0.388 -17 36 EIRAJOKI 623 -3 0.714 -60 531 -10 0.348 -17 37 BOS ILAPUÁNCIN 511 1 0.52 -3 0.714 -57 0.63 -12 36 LAPUÁNCIN 511 1 0.52 -120 -56 0.388 118 42 BOB LAPUÁNCIN 511 1 0.52 -120 -22 -22 41 BOB LAPUÁNOKI	23	GUF	KARJAANJOKI	556	- 4	0.382	- 83			518	0.9	0.672	18		
25 ARC USKELANUOKI 578 8 0.130 -172 501 -31 0.446 -66 27 ARC USKELANUOKI 578 -1 023 -148 0517 -100 28 BOS EURANOKI 66 -3 0.714 -62 631 -08 -17 -00 36 BOS KOKEMÄENOKI 630 -11 0.271 -129 985 -17 -100 37 BOS KOKEMÄENOKI 630 -13 0.714 -67 039 -143 0.844 -22 38 IBOS KOKEMÄENOKI 0.20 -17 0.352 34 -22 39 BOS KOKEMÄENOKI 18 0.039 1415 346 143 0.32 0.332 49 30 BOS LAPVÄÄKTINOKI 18 0.034 372 51 101 0.56 -22 30 BOS LAPVÄÄKTINOKI 18 <td< td=""><td>24</td><td>ARC</td><td>KISKONJOKI</td><td>210</td><td>2</td><td>0.446</td><td>51</td><td></td><td></td><td>228</td><td>0.1</td><td>0.888</td><td>3</td><td></td><td></td></td<>	24	ARC	KISKONJOKI	210	2	0.446	51			228	0.1	0.888	3		
27 AKC PAMIONIOKI 969 -11 0.211 235 905 4.8 0.517 -100 28 AKC AURANOKI 666 -3 0.714 -62 631 -0.8 0.888 -17 35 BOS EURANOKI 10220 -53 0.714 -59 705 -10 0.844 -22 37 BOS LAPVÄÄKINOKI 10220 -53 0.392 -1209 9857 -10 0.844 -22 39 BOS NÄRPÖNOKI 570 17 0.392 -1209 563 2.3 49 223 49 4 BOB EAPUÁNUKI 1823 44 0.15 3416 14.3 0.352 49 4 BOB LAPUÁNUKI 1823 44 0.15 3416 14.3 0.352 301 4 BOB LAPUÁNUKI 1823 44 0.13 0.35 49 375 3416 14.3<	25	ARC	USKELANJOKI	578	- 8	0.150	- 172			501	- 3.1	0.446	- 66		
28 ARC AURAJOKI 666 -3 0714 -62 631 -0.8 0.88 -17 34 BOS EURAJOKI 623 -3 0714 -59 705 -10 0.84 -22 37 BOS KOKEMÄENJOKI 623 -3 0714 -59 705 10 0.844 -22 37 BOS KAPRÖNJOKI 570 1 0.592 -1209 987 56 0.888 118 42 BOS KAPRÖNJOKI 270 1 0.53 2.3 0.322 40 41 BOB LAPUJANUKI 182 0.34 372 51 843 18 0.34 23 301 49 BOB ELAPUANOKI 182 0.34 372 51 843 18 0.348 236 49 51 BOB ELAPUANOKI 182 0.34 372 51 2091 136 236 29	27	ARC	PAIMIONJOKI	696	- 11	0.271	- 235			905	- 4.8	0.517	-100		
34 BOS EURAJOKI 623 -3 0.714 -59 705 -10 0.844 -22 35 BOS KOKENÁÑENUCKI 511 1 0.592 -1209 9857 56 0.888 118 37 BOS LAPUÄÄKTINUKI 511 1 0.592 -1209 9857 56 0.888 118 39 BOS NÄRPIÖNUKI 570 17 0.135 354 533 3416 143 0.352 49 44 BOB PEHHONCKI 2699 67 0.059 1415 3416 143 0.382 301 51 BOB RALAJOKI 183 0.035 341 0.13 232 49 56 381 53 BOB KALAJOKI 183 0.04 1131 233 232 47 7 54 BOB KALAJOKI 188 0.035 56 0.592 170 57 0.592	28	ARC	AURAJOKI	666	- 3	0.714	- 62			631	-0.8	0.888	- 17		
35 BOS KOKEMÁENUCKI 10220 -58 0.592 -1209 9857 5.6 0.888 118 37 BOS LAPVÄÄRTINUKI 311 1 0.592 28 508 -1.0 0.554 -22 39 BOS NÄRPIÖNUKI 570 17 0.135 354 6.33 2.3 0.352 49 41 BOB KYRÖNUKI 2699 67 0.039 1415 3.3 2.3 0.352 3.0 41 BOB KYRÖNUKI 1823 44 0.135 916 2.991 13.6 0.372 3.1 8 0.352 3.0 51 BOB KALAJOKI 183 74 72 843 2.6 7.1 4.7 53 BOB SIKAJOKI 166 37 0.352 3.6 0.70 5.92 -710 54 BOB KALAJOKI 168 74 74 74 74 74 <	34	BOS	EURAJOKI	623	- 3	0.714	- 59			705	- 1.0	0.844	- 22		
37 BOS LAPVÄÄRTINUKI 511 1 0.592 28 508 -1.0 0.554 -22 39 BOS NÄRPIÖNUKI 570 17 0.135 354 6.33 2.3 0.552 49 41 BOB KYRÖNUKI 2699 67 0.059 1415 3416 14.3 0.352 49 41 BOB LAPUANUKI 1823 44 0.135 916 2091 13.6 0.248 286 49 BOB ERHONUKI 733 18 0.034 372 51 791 13.6 0.78 286 51 BOB KALAJUKI 1823 17 0.225 363 74 747 73 232 672 79 51 BOB KIMINCINUKI 614 23 0.004 587 74 74 77 2865 771 77 53 BOB KIMINCINUKI 614 23 0.	35	BOS	KOKEMÄENJOKI	10220	- 58	0.592	- 1209			9857	5.6	0.888	118		
39 BOS NÄRPIÖNJOKI 570 17 0.135 354 633 2.3 0.352 49 41 BOB KYRÖNJOKI 2699 67 0.059 1415 3416 14.3 0.382 301 44 BOB LAPUANJOKI 1823 44 0.135 916 2091 13.6 0.248 286 49 BOB LESTJOKI 390 6 0.024 126 2091 13.6 0.248 286 51 BOB KALAJOKI 1783 54 0.076 1131 2332 -6.11 0.108 -86 53 BOB KALAJOKI 1061 37 0.045 131 2332 -5.57 0.592 -71 57 BOB VILUOKI 1061 37 0.045 158 47 7 1456 -7 1261 -34 20 7 50 BOB KULUUOKI 614 23 0.040	37	BOS	LAPVÄÄRTINJOKI	511	1	0.592	28			508	- 1.0	0.554	- 22		
42 B0B KYRÖNJOKI 2699 67 0.059 1415 3416 14.3 0.382 301 44 B0B LAPUANUOKI 1823 44 0.135 916 2091 13.6 0.248 286 49 B0B PERHONUOKI 733 18 0.034 372 51 7 843 1.8 0.672 39 51 B0B LESTIJOKI 390 6 0.204 126 487 -4.1 0.108 -86 53 B0B KALAJOKI 1783 54 0.076 1131 2332 -5.7 0.592 -120 54 B0B SIKAJOKI 1061 37 0.045 787 74 7 1458 22 71 47 57 B0B SIKAJOKI 1061 37 0.045 787 74 7 1458 20 71 47 58 B0B VIININGINUKI 614 23 0.040 1158 47 7 1458 20 71 47 7<	39	BOS	NÄRPIÖNJOKI	570	17	0.135	354			633	2.3	0.352	49		
41 BOB LAPUANJOKI 1823 44 0.135 916 2091 13.6 0.248 286 49 BOB PERHONJOKI 733 18 0.034 372 51 7 843 1.8 0.672 39 51 BOB LESTIJOKI 390 6 0.204 126 487 -4.1 0.108 -86 53 BOB KALAJOKI 1783 54 0.076 1131 2332 -5.7 0.592 -120 57 BOB SIIKAJOKI 1061 37 0.45 74 7 145 2.2 0.714 47 57 BOB OULUJOKI 1061 37 0.040 1158 47 7 1458 2.2 0.714 47 58 BOB NIMINGINOKI 614 23 0.040 1158 47 7 246 53 20 7 261 2.4 27 20 7	42	BOB	KYRÖNJOKI	2699	67	0.059	1415			3416	14.3	0.382	301		
40 BOB PERHONJOKI 733 18 0.034 372 51 7 843 1.8 0.672 39 51 BOB LESTIJOKI 390 6 0.204 126 487 -4.1 0.108 -86 53 BOB KALAJOKI 1783 54 0076 1131 2332 -5.7 0.592 -120 54 BOB SIKAJOKI 1085 17 0.225 363 1261 -3.4 0.592 -71 57 BOB SIKAJOKI 1061 37 0.045 787 74 7 1458 2.2 0.714 47 59 BOB KIIMINGINUKI 614 23 0.049 1158 47 7 1458 2.2 0.714 47 60 BOB KIIMINGINUKI 614 23 0.009 489 80 7 245 27.8 0.044 58 20 7 61	44	BOB	LAPUANJOKI	1823	44	0.135	916			2091	13.6	0.248	286		
51 BOB LESTIJOKI 390 6 0.204 126 487 -4.1 0.108 -86 53 BOB KALAJOKI 1783 54 0076 1131 2332 -5.7 0.592 -120 54 BOB PYHÄJOKI 1085 17 0.225 363 1261 -3.4 0.592 -71 57 BOB SIIKAJOKI 1061 37 0.045 787 74 7 1458 2.2 0.714 47 59 BOB VIIMINGINJOKI 614 23 0.009 489 80 7 2865 27.8 0.04 584 20 60 BOB KIIMINGINJOKI 614 23 0.009 489 80 7 2865 27.8 0.044 584 20 61 BOB KUUVAJOKI 326 3 0.324 65 389 -1.5 0.325 -31 64 BOB KUU	49	BOB	PERHONJOKI	733	18	0.034	372	51	5	843	1.8	0.672	39		
53 BOB KALAJOKI 1783 54 0.076 1131 2332 -5.7 0.592 -120 54 BOB PYHÄJOKI 1085 17 0.225 363 1261 -3.4 0.592 -71 57 BOB SIIKAJOKI 1061 37 0.045 787 74 7 1458 2.2 0.714 47 50 BOB OULUJOKI 2464 55 0.040 1158 47 7 1458 2.2 0.714 47 60 BOB KIIMINGINJOKI 614 23 0.009 489 80 7 2865 27.8 0.044 584 20 61 BOB HUNAIOKI 326 3 0.324 65 389 -1.5 0.344 -50 63 BOB KUIVAJOKI 326 3 0.324 65 -44 -50 64 BOB KONOKI 6011 27 0.522 </td <td>51</td> <td>BOB</td> <td>LESTIJOKI</td> <td>390</td> <td>9</td> <td>0.204</td> <td>126</td> <td></td> <td></td> <td>487</td> <td>- 4.1</td> <td>0.108</td> <td>- 86</td> <td></td> <td></td>	51	BOB	LESTIJOKI	390	9	0.204	126			487	- 4.1	0.108	- 86		
54 BOB PYHÄJOKI 1085 17 0.225 363 1261 - 3.4 0.592 - 71 57 BOB SIIKAJOKI 1061 37 0.045 787 74 7 1458 2.2 0.714 47 59 BOB OULUJOKI 2464 55 0.040 1158 47 7 2865 2.7.8 0.044 584 20 60 BOB KIIMINGINJOKI 614 23 0.009 489 80 7 2865 27.8 0.044 584 20 61 BOB IUJOKI 1997 19 0.108 391 22772 1.3 0.844 28 63 BOB KUIVAJOKI 630 11 0.324 65 339 -1.5 0.352 -31 63 BOB KUIVAJOKI 630 11 0.324 65 772 1.3 0.045 74 64 BOB KMOJOKI	53	BOB	KALAJOKI	1783	54	0.076	1131			2332	- 5.7	0.592	- 120		
57 BOB SIIKAJOKI 1061 37 0.045 787 74 7 1458 2.2 0.714 47 59 BOB OULUJOKI 2464 55 0.040 1158 47 7 2865 27.8 0.04 584 20 60 BOB KIIMINGINJOKI 614 23 0.009 489 80 7 827 -2.4 0.414 -50 61 BOB IIJOKI 1997 19 0.108 391 2272 11.3 0.844 28 63 BOB KUIVAJOKI 326 3 0.324 65 73 709 -1.5 0.352 -31 64 BOB SIMOJOKI 6011 27 0.592 576 6357 12.4 0.385 -44 65 BOB KEMIJOKI 6011 27 0.592 576 12.4 0.714 29 67 BOB TONIONJOKI 6911 27 0.592 570 1.24 0.74 261 67	54	BOB	PYHÄJOKI	1085	17	0.225	363			1261	- 3.4	0.592	- 71		
50 BOB OULUJOKI 2464 55 0.040 1158 47 7 2865 27.8 0.004 584 20 60 BOB KIIMINGINJOKI 614 23 0.009 489 80 7 2.24 0.414 -50 61 BOB IJJOKI 1997 19 0.108 391 2272 1.3 0.844 28 63 BOB KUIVAJOKI 326 3 0.324 65 389 -1.5 0.352 -31 64 BOB KINJOKI 630 11 0.324 55 576 -2.11 0.085 -44 65 BOB KEMJOKI 6011 27 0.592 576 -2.11 0.085 -44 67 BOB TONIONIOKI 3948 34 0.352 21 0.342 261 67 BOB TONIONIOKI 3948 34 0.352 71 261	57	BOB	SIIKAJOKI	1061	37	0.045	787	74	5	1458	2.2	0.714	47		
60 BOB KIIMINGINJOKI 614 23 0.009 489 80 7 -2.4 0.414 -50 61 BOB IIJOKI 1997 19 0.108 391 2272 1.3 0.844 28 63 BOB KUIVAJOKI 326 3 0.324 65 389 -1.5 0.352 -31 64 BOB SIMOJOKI 630 11 0.324 253 709 -2.1 0.085 -44 65 BOB KEMIJOKI 6011 27 0.592 576 6357 12.4 0.714 261 67 BOB TONIONIOKI 3948 34 0.352 721 3890 1.4 0.714 291	59	BOB	OULUJOKI	2464	55	0.040	1158	47	5	2865	27.8	0.004	584	20	5
61 BOB IIJOKI 1997 19 0.108 391 2272 1.3 0.844 28 63 BOB KUIVAJOKI 326 3 0.324 65 389 -1.5 0.352 -31 64 BOB SIMOJOKI 630 11 0.324 55 709 -2.1 0.085 -44 65 BOB KEMIJOKI 6011 27 0.592 576 6357 12.4 0.382 261 67 BOB TORNIONIKI 3948 34 0.352 721 3890 1.4 0.714 291	60	BOB	KIIMINGINJOKI	614	23	0.009	489	80	5	827	- 2.4	0.414	- 50		
63 BOB KUIVAJOKI 326 3 0.324 65 389 -1.5 0.352 -31 64 BOB SIMOJOKI 630 11 0.324 223 709 -2.1 0.085 -44 65 BOB KEMIJOKI 6011 27 0.592 576 6357 12.4 0.382 261 67 BOB TORNIONJOKI 3948 34 0.352 721 3890 1.4 0.714 29	61	BOB	IIJOKI	1997	19	0.108	391			2272	1.3	0.844	28		
64 BOB SIMOJOKI 630 11 0.324 223 709 - 2.1 0.085 - 44 65 BOB KEMIJOKI 6011 27 0.592 576 6357 12.4 0.382 261 67 BOB TORNIONJOKI 3948 34 0.352 721 3890 1.4 0.714 29	63	BOB	KUIVAJOKI	326	б	0.324	65			389	- 1.5	0.352	- 31		
65 BOB KEMIJOKI 6011 27 0.592 576 6357 12.4 0.382 261 67 BOB TORNIONJOKI 3948 34 0.352 721 3890 1.4 0.714 29	64	BOB	SIMOJOKI	630	11	0.324	223			709	- 2.1	0.085	- 44		
67 BOB TORNIONJOKI 3948 34 0.352 721 3890 1.4 0.714 29	65	BOB	KEMIJOKI	6011	27	0.592	576			6357	12.4	0.382	261		
	67	BOB	TORNIONJOKI	3948	34	0.352	721			3890	1.4	0.714	29		

466

© The Author(s) 2019 www.kva.se/en

Fig. 4 TP inputs from Finland into the Baltic Sea in 1995–2016 by sub-regions. Dark blue bars show non-normalised export, light blue bars direct point sources, grey line flow, black line flow-normalised total input. Solid red line shows statistically significant trend and the respective dashed line statistically non-significant trend. The map shows the area-specific (kg km⁻²) TP export of monitored rivers

Balan Inc. Saragen Bayeria Expertia Expertia Expertia Expertia Expertia Change (1) Change (1)	TP (1995–	2016)		Non-normal	lised expor	t				Flow-norm	alised export				
4 CHF VUCKSI 14 0.41 0.43 9 15 -0.71 0.106 -1 11 CUF KNIMOK 7.6 -0.02 0.075 -1 -2 - - 16 CUF KNIMOK 7.5 -0.02 0.076 -1 -<	Basin no.	Sea region	River	Export in 1995 (t)	Slope (t a^{-1})	d	Change (t)	% Change	Trend	Export in 1995 (t)	Slope (t a ⁻¹)	d	Change (t)	% Change	Trend
	4	GUF	VUOKSI	146	0.41	0.481	6			158	- 0.71	0.108	- 15		
	11	GUF	VIROJOKI	7.6	-0.02	0.714	0			8.4	-0.06	0.076	- 1		
16 CIF KOSKENKYLÄNUKI 17. 014 016 88 7 244 012 010 9 37 7 18 CUF VAYTANUKI 44.5 -014 080 3 31.7 0.01 038.8 0 3 37 -15 -15 -21 N 21 CUF VAYTANUKI 66.5 -0.93 537 -12 0.01 0.38.8 0 33 -23 -21 N 23 GUF KAVTANUKI 66.5 -0.93 571 -12 740 -0.73 0.045 15 -21 N 23 ARC USKELANUKI 56.1 -0.03 0.74 -7 41.3 0.04 0.13 2 -21 N -21 N -21 N -21 -21 11 -21 11 -	14	GUF	KYMIJOKI	195	-1.14	0.554	- 24			235	- 2.43	0.017	- 51	- 22	7
18 GUF PORVOONJOKI 44.5 0.14 0.80 3.17 0.01 0.888 0 21 GUF WUSTANDOKI 35.5 -0.00 0.348 -12 3.03 -21 3.3 23 GUF KARJAANDOKI 35.5 -0.01 0.343 -12 74.0 -0.13 0.35 -21 3 24 ARC KISKONOKI 11.6 0.09 0.33 27 -0.13 0.35 2 -21 3 -21 3 25 ARC KISKONOKI 11.6 0.09 0.33 0.74 -2 3 -21 -2 3 -2 3 -2 3 -2 3 -2 3 -2 3 -2 1 3 -2 1 -2 1 -2 1 -2 1 -2 1 -2 1 -2 1 -2 1 -2 1 -2 1 -2 1 -2	16	GUF	KOSKENKYLÄNJOKI	17.7	0.74	0.045	16	88	~	23.4	0.42	0.003	6	37	~
10 CUT MUSTLOKI 35.5 -0.61 0.248 -13 0.352 -3 21 CUT VANTAANOKI 66.6 -0.03 0.37 -12 7.0 0.035 1.5 -2.1 7.1 23 CUT KANAANOKI 61.6 -0.03 0.37 -1 7.10 0.035 1.2 -2.1 7.1 24 ARC KISKONOKI 11.6 0.09 0.352 2 11.8 0.03 0.135 2 -2.1 7 25 ARC AIRANOKI 7.1 -0.03 0.37 -2 3 7 -2 4 2 -2 4 2 -2 3 7 -2 4 2 -2 3 7 -2 3 7 -2 4 2 -2 1 -2 1 -2 1 -2 1 -2 1 -2 1 -2 1 -2 1 -2 1	18	GUF	PORVOONJOKI	44.5	0.14	0.800	3			51.7	0.01	0.888	0		
21 CUT VANTAANUKI 6.6 -0.59 0.51 -12 740 -0.73 0.045 -15 -21 > 23 AUC KKIAANOKI 8.6 -0.59 0.33 -3 <td>19</td> <td>GUF</td> <td>MUSTIJOKI</td> <td>35.5</td> <td>-0.61</td> <td>0.248</td> <td>- 13</td> <td></td> <td></td> <td>30.8</td> <td>-0.13</td> <td>0.352</td> <td>- 3</td> <td></td> <td></td>	19	GUF	MUSTIJOKI	35.5	-0.61	0.248	- 13			30.8	-0.13	0.352	- 3		
23 GUF KARJAANOKI 201 -0.15 0.297 -3 17.1 0.08 0.135 2 25 ARC KKRONOKI 11.6 0.09 0.352 2 11.8 0.08 0.135 2 25 ARC KKRONOKI 11.6 0.09 0.352 2 11.8 0.08 0.135 2 27 ARC AURAJOKI 57.4 -0.16 0.34 -7 24.9 0.38 0.248 12 36 BOS EURAJOKI 31.9 -0.16 0.34 -7 37.7 0.35 0.248 12 37 BOS LAPUÁRTIOKI 41 0.16 0.34 10 0.248 12 37 BOS LAPUÁRTIOKI 43 0.34 10 -17 0.167 58 12 37 BOS LAPUÁRTIOKI 117 0.248 18 10 -14 96 17 16 17 16	21	GUF	VANTAANJOKI	68.6	-0.59	0.517	- 12			74.0	-0.73	0.045	- 15	- 21	7
24 ARC KISKONIOKI 11.6 0.09 0.552 2 11.8 0.08 0.135 2 27 AKC VISKIDANOKI 431 -0.33 0.714 -7 11.3 0.08 0.135 2 27 AKC VISKIDANOKI 68.7 -0.00 0.941 -7 62.6 0.88 0.248 12 3 AKC VIRAOKI 21.9 -0.10 0.84 -2 62.6 0.88 0.248 12 3 BOS KORMOKI 117 0.15 -9.10 0.87 -9.36 0.96 -8 3 BOS KONOKI 117 0.167 -3 23.7 -0.36 0.96 -8 4 BOS NARPONOKI 117 0.47 7 24 0.01 17 -4 4 BOS NARPONOKI 117 0.47 7 24 26 -1 26 -1 26 14 4	23	GUF	KARJAANJOKI	20.1	-0.15	0.297	- 3			17.1	0.08	0.135	2		
25 ARC USKELANOKI 40.1 -0.33 0.714 -7 41.3 0.41 0.41 9 27 ARC PAMIONOKI 66.7 -0.03 0.714 -7 41.3 0.41 0.41 9 28 ARC PAMIONOKI 66.7 -0.03 0.74 -3 0.74 -3 0.41 0.41 10 36 EURANIXI 401 -5.10 0.34 -107 36 0.38 12 -8 12 0.06 -8 12 37 BOS KOREMÄENJOKI 411 -0.16 0.87 -3 237 0.06 -8 12 -3 37 BOS KOREMÄENJOKI 117 0.248 18 12 -3 -3 -4 -5 -6 14 -7 -3 -3 -3 -3 -4 -4 -7 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3	24	ARC	KISKONJOKI	11.6	0.09	0.352	2			11.8	0.08	0.135	2		
27 AKC PAIMIOUOKI 687 -0.09 0.978 -2 62.6 0.88 0.248 18 38 BOS EURAJOKI 57.4 -0.16 0.844 -3 48.9 0.58 0.248 12 36 BOS EURAJOKI 21.9 -0.14 0.180 -9 0.36 -8 12 37 BOS LAPVÄÄRTIJOKI 117 0.248 -101 0.348 -101 0.36 -8 0.36 12 37 BOS LAPVÄÄRTIJOKI 117 0.73 0.41 16 25.6 -0.14 0.51 -3 40 BOB KYRÖNOKI 117 0.75 0.41 10 7.5 0.54 0.02 11 64 7 41 BOB KYRÖNOKI 117 0.73 0.34 0.10 61 73 -3 51 BOB KYRÖNOKI 177 7.5 0.54 0.02 114 -6	25	ARC	USKELANJOKI	49.1	-0.33	0.714	L –			41.3	0.41	0.414	6		
28 ARC AURAJOKI 57.4 -0.16 0.844 -3 48.9 0.58 0.248 12 34 BOS EURANOKI 21.9 -0.41 0.150 -9 -0.31 0.096 -8 35 BOS KKRMÄENOKI 41 -5.10 0.248 -107 396 -2.77 0.167 -58 37 BOS KYRÖNJOKI 117 0.57 0.431 16 -7 9 10 -54 0.0248 -10 44 BOB KYRÖNJOKI 117 0.75 0.41 16 7 -9 9 9 0.53 -3 -10 45 BOB LAPUANOKI 74 0.67 130 -0.48 0.632 11 64 7 44 BOB LAPUANOKI 117 0.34 0.517 7 -2 0.48 -10 -4 7 -7 -4 -4 -4 -4 -4 -4 <t< td=""><td>27</td><td>ARC</td><td>PAIMIONJOKI</td><td>68.7</td><td>-0.09</td><td>0.978</td><td>- 2</td><td></td><td></td><td>62.6</td><td>0.88</td><td>0.248</td><td>18</td><td></td><td></td></t<>	27	ARC	PAIMIONJOKI	68.7	-0.09	0.978	- 2			62.6	0.88	0.248	18		
34 BOS EURATOKI 219 -041 0.150 -9 237 -0.36 0.096 -8 35 BOS KOKEMÁENOKI 401 -5.10 0.248 -107 396 -2.77 0.167 -58 37 BOS KARMÁENUKI 118 -0.16 6672 -3 29.6 -0.14 0.673 -3 39 BOS KARNÚNCI 117 0.75 0.481 16 73.6 -0.14 0.673 -1 40 BOB LAPVÁKTINUKI 117 0.37 0.41 0.75 -41 9 -2.77 0.02 1 -6 41 BOB LAPVÁKTINUKI 741 0.43 -5 0.41 0.02 -14 -2.77 0.167 -58 51 BOB LENTANOKI 117 0.43 0.52 -10 -47 5 -42 5 51 BOB VEMONCI 122 0.29 -0.43 0.00<	28	ARC	AURAJOKI	57.4	-0.16	0.844	- 3			48.9	0.58	0.248	12		
35 BOS KOKEMÄENUKI 401 -5.10 0.248 -107 396 -2.77 0.167 -5.8 37 BOS LAPVÄÄRTINUKI 31.8 -0.16 0.672 -3 29.6 -0.14 0.652 -3 39 BOS KYRÖNUKI 16 0.672 -3 29.6 -0.14 0.652 -3 41 BOB LAPVÄARTINUKI 71 0.43 0.592 0.481 16 73 0.048 11 64 7 42 BOB LAPUAUKI 71 0.43 0.592 0.481 16 753 10 64 7 51 BOB FERHOUKI 31.4 -0.48 0.324 10 7 73 9 9 9 9 9 9 9 9 9 9 9 9 9 7 9 7 9 7 9 7 9 9 9 9 9 9	34	BOS	EURAJOKI	21.9	-0.41	0.150	- 9			23.7	-0.36	0.096	- 8		
37 BOS LAPVÄÄRTNOKI 318 -0.16 0.672 -3 29.6 -0.14 0.632 -3 39 BOS NÄRPÖNUKI 117 0.35 0.38 0.019 18 110 / 17.5 0.54 0.002 11 64 / 41 BOB KARÖNUKI 117 0.75 0.481 16 130 -0.48 0.554 -10 41 BOB LAPUAUOKI 741 0.43 0.32 9 75.9 -0.18 0.481 -4 / 41 BOB FRHONUKI 117 0.43 0.32 10 36 -0.18 0.36 10 -4 / -4<	35	BOS	KOKEMÄENJOKI	401	-5.10	0.248	- 107			396	-2.77	0.167	- 58		
39 BOS NÄRPIÖNJOKI 16.8 0.88 0.019 18 110 7 17.5 0.54 0.002 11 64 7 41 BOB KYRÖNJOKI 117 0.75 0.481 16 130 -0.48 0.554 -10 44 64 7 44 BOB LAPUANJOKI 74.1 0.43 0.592 9 75.9 -0.18 0.481 -4 7 49 BOB PERHONJOKI 74.1 0.43 0.572 9 0.002 -14 -47 7 51 BOB KALAJOKI 729 0.297 -26 7 7 -47 7 -47 7 -47 7 -47 7 -47 7 -47 7 -47 7 -47 7 -47 7 -47 7 -47 7 -47 7 -47 7 -47 7 -47 7 -47 7 -47	37	BOS	LAPVÄÄRTINJOKI	31.8	-0.16	0.672	- 3			29.6	-0.14	0.632	- 3		
42 BOB KYRÖNJOKI 117 0.75 0.481 16 130 -0.48 0.554 -10 44 BOB LAPUANJOKI 71 0.43 0.502 9 75.9 -0.18 0.481 -4 49 BOB ERHONUCKI 74.1 0.34 0.517 7 52.0 -0.65 0.002 -14 -26 × 51 BOB KALAJOKI 129 -1.22 0.297 -26 48 -2.98 0.001 -17 -47 × 53 BOB KALAJOKI 129 -1.22 0.297 10 48 -2.98 0.001 -17 -47 × 54 BOB SIKAJOKI 759 1.04 0.324 22 107 -16 -17 -47 × 56 BOB KIINNGINJOKI 384 0.32 10 -17 -16 17 -17 14 16 16 16 16 16	39	BOS	NÄRPIÖNJOKI	16.8	0.88	0.019	18	110	5	17.5	0.54	0.002	11	64	5
44 BOB LAPUANJOKI 741 043 6.32 9 75.9 -0.18 0.481 -4 49 BOB PERHONJOKI 42.1 0.34 0.517 7 52.0 -0.65 0.002 -14 -26 8 51 BOB KALAJOKI 129 -1122 0.34 -10 36.9 -0.83 0.001 -17 -47 8 53 BOB KALAJOKI 129 -1122 0.297 10 36.9 -0.83 0.001 -17 -47 8 54 BOB FXHÁJOKI 129 -1122 0.297 10 68.6 -0.43 0.035 -16 -47 8 57 BOB SIIKAJOKI 127 0.94 0.34 20 0.03 -16 -15 9 -15 14 -16 17 -47 8 59 BOB VIIMINGINUKI 127 0.41 26 164 16 16<	42	BOB	KYRÖNJOKI	117	0.75	0.481	16			130	-0.48	0.554	- 10		
49 BOB PERHONJOKI 42.1 0.34 0.517 7 52.0 -0.65 0.002 -14 -26 × 51 BOB LESTIJOKI 33.4 -0.48 0.324 -10 36.9 -0.65 0.002 -14 -26 × 53 BOB KALAJOKI 129 -1.22 0.297 -26 48 -2.98 0.001 -17 -47 × 54 BOB PYHÄJOKI 55.5 0.297 10 68.6 -0.43 0.367 -9 -42 × × 57 BOB OULUOKI 129 0.481 20 68.6 -0.43 0.367 -9 -15 × × 59 BOB VIIMINGINJOKI 38.4 0.80 0.441 -0.16 0.16 -17 -47 × 60 BOB VIIMINGINJOKI 38.4 0.88 0.012 -16 -15 -15 -15 -15 -15	44	BOB	LAPUANJOKI	74.1	0.43	0.592	6			75.9	-0.18	0.481	- 4		
51 BOB LESTIJOKI 33.4 -0.48 0.324 -10 36.9 -0.83 0.001 -17 -47 × 53 BOB KALAJOKI 129 -11.22 0.297 -26 48 -2.98 0.000 -63 -42 × 54 BOB PYHÄJOKI 55.5 0.50 0.297 10 68.6 -0.43 0.03 -16 -15 × 57 BOB SIKAJOKI 75.9 1.04 0.324 22 0.07 -0.43 0.085 -9 -67 × -42 × 59 BOB VIIMINGINJOKI 38.4 0.83 0.43 12 107.4 -0.75 0.036 -16 0.15 16 -15 × 60 BOB KIIMINGINJOKI 38.4 0.86 0.47 × 47.9 -0.16 0.65 -15 × 61 BOB KUIMIN 127 0.42 5 20.4	49	BOB	PERHONJOKI	42.1	0.34	0.517	L			52.0	-0.65	0.002	- 14	- 26	7
53 BOB KALAJOKI 129 -1.22 0.297 -26 48 -2.98 0.000 -63 -42 x 54 BOB PYHÄJOKI 55.5 0.297 10 68.6 -0.43 0.035 -9 -15 x 57 BOB SIIKAJOKI 75.9 1.04 0.324 22 107.4 -0.75 0.030 -16 -15 x 59 BOB OULUJOKI 127 0.94 0.481 20 144 -0.01 0.844 0 60 BOB KIIMINGINJOKI 38.4 0.481 20 144 -0.01 0.84 -15 x 61 BOB ILJOKI 127 0.42 0.632 9 -0.16 0.554 -3 63 BOB KUIVAJOKI 16.8 0.23 0.324 5 142 -0.07 0.632 -16 64 BOB KUIVALOKI 16.8 0.322 0.	51	BOB	LESTIJOKI	33.4	-0.48	0.324	- 10			36.9	-0.83	0.001	- 17	- 47	7
54 BOB PYHÄJOKI 55.5 0.50 0.297 10 68.6 -0.43 0.085 -9 57 BOB SIIKAJOKI 75.9 1.04 0.324 22 107.4 -0.75 0.030 -16 -15 \$\$``` 59 BOB OULUJOKI 127 0.94 0.481 20 144 -0.01 0.844 0 -15<	53	BOB	KALAJOKI	129	- 1.22	0.297	- 26			48	- 2.98	0.000	- 63	- 42	7
57 BOB SIIKAJOKI 759 1.04 0.324 22 107.4 -0.75 0.030 -16 -15 \mathbf{\scrip} 59 BOB OULUJOKI 127 0.94 0.481 20 144 -0.01 0.844 0 60 BOB KIIMINGINJOKI 38.4 0.86 0.45 18 47 7 47.9 -0.16 0.844 0 61 BOB IIJOKI 127 0.42 0.632 9 142 -0.03 0.635 -16 63 BOB KUIVAJOKI 16.8 0.23 0.324 5 20.4 -0.03 0.632 -1 64 BOB KUIVAJOKI 16.8 0.23 0.324 5 20.4 -0.03 0.632 -1 65 BOB SIMOJOKI 347 -2.32 0.522 -6 9 -1 2 -2 1 67 BOB TONIONJOKI 244 2.52 </td <td>54</td> <td>BOB</td> <td>PYHÄJOKI</td> <td>55.5</td> <td>0.50</td> <td>0.297</td> <td>10</td> <td></td> <td></td> <td>68.6</td> <td>-0.43</td> <td>0.085</td> <td>- 9</td> <td></td> <td></td>	54	BOB	PYHÄJOKI	55.5	0.50	0.297	10			68.6	-0.43	0.085	- 9		
59 BOB OULUJOKI 127 0.94 0.481 20 144 -0.01 0.844 0 60 BOB KIIMINGINJOKI 38.4 0.86 0.045 18 47 7 47.9 -0.01 0.844 0 61 BOB IIJOKI 127 0.42 0.632 9 142 -0.016 0.554 -3 63 BOB KUIVAJOKI 16.8 0.23 0.324 5 20.4 -0.03 0.652 -16 64 BOB KUIVAJOKI 16.8 0.23 0.324 5 20.4 -0.03 0.652 -16 64 BOB SIMOJOKI 27.9 0.266 0.592 6 31.1 -0.07 0.446 -2 67 BOB TONIONIXI 244 2.52 0.49 380 -4.27 0.040 -90 -24 67 BOB TONIONIXI 244 2 -4.27 0.0	57	BOB	SIIKAJOKI	75.9	1.04	0.324	22			107.4	-0.75	0.030	- 16	- 15	7
60 BOB KIIMINGINJOKI 38.4 0.86 0.045 18 47 7 47.9 -0.16 0.554 -3 61 BOB IIJOKI 127 0.42 0.632 9 142 -0.16 0.554 -3 63 BOB KUIVAJOKI 16.8 0.23 0.324 5 20.4 -0.03 0.632 -16 64 BOB KINJOKI 27.9 0.26 0.592 6 31.1 -0.07 0.446 -2 65 BOB KEMIJOKI 347 -2.32 0.672 -49 38.0 -4.27 0.040 -90 -24 \state 67 BOB TORNIONI 244 2.52 0.481 53 -6.02 0.34 -24 \state	59	BOB	OULUJOKI	127	0.94	0.481	20			144	-0.01	0.844	0		
61 BOB IIJOKI 127 0.42 0.632 9 142 -0.78 0.085 -16 63 BOB KUIVAJOKI 16.8 0.23 0.324 5 20.4 -0.03 0.632 -1 64 BOB SIMOJOKI 27.9 0.26 0.592 6 31.1 -0.07 0.446 -2 65 BOB KEMIJOKI 347 -2.32 0.672 -49 380 -4.27 0.040 -90 -24 \text{A} 67 BOB TORNIONIOKI 244 2.52 0.481 53 270 -0.22 0.844 -5	60	BOB	KIIMINGINJOKI	38.4	0.86	0.045	18	47	~	47.9	-0.16	0.554	- 3		
63 BOB KUIVAJOKI 16.8 0.23 0.324 5 20.4 -0.03 0.632 -1 64 BOB SIMOJOKI 27.9 0.26 0.592 6 31.1 -0.07 0.446 -2 65 BOB KEMIJOKI 347 -2.32 0.672 -49 380 -4.27 0.040 -90 -24 \state 67 BOB TORNIONJOKI 244 2.52 0.481 53 270 -0.22 0.844 -5	61	BOB	IIJOKI	127	0.42	0.632	6			142	-0.78	0.085	- 16		
64 BOB SIMOJOKI 27.9 0.26 0.592 6 31.1 -0.07 0.446 -2 65 BOB KEMIJOKI 347 -2.32 0.672 -49 380 -4.27 0.040 -90 -24 \scilingtarrow 67 BOB TORNIONI 244 2.52 0.481 53 270 -0.22 0.844 -5	63	BOB	KUIVAJOKI	16.8	0.23	0.324	5			20.4	-0.03	0.632	- 1		
65 BOB KEMIJOKI 347 -2.32 0.672 -49 380 -4.27 0.040 -90 -24 \sciling 67 BOB TORNIONJOKI 244 2.52 0.481 53 270 -0.22 0.844 -5	64	BOB	SIMOJOKI	27.9	0.26	0.592	9			31.1	-0.07	0.446	- 2		
67 BOB TORNIONJOKI 244 2.52 0.481 53 270 – 0.22 0.844 – 5	65	BOB	KEMIJOKI	347	-2.32	0.672	- 49			380	- 4.27	0.040	- 90	- 24	7
	67	BOB	TORNIONJOKI	244	2.52	0.481	53			270	-0.22	0.844	- 5		

🖄 Springer

	Water		Forests		Cultivated	areas	Urban are	as	Peatlands		Ditched a	reas
	r	р	r	р	r	р	r	р	r	р	r	р
Concentratio	n											
TN	0.072	0.705	0.159	0.402	- 0.427	0.019	- 0.531	0.003	0.523	0.003	0.560	0.001
NO _{2,3} -N	0.065	0.733	0.034	0.857	0.084	0.661	- 0.035	0.853	- 0.039	0.837	0.155	0.414
TP	- 0.279	0.135	0.040	0.836	0.092	0.630	- 0.090	0.635	-0.002	0.991	-0.057	0.765
SS	-0.078	0.684	0.223	0.236	- 0.023	0.905	- 0.126	0.507	- 0.133	0.484	-0.222	0.238
Export												
TN	-0.087	0.647	0.090	0.636	- 0.475	0.008	- 0.542	0.002	0.642	0.000	0.727	0.000
TN norm.	0.229	0.224	0.071	0.708	- 0.176	0.353	- 0.229	0.223	0.097	0.611	0.105	0.582
TP	- 0.230	0.222	0.046	0.809	- 0.120	0.529	-0.272	0.146	0.258	0.169	0.239	0.203
TP norm.	- 0.242	0.198	- 0.177	0.349	0.468	0.009	0.217	0.248	- 0.333	0.073	- 0.366	0.047

Table 3 Pearson correlation coefficient (*r*) with *p* value between proportional (%) catchment characteristics and trends of riverine concentrations and export. Statistically significant *r* on 5% significant level in bold. degrees of freedom = 28.

Fig. 5 Flow and exports of TN and TP as monthly proportions (%) of annual totals in 1995 and 2016

TP export correlated positively with cultivated areas and negatively with ditched areas.

Seasonal shifts in nutrient export

The major part of nutrient export happens during spring thaw, which usually starts in April in southern Finland and in May–June in northern parts of the country. During the two past decades spring thaw has started earlier and its water volume has decreased, which on the other hand has been compensated by the increased flow during other months (Fig. 5). These changes, together with increased air temperature, have caused shifts in seasonal nutrient export: Nutrient export during spring thaw has decreased and increased during the winter months. The shifts were more evident in export, particularly in TP export, than the respective shifts in flow. One distinct feature in the nutrient export during the last two decades in the southern Finnish rivers, especially those flowing through intensively cultivated areas, was that in mild and rainy winters (e.g. 2015) more than half of the annual TP export occurred in December (from mainly unfrozen soils, Fig. S3). The increase in the respective TN export was much weaker.

DISCUSSION

Trends in water flow, riverine nutrient concentrations and export

Both seasonal and annual fluctuation in flow affects the amount of nutrient losses and subsequently the analysis of trends in nutrient losses (Stålnacke et al. 2014). The basic idea of flow normalisation is to detect trends unaffected by

© The Author(s) 2019 www.kva.se/en changes in flow, which enables, e.g., the evaluation of the effectiveness of water protection measures. In Finnish rivers, TP concentrations correlate more closely with flow than TN concentrations (TP median r 0.46, TN median r 0.32; Table S2), and therefore the variation in TP export caused by flow can be more effectively eliminated. Positive correlation between nutrient concentrations and flow is usually strong if most of the nutrient inputs originate from diffuse sources sensitive to changes in precipitation, such as cultivated areas and storm waters. In contrast, this correlation is weak or negative if a river receives a large amount of nutrient pollution originating from point sources (basins 14, 18, 21, 23, 35; Table S2). The correlation between nutrient concentrations and flow was low in river catchments with a high lake percentage due to the retention of nutrients in the lakes (basins 4, 14, 23, 35, 59; Tables S1, S2).

Concentrations of NH₄-N decreased in most of the rivers, indicating that the overall water quality has improved in Finnish rivers due to improved municipal and industrial wastewater treatment, including nitrification of ammonium. This was partly reflected in the increased NO_{2.3}-N concentrations since the NH₄-N concentrations decreased in five rivers simultaneously as the NO_{2 3}-N concentrations increased without any change in the TN concentration. However, since inorganic N (NH₄-N + NO_{2,3}-N) concentrations had a commonly downward trend in 1995-2016 (Table S3), we could attribute the increases in TN concentrations largely to increased organic N concentrations. This is also supported by the increasing TOC concentrations detected in many Finnish rivers (Räike et al. 2016), since organic N is usually bound to humic substances in boreal rivers.

The nutrient reduction targets are based on flow-normalised loads. It is important to notice that there was a clear difference between non-normalised and flow-normalised TP export trends: The non-normalised TP export did not show any decrease, whereas the flow-normalised TP export commonly decreased (Table 2). Thus, there is no indication that the actual (non-normalised) TP export from Finnish rivers would decrease in near the future and if the estimation of reduction targets would be based on the actual loads, Finland would face even more severe challenges in reaching the reduction targets. The discrepancy between non-normalised and flow-normalised TP export trends may be related to mild, rainy winters and shifts in the seasonality of flow (e.g. flow-normalisation does not take into account the effect of temperature on leaching of nutrients). It can also be partly rationalised by decreasing TP concentrations in several rivers: due to mitigation measures TP concentrations have decreased, but several factors connected to climate/weather (e.g. temperature and precipitation) have counteracted these mitigation measures targeted to reduce nutrient export into the Baltic Sea.

One distinct difference compared to the trends in the Finnish riverine phosphorus concentrations in 1975-2000 (Räike et al. 2003) was that the TP concentrations did not continue to decrease anymore in 1995-2016 in many rivers previously heavily polluted by point source loading. This indicates that the diffuse loading has not remarkably, if at all, decreased during the last 20 years since major reductions in the point source TP loading occurred before the turn of the century. Our results are in line with a recent study by Oelsner and Stets (2019) who found that decreasing TP yields in the conterminous US rivers were common among urban sites, but increases in TP loads could be detected in agricultural sites in 2002-2012. Also in southwestern European rivers decreases in P export were linked to decreased P loading from point sources, whereas N export did not show any clear trends (Romero et al. 2013).

Finnish agricultural water protection measures have especially been targeted to prevent the erosion of agricultural land, with the adoption of the EU's Agri-Environment Programme projected to decrease erosion by 20–40% (Valpasvuo-Jaatinen et al. 1997). If we evaluate the success of erosion control on the basis of the trends in TSS, the results are meagre: TSS export decreased only in one river draining the most intensively cultivated areas (data not shown).

Driving forces behind the changes

The nutrient loads originating from point sources have been substantially (TN 38% and TP 54%) reduced since 1995, and their proportion of the total inputs (point sources + riverine export) is nowadays less than 15%. Unlike in some other Baltic Sea countries, e.g. Russia, further declines in riverine nutrient export can still be achieved through modernisation of WWTPs (Knuuttila et al. 2017), but in Finland it is presently not possible to substantially increase nutrient removal from point sources. Therefore, the main question remains how to reduce diffuse loads, especially those originating from agriculture.

The average fertilisation rates in Finland have decreased from 40 to 8 kg P ha⁻¹ in 1995–2010 (Tattari et al. 2017), but the decrease in the TP concentrations or in the flownormalised export did not occur in the most intensive agricultural catchments in the ARC region. The relationships between the P supply and P concentration in the water column and ecological response are complex, and the capacity of riverine ecosystems to assimilate P is spatially and temporally very variable (Withers and Jarvie 2008). The time lag between the reduced fertilisation and decreased concentrations in water bodies is often fairly long, because accumulated P may continue to mobilise long after inputs decline (Powers et al. 2016). This accumulation is called legacy P (McCrackin et al. 2018).

Our results are in line with Ekholm et al. (2015) who found that the agricultural load of TN increased, especially in the rivers discharging into the BOB. One possible explanation is that even if the total area of croplands has been quite stable in Finland since 1990, the share of organic soils has increased by 42 900 ha in 1990–2016, predominantly in the catchment area of BOB. Animal production and farm enlargement are more common in the eastern and northern parts of the country where the occurrence of peat soils is also high (Kekkonen et al. 2019). Cleared new fields on organic soil types have been shown to have four times higher specific TN loading value than fields on mineral soil, while land clearing was not observed to have any effect on the TP load (Rankinen et al. 2016).

The TN export into BOB also increased in rivers with catchments not predominantly covered by cultivated areas and we could link the increases to ditching of peatlands. Peatlands cover one-third of the Finnish land area and about half of them have been ditched predominantly for forestry and to a lesser degree for peat mining purposes. The most intensive drained peatlands locate in the BOB catchment. Drainage activity peaked in 1970 and thereafter the emphasis turned to the maintenance of existing ditch networks (Joensuu et al. 2002). Tattari et al. (2017) found that the TN concentrations in most Finnish streams draining monitored forested areas increased in 1987-2011, whereas the TP concentrations decreased, probably due to the reduced forest TP fertilisation. In a recent study, Nieminen et al. (2017) concluded that the forestry-drained peatlands may contribute considerably more to nutrient load of watercourses than was previously estimated.

Algae need macronutrients in a certain ratio, and focusing on strictly P has led to excess N concentrations in relation to P in many Finnish freshwater systems. (The average TN:TP ratio in Finnish riverine export in 1975–1979 was 16.5, whereas in 2012–2016 it was 21.8.) The N:P ratio in freshwater bodies has also increased globally (Beusen et al. 2016). This may have partly increased TN export to the coastal waters as N in lakes is in excess in regard to algal production, and it is therefore retained to a lesser extent in the watercourses (Stålnacke et al. 1999). In Finland, increased TN export occurred, in the lake-rich catchment of the River Oulujoki, but also in lake-poor catchments, indicating that the reduced retention was not the major driver behind increases in the riverine TN export.

Nutrient export in a warming climate

Mild winters have become more common in Finland and the annual precipitation has increased in the last 100 years (Irannezhad et al. 2014). The annual mean temperature is projected to rise by 2–5 °C and the annual mean precipitation by 0–30% by the 2050s, relative to the baseline period 1961–1990. Also the intensity of rainfall events is likely to enhance the contribution of high flow events to the annual loads (Ockenden et al. 2016). The projected precipitation changes are largest in winter and smallest in summer (Jylhä et al. 2004).

Snow cover will diminish or almost vanish in southern Finland, and its duration will become shorter (Heino et al. 2008). The relative importance of the spring snowmelt in material export will decrease in wet and warm years (Mattsson et al. 2015). Based on our results, since the beginning of this century more than half of the annual TP export frequently happened within a couple of weeks in December-January in rivers flowing through agricultural areas in southern Finland (Fig. S3), and during those years the total annual export was above the long-term average. In the UK in two small catchments 80% of the TP export was detected to happen during the highest discharge events (Ockenden et al. 2016). Unfrozen soil, with thin or no snow cover, increases erosion and the leaching of nutrients to surface waters. Soil temperature is a major factor affecting organic matter decomposition, and climate change is assumed to accelerate N mineralisation and thus increase N concentrations and leaching in both agricultural and forested soils (Tattari et al. 2017).

If the tendency of mild winters continues, nutrient loads from agriculture are projected to increase in the future (Huttunen et al. 2015), assuming that the water protection measures cannot reduce the load from the current level.

Reaching the nutrient reduction targets and effectiveness of water protection measures

Finland reduced its annual TP inputs by only 87 t from 1995 to 2016 and there was no statistically significant decrease in the TN inputs; thus, there has not been much progress in reaching the original BSAP reduction targets (3030 t TN and 356 t TP). Finland's national nutrient reduction targets for coastal waters required by WFD's RBMP are higher for both TP and TN compared to the BSAP targets for the open sea area of the Baltic Sea. (The only exception compared with the BSAP is the P target for the GUF.) Even if all the existing measures included in WFD and the new measures listed in the MSFD programme were fully implemented, none of the sea regions will achieve RBMP reduction targets by 2020.

Agriculture was already identified as the largest source of TP and TN in surface waters over 30 years ago (Kauppi 1984), but we still but we still do not see any significant results achieved by water protection measures in reducing load originating from cultivated areas in Finland. The Finnish Agri-Environmental Programme (FAEP), launched in 1995, forms the most important policy instrument for controlling agricultural nutrient loading, but the lack of improvements in water quality despite a large number of water protection measures taken has been demonstrated also in earlier studies (e.g. Granlund et al. 2005). Currently, there is a strong national impetus in Finland to enhance the recycling of manure-based nutrients in the spirit of a circular economy, but so far this recycling has not been efficient due to technical, economic and regulatory hindrances. The annually produced manure TP would suffice to satisfy the needs of plants in the whole cultivated area of Finland without any need for commercial fertilisers, assuming that manure can be transported to the fields in need of P addition (Ylivainio et al. 2014).

Problems in reducing nutrient loading from areas impacted by intensive anthropogenic activities causing socalled effective biogeochemical stationarity have also been evident globally (Basu et al. 2010; McCrackin et al. 2014; Stålnacke et al. 2014; Van Meter et al. 2017). Presently P loads into the Baltic Sea are dominated by mobile legacy sources and the there is a need for a long-term perspective in eutrophication management (McCrackin et al. 2018).

CONCLUSIONS

Finnish point source TN and TP loads into the Baltic Sea have decreased substantially during the last two decades, but loads originating from diffuse sources remain a huge and possibly increasing challenge. There have been no signs of decrease in riverine TN export; on the contrary, it is on the rise in the BOB sub-region. The likely reasons for this trend are accelerated mineralisation of organic matter in a warming climate, forestry practices, changes in hydrology and increased cultivation on organic soils. The flow-normalised riverine P export decreased in many rivers, but the non-normalised export did not decrease in any of the rivers, indicating that the actual export has remained more or less at the same level since 1995. The discrepancy between the non-normalised and flow-normalised TP export was partly rationalised by decreasing TP concentrations in several rivers: Due to mitigation measures TP concentrations have decreased, but several factors connected to climate/weather (e.g. temperature and precipitation) have counteracted these mitigation measures targeted to reduce nutrient export into the Baltic Sea. In 2016 Finland was far from reaching the nutrient reduction targets of HELCOM's BSAP or the national WFD's RBMPs.

Acknowledgements Open access funding provided by Finnish Environment Institute (SYKE). We thank the Centres for Economic Development, Transport and the Environment for coordinating the sampling and analytical work. We are grateful to Petri Ekholm and two anonymous reviewers for their valuable comments of the manuscript.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

REFERENCES

- Basu, N.B., G. Destouni, J.W. Jawitz, S.E. Thompson, N.V. Loukinova, A. Darracq, S. Zanardo, M. Yaeger, et al. 2010. Nutrient loads exported from managed catchments reveal emergent biogeochemical stationarity. *Geophysical Research Letters* 37: L23404. https://doi.org/10.1029/2010g1045168.
- Beusen, A.H.W., A.F. Bouwman, L.P.H. Van Beek, J.M. Mogollón, and J.J. Middelburg. 2016. Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. *Biogeosciences* 13: 2441–2451. https://doi.org/10.5194/bg-13-2441-2016.
- Ekholm, P., K. Rankinen, H. Rita, A. Räike, H. Sjöblom, A. Raateland, L. Vesikko, J.E. Cano Bernal, et al. 2015. Phosphorus and nitrogen fluxes carried by 21 Finnish agricultural rivers in 1985–2006. *Environmental Monitoring and Assessment*. https:// doi.org/10.1007/s10661-015-4417-6.
- Granlund, K., A. Räike, P. Ekholm, K. Rankinen, and S. Rekolainen. 2005. Assessment of water protection targets for agricultural nutrient loading in Finland. *Journal of Hydrology* 304: 251–260. https://doi.org/10.1016/j.jhydrol.2004.07.033.
- Grimvall, A. 2004. FLOWNORM 2.0—A Visual Basic program for computing riverine loads of substances and extracting anthropogenic signals from time series of load data. User's Manual.
- Heino, R., H. Tuomenvirta, V.S. Vuglinsky, B.G. Gustafsson, H. Alexandersson. 2008. Past and current climate change. In Assessment of climate change for the Baltic Sea Basin. Regional climate studies, eds. H.-J. Bolle, M. Menenti, and I. Rasool, 35–131. Berlin: Springer.
- HELCOM. 2011. The Fifth Baltic Sea Pollution Load Compilation (PLC-5). Baltic Sea Environment Proceedings No. 128.
- HELCOM. 2018. State of the Baltic Sea Second HELCOM holistic assessment 2011–2016. Baltic Sea Environment Proceedings 155.
- Hirsch, R.M., J.R. Slack, and R.A. Smith. 1982. Techniques of trend analysis for monthly water quality data. *Water Resources Research* 18: 107–121.
- Hirsch, R.M., R.B. Alexander, and R.A. Smith. 1991. Selection of methods for the detection and estimation of trends in water quality. *Water Resources Research* 27: 803–813.
- Huttunen, I., H. Lehtonen, M. Huttunen, V. Piirainen, M. Korppoo, N. Veijalainen, M. Viitasalo, and B. Vehviläinen. 2015. Effects of climate change and agricultural adaptation on nutrient loading

from Finnish catchments to the Baltic Sea. *Science of the Total Environment* 529: 168–181. https://doi.org/10.1016/j.scitotenv. 2015.05.055.

- Irannezhad, M., H. Marttila, and B. Kløve. 2014. Long-term variations and trends in precipitation in Finland. *International Journal of Climatology* 34: 3139–3153. https://doi.org/10.1002/ joc.3902.
- Joensuu, S., E. Ahti, and M. Vuollekoski. 2002. Effects of ditch network maintenance on the chemistry of run-off water from peatland forests. *Scandinavian Journal of Forest Research* 17: 238–247. https://doi.org/10.1080/028275802753742909.
- Jylhä, K., H. Tuomenvirta, and K. Ruosteenoja. 2004. Climate change projections for Finland during the 21st century. *Boreal Environmental Research* 9: 127–152.
- Kauppi, L. 1984. Contribution of agricultural loading to the deterioration of surface waters in Finland. *Publications of the Water Research Institute* 57: 24–30.
- Kauppila, P., and J. Koskiaho. 2003. Evaluation of annual loads of nutrients and suspended solids in Baltic rivers. *Nordic Hydrol*ogy 34: 203–220.
- Kekkonen, H., H. Ojanen, M. Haakana, A. Latukka, and K. Regina. 2019. Mapping of cultivated organic soils for targeting greenhouse gas mitigation. *Carbon Management*. https://doi.org/10. 1080/17583004.2018.1557990.
- Knuuttila, S., A. Räike, P. Ekholm, and S. Kondratyev. 2017. Nutrient inputs into the Gulf of Finland: Trends and water protection targets. *Journal of Marine Systems* 171: 54–64. https://doi.org/ 10.1016/j.jmarsys.2016.09.008.
- Laamanen, M. 2016. Programme of measures for the development and implementation of the marine strategy in Finland 2016–2021. Reports of the Ministry of the Environment 5/2016 (in Finnish).
- Larsen, S.E., and L.M. Svendsen. 2013. Statistical aspects in relation to Baltic Sea pollution load compilation. Task 1 under HELCOM PLC-6. Technical Report from DCE. Danish Centre for Environment and Energy. No. 33. Aarhus University.
- Mattsson, T., P. Kortelainen, A. Räike, A. Lepistö, and D.N. Thomas. 2015. Spatial and temporal variability of organic C and N concentrations and export from 30 boreal rivers induced by land use and climate. *Science of the Total Environment* 508: 145–154. https://doi.org/10.1016/j.scitotenv.2014.11.091.
- McCrackin, M.L., J.A. Harrison, and J.E. Compton. 2014. Factors influencing export of dissolved inorganic nitrogen by major rivers: A new, seasonal, spatially explicit, global model. *Global Biogeochemical Cycles* 28: 269–285. https://doi.org/10.1002/ 2013gb004723.
- McCrackin, M. L., B. Muller-Karulis, B. Gustafsson, R.W. Howarth, C. Huborg, A. Svanbäck, and D.P. Swaney. 2018. A century of legacy phosphorus dynamics in a large drainage basin. *Global Biogeochemical Cycles*. https://doi.org/10.1029/2018GB005914.
- MSFD. 2008. Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy. Marine Strategy Framework Directive. Official Journal of the European Union.
- Nieminen, M., and T. Sallantaus., L. Ukonmaanaho, T.M. Nieminen, and S. Sarkkola. 2017. Nitrogen and phosphorus concentrations in discharge from drained peatland forests are increasing. *Science of the Total Environment* 609: 974–981. https://doi. org/10.1016/j.scitotenv.2017.07.210.
- Ockenden, M.C., C.E. Deasy, C.M.H. Benskin, K.J. Beven, S. Burke, A.L. Collins, R. Evans, P.D. Falloon, et al. 2016. Changing climate and nutrient transfers: Evidence from high temporal resolution concentration-flow dynamics in headwater catchments. *Science of the Total Environment* 549: 325–339. https:// doi.org/10.1016/j.scitotenv.2015.12.086.

- Oelsner, G.P., and E.G. Stets. 2019. Science of the Total Environment Recent trends in nutrient and sediment loading to coastal areas of the conterminous U. S.: Insights and global context. *Science of the Total Environment* 654: 1225–1240. https://doi.org/10.1016/ j.scitotenv.2018.10.437.
- Pedde, S., C. Kroeze, E. Mayorga, and S.P. Seitzinger. 2017. Modeling sources of nutrients in rivers draining into the Bay of Bengal — a scenario analysis. *Regional Environmental Change* 17: 2495–2506. https://doi.org/10.1007/s10113-017-1176-7.
- Powers, S.M., T.W. Bruulsema, T.P. Burt, N.I. Chan, J.J. Elser, P.M. Haygarth, N.J.K. Howden, H.P. Jarvie, S., et al. 2016. Long-term accumulation and transport of anthropogenic phosphorus in three river basins. *Nature Geoscience* 9 (5): 353–356.
- Räike, A., P. Kortelainen, T. Mattsson, and D.N. Thomas. 2012. 36 year trends in dissolved organic carbon export from Finnish rivers to the Baltic Sea. *Science of the Total Environment* 435–436: 188–201. https://doi.org/10.1016/j.scitotenv.2012.06. 111.
- Räike, A., P. Kortelainen, T. Mattsson, and D.N. Thomas. 2016. Long-term trends (1975–2014) in the concentrations and export of carbon from Finnish rivers to the Baltic Sea: organic and inorganic components compared. *Aquatic Sciences* 78 (3): 505–523. https://doi.org/10.1007/s00027-015-0451-2.
- Räike, A., O.P. Pietiläinen, S. Rekolainen, P. Kauppila, H. Pitkänen, J. Niemi, A. Raateland, and J. Vuorenmaa. 2003. Trends of phosphorus, nitrogen and chlorophyll a concentrations in Finnish rivers and lakes in 1975–2000. *Science of the Total Environment* 310: 47–59.
- Rankinen, K., H. Keinänen, and J.E. Cano Bernal. 2016. Influence of climate and land use changes on nutrient fluxes from Finnish rivers to the Baltic Sea. Agriculture, Ecosystems & Environment 216: 100–115. https://doi.org/10.1016/j.agee.2015.09.010.
- Romero, E., J. Garnier, L. Lassaletta, G. Billen, R. Le Gendre, G. Philippe, and P. Cugier. 2013. Large-scale patterns of river inputs in southwestern Europe: seasonal and interannual variations and potential eutrophication effects at the coastal zone. *Biogeochemistry* 113: 481–505. https://doi.org/10.1007/s10533-012-9778-0.
- Seitzinger, S.P., E. Mayorga, A.F. Bouwman, C. Kroeze, A.H.W. Beusen, G. Billen, G. Van Drecht, E. Duomont, et al. 2010. Global river nutrient export: A scenario analysis of past and future trends. *Global Biogeochemical Cycles*. https://doi.org/10. 1029/2009GB003587.
- Stålnacke, P., P.A. Aakerøy, G. Blicher-Mathiesen, A. Iital, V. Jansons, J. Koskiaho, K. Kyllmar, A. Lagzdinset, et al. 2014. Temporal trends in nitrogen concentrations and losses from agricultural catchments in the Nordic and Baltic countries. *Agriculture, Ecosystems & Environment* 198: 94–103.
- Stålnacke, P., A. Grimvall, K. Sundblad, and A. Wilander. 1999. Trends in nitrogen transport in Swedish rivers. *Environmental Monitoring and Assessment* 59 (1): 47–72. https://doi.org/10. 1023/A:1006007711735.
- Tamminen, T., and T. Andersen. 2007. Seasonal phytoplankton nutrient limitation patterns as revealed by bioassays over Baltic Sea gradients of salinity and eutrophication. *Marine Ecology Progress Series* 340 (1971): 121–138. https://doi.org/10.3354/ meps340121.
- Tattari, S., J. Koskiaho, M. Kosunen, A. Lepistö, J. Linjama, and M. Puustinen. 2017. Nutrient loads from agricultural and forested areas in Finland from 1981 up to 2010—can the efficiency of undertaken water protection measures seen? *Environmental Monitoring and Assessment* 189: 95. https://doi.org/10.1007/ s10661-017-5791-z.
- Valpasvuo-Jaatinen, P., S. Rekolainen, and H. Latostenmaa. 1997. Finnish agriculture and its sustainability: Environmental impacts. *Ambio* 26: 448–455.

- Van Der Struijk, L.F., and C. Kroeze. 2010. Future trends in nutrient export to the coastal waters of South America: Implications for occurrence of eutrophication. *Global Biogeochemical Cycles*. https://doi.org/10.1029/2009GB003572.
- Van Meter, K.J., N.B. Basu, and P. Van Cappellen. 2017. Two centuries of nitrogen dynamics: Legacy sources and sinks in the Mississippi and Susquehanna River Basins. *Global Biogeochemical Cycles*. https://doi.org/10.1002/2016gb005498.
- WFD. 2000. Water Framework Directive. Directive 2000/60/EC of the European Parliament and the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of European Communities: L 327: 1–73.
- Withers, P.J.A., and H.P. Jarvie. 2008. Delivery and cycling of phosphorus in rivers: A review. *Science of the Total Environment* 400 (1–3): 379–395. https://doi.org/10.1016/j.scitotenv. 2008.08.002.
- Wong, W.H., J.J. Dudula, T. Beaudoin, K. Groff, W. Kimball, and J. Swigor. 2018. Declining ambient water phosphorus concentrations in Massachusetts' rivers from 1999 to 2013: Environmental protection works. *Water Research*. https://doi.org/10.1016/j. watres.2018.03.053.
- Yasin, J.A., C. Kroeze, and E. Mayorga. 2010. Nutrients export by rivers to the coastal waters of Africa: Past and future trends. *Global Biogeochemical Cycles*. https://doi.org/10.1029/ 2009GB003568.
- Ylivainio, K., M. Sarvi, R. Lemola, R. Uusitalo, and E. Turtola. 2014. Regional P stocks in soil and in animal manure as compared to P requirement of plants in Finland. MTT report 124.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

AUTHOR BIOGRAPHIES

Antti Räike (\boxtimes) is a Senior Scientist (M.Sc.) at the Finnish Environment Institute. His main interest is in the loading of the Baltic Sea and biogeochemical material cycles.

Address: Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland.

e-mail: antti.raike@ymparisto.fi

Antti Taskinen is a Hydrologist (Ph.D.) at the Finnish Environment Institute. He has done hydrological and water quality modelling using both physical and statistical methods.

Address: Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland.

e-mail: antti.taskinen@ymparisto.fi

Seppo Knuuttila is a Senior Research Scientist (M.Sc.) at the Finnish Environment Institute. His areas of specialization include evaluation of nutrient loads from point and non-point sources, the impact of nutrient loading on the Baltic Sea, assessment of the environment protection measures and changes in coastal water quality due to the excess anthropogenic nutrient loading.

Address: Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland.

e-mail: seppo.knuuttila@ymparisto.fi