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Hypothesis Tests for Principal Component
Analysis When Variables are Standardized

Johannes Forkman , Julie Josse, and Hans-Peter Piepho

In principal component analysis (PCA), the first few principal components possibly
reveal interesting systematic patterns in the data, whereas the last may reflect random
noise. The researcher may wonder how many principal components are statistically
significant. Many methods have been proposed for determining how many principal
components to retain in the model, but most of these assume non-standardized data.
In agricultural, biological and environmental applications, however, standardization is
often required. This article proposes parametric bootstrap methods for hypothesis testing
of principal components when variables are standardized. Unlike previously proposed
methods, the proposed parametric bootstrap methods do not rely on any asymptotic
results requiring large dimensions. In a simulation study, the proposed parametric boot-
strap methods for standardized data were compared with parallel analysis for PCA and
methods using the Tracy–Widom distribution. Parallel analysis performed well when
testing the first principal component, but wasmuch too conservative when testing higher-
order principal components not reflecting random noise. When variables are standard-
ized, the Tracy–Widom distribution may not approximate the distribution of the largest
eigenvalue. The proposed parametric bootstrap methods maintained the level of sig-
nificance approximately and were up to twice as powerful as the methods using the
Tracy–Widom distribution. SAS and R computer code is provided for the recommended
methods.

Supplementary materials accompanying this paper appear online
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1. INTRODUCTION

Principal component analysis (PCA) is used extensively inmany areas of research, includ-
ing agriculture, biology and environmental sciences. A question of crucial importance for
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interpretation of results is how many principal components should be utilized. The first
components are often interesting, since these typically account for a large proportion of the
total variation, but the last components are usually discarded, since these may reflect noise
rather than systematic pattern.

Several procedures (Jolliffe 2002) have been proposed for determining how many prin-
cipal components to retain: the popular Kaiser (1960) rule and the scree plot (Cattell 1966),
resampling methods (Peres-Neto et al. 2005), cross-validation methods (Bro et al. 2008;
Josse and Husson 2011), Bayesian procedures (Hoff 2007; Perez-Elizalde et al. 2012;
Sobczyk et al. 2017) and statistical tests (Muirhead 1982, p. 409; Johnstone 2001; Choi
et al. 2017). However, these statistical tests assume that variables are not standardized
before carrying out the PCA. This is in stark contrast to the very common practice and need
(Yeater et al. 2015) of standardizing variables in order to remove scale differences between
them. The main purpose of this article, therefore, is to fill this yawning gap and provide a
solution on how to statistically test significance of principal components when variables are
standardized. Parametric bootstrap tests will be proposed for PCA of standardized data.

In agriculture, PCA is a main tool for analysis of genotype-by-environment interaction.
When the dataset is an n× p matrix of column-centred observations from n genotypes grown
in p environments, PCA is equivalent to fitting the genotype main effects and genotype-by-
environment interaction effects (GGE) model (Yan and Kang 2003), which is also known
as the sites regression model (Crossa et al. 2004). In microarray datasets, with n genes and
p treatments, the same model is known as the treatment regression model (Crossa et al.
2005). If also rows are centred before conducting the PCA, then the model is the additive
main effects and multiplicative interaction (AMMI) model (Gauch 1992). The question of
how many principal components to retain in the model is a key issue in GGE and AMMI
analysis (Yang et al. 2009).

A variable is standardized to zero mean and unit variance in three steps: (1) Based
on the n observations of the variable, compute the sample mean and the sample standard
deviation. (2) Subtract the sample mean from each observation. (3) Divide these mean-
centred observations with the sample standard deviation. This standardization procedure
is common practice in PCA (Jolliffe and Cadima 2016). For some examples, see Hoyos-
Villegas et al. (2016), Kollah et al. (2017) and Yan and Frgeau-Reid (2018).

The eigenvalues, λ̂k , k = 1, 2, . . ., of the sample covariance or correlation matrix reflect
the relative importance of the principal components. In the theoretical case that all obser-
vations are independent and standard normally distributed, the distribution of the largest
eigenvalue of the sample covariance matrix can be approximated by a Tracy–Widom distri-
bution (Johnstone 2001). As an example, the dashed curve in Fig. 1 illustrates the distribution
of the largest eigenvalue, λ̂1, when a 30× 20 matrix of independent standard normally dis-
tributed observations were randomly generated 100,000 times. The solid curve is the density
of the Tracy–Widom distribution, when scaled as proposed by Johnstone (2007). Since the
solid curve approximates the dashed, the Tracy–Widom distribution can indeed be used for
inference about the first principal component when all 600 observations are independent
standard normally distributed. However, if each of the 20 columns of random standard nor-
mally distributed observations is initially standardized to zero mean and unit variance, then
the distribution of the first eigenvalue becomes much different, as shown by the dotted curve
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Figure 1. A matrix with 600 standard normally distributed values arranged in n = 30 rows and p = 20 columns
was randomly generated 100,000 times. The figure shows the distribution of the largest eigenvalue (dashed curve),
the distribution of the largest eigenvalue computed after initial standardization of each column to zero mean and
unit standard deviation (dotted curve) and the Johnstone (2007) scaled Tracy–Widom distribution (solid curve).

in Fig. 1. Clearly, different methods for inference on principal components may be needed,
depending on whether columns are standardized or not.

When variables express different quantities (e.g. height and weight), an argument for
using scaled data is that without scaling, results will depend on the choice of unit of mea-
surement (e.g. whether height is measured in metres or centimetres). Underhill (1990) pro-
posed scaling variables by dividing with means instead of standard deviations. This method
also makes results independent of the choice of unit. As an example of the usefulness of
such scaling, Underhill (1990) analysed a matrix with data on areas grown with different
vegetable crops in the UK between the years 1968 and 1987. Scaling usingmeans was useful
for study of the relative variability of the areas over time, considering that some crops, e.g.
peas and cabbage, were grown on much larger areas than other crops, such as celery and
rhubarb. The present article considers both these options of scaling, i.e. scaling using means
or standard deviations, as well as the option of using non-scaled data. Models are proposed
for each of the three options, and it is shown how principal components can be tested in
these models.

We focus on small datasets, which are still commonly encountered in applications, espe-
cially in analysis of genotype-by-environment interaction. When data are non-scaled, the
simple parametric bootstrap method (Forkman and Piepho 2014) can be used for testing
principal components in PCA (Forkman 2015), but, as Sect. 5 will show, this method does
not work well when variables have been scaled to unit variance.

Franklin et al. (1995) and Peres-Neto et al. (2005) recommended parallel analysis (Horn
1965) for selecting the number of components in PCA. According to this method, simulated
random matrices of normally distributed values are subjected to PCA. Glorfeld (1995)
proposed using upper percentiles, instead of means, of simulated eigenvalues, in order to
decrease Type I error. Parallel analysis is legitimate for evaluation of the first principal
component, but questionable for evaluating remaining principal components (Crawford
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et al. 2010). The present article builds on the basic idea of parallel analysis, but suggests
that the reference distribution needs to be simulated differently, depending on the principal
component to be tested and whether variables are standardized or not.

Factor analysis uses a model with random factors (Johnson and Wichern 2007), whereas
our proposed models consist of a fixed systematic part and a single random normally dis-
tributed error part. Several methods exist for determining the number of components in
factor analysis (Bai and Ng 2002; Kritchman and Nadler 2008; Onatski 2009; Owen and
Wang 2016; Passimier et al. 2017). The “revised parallel analysis” (Green et al. 2012) and
the “comparison data” method (Ruscio and Roche 2012) use resampling and are related to
our work.

Section 2 presents three motivating examples. Section 3 specifies models and proposes
bootstrap methods. Section 4 describes other methods for hypothesis testing: the parallel
method for PCA and methods using the Tracy–Widom distribution. Section 5 presents a
simulation study comparing the methods. Section 6 analyses the three examples using the
proposed bootstrap methods. Section 7 discusses the results. Computer code is provided in
Supplementary materials.

2. MOTIVATING EXAMPLES

This article uses three examples:

(a) The peanut dataset consists of observations of yield from n = 10 peanut genotypes
grown in p = 15 environments (E01–E15). The dataset, kang.peanut, is included in
the R package agridat and published in Kang et al. (2004).

(b) The Bumpus (1899) female sparrows dataset contains observations of p = 5 body
measurements on n = 49 female sparrows. The variables are L1: total length, L2:
alar extent, L3: length of beak and head, L4: length of humerus and L5: length of
keel of sternum. Manly (1986) includes the dataset, but it is also published on the
Internet (North Dakota State University 1997).

(c) The fish dataset comprises mass fractions of p = 7 chemicals (C1–C7) measured
in n = 10 samples of fish collected in the Bay of Seine (Galgani et al. 1991). Zitko
(1994) used this dataset for promoting an increased use of PCA for evaluation of
environmental data. The chemicals are C1: PCB, C2: DDE, C3: DDD, C4: DDT, C5:
α-HCH, C6: γ -HCH and C7: PAH.

Table 1 lists means, standard deviations and coefficients of variation for the variables of
the three datasets.

The peanut dataset is a typical dataset for GGE analysis. Figure 2a, b shows biplots when
variables, i.e. environments, are scaled to zero means and unit variance, as recommended
by Yan and Kang (2003, p. 56). Figure 2a shows the first two principal components (PC1
and PC2), and Fig. 2b shows the third and fourth principal components (PC3 and PC4).
Commonly in scientific reports, only the first two principal components are presented, but
here we display also the third and the fourth.
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Table 1. Means, standard deviations (SD) and coefficients of variation (CV) for the variables of the three example
datasets.

Variable Mean SD CV

(a) The peanut dataset
E01 1.10 0.20 0.186
E02 1.65 0.78 0.475
E03 2.36 0.17 0.070
E04 2.05 0.32 0.157
E05 1.43 0.37 0.257
E06 2.80 0.30 0.105
E07 2.93 0.24 0.082
E08 1.91 0.53 0.278
E09 2.90 0.41 0.142
E10 3.98 0.43 0.108
E11 1.99 0.26 0.133
E12 4.80 0.60 0.126
E13 1.68 0.44 0.260
E14 4.17 0.33 0.079
E15 3.06 0.52 0.171
(b) The sparrows dataset
L1 158 3.65 0.023
L2 241 5.07 0.021
L3 31.5 0.79 0.025
L4 18.5 0.56 0.031
L5 20.8 0.99 0.048
(c) The fish dataset
C1 5110 3595 0.704
C2 69.80 46.74 0.670
C3 22.40 10.09 0.450
C4 30.86 25.28 0.819
C5 1.690 0.624 0.369
C6 13.47 5.20 0.386
C7 14.19 13.34 0.940

Analysis of genotype-by-environment interaction aims to answermany questions, among
them which genotype performs the best, i.e. gives the highest yield in each environment
(Yan and Tinker 2006; Josse et al. 2014). The answer to this question may depend on how
many principal components the researcher chooses to retain in the model. In the peanut
example, this choice of the number of principal components is particularly important for
the conclusions for environment E09. Figure 2a suggests that genotype G03 (manf393)
is the top performing genotype for environment E09. However, if only the first principal
component is considered important, then genotype G06 (mf480), which is the genotype
located furthest to the left on the PC1 axis of Fig. 2a, is estimated to be the best genotype
for environment E09. The decisive factor is whether the variation along the PC2 axis should
be considered as random or not. In the extreme case, when the biplot just shows random
noise, there are no differences at all between the genotypes.

If three principal components are retained, then genotype G08 is estimated to be the best
choice for environment E09. This is a consequence of genotype G08 (mf485) and environ-
ment E09 both having large negative scores, whereas genotypes G03 and G06 have positive
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Figure 2. Biplots showing a the first and second , and b the third and fourth principal components of the peanut
dataset.Arrows indicate environments andopen circles genotypes.Before analysis, environmentswere standardized
to zero mean and unit variance.

scores, on the third principal component axis (Fig. 2b). If four components are retained, then
genotype G10 (mf489) can be recommended for environment E09. The problem studied in
this article is how to determine the number of significant principal components when the
data are standardized.
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3. MODELS AND BOOTSTRAP METHODS

3.1. MODELS

Assume n observations have been made on p variables, and let Y denote the n × p
matrix of observations. Let yi j denote the observation in the i th row and j th column of
Y, i = 1, 2, . . . , n, j = 1, 2, . . . , p. Before PCA, column sample means are subtracted
from all observations. The PCA could be performed directly on these mean-centred data
or after division with column sample means or after division with column sample standard
deviations. Let X denote the n × p matrix used for PCA, i.e.

X =
{

yi j −
n∑

i=1

yi j/n

}
, (1)

X =
{ yi j − ∑

i yi j/n∑
i yi j/n

}
, (2)

X =
{ (yi j − ∑

i yi j/n)

s j

}
, (3)

for non-scaled data, data scaled by means and data scaled by standard deviations, respec-
tively, where s j = (

∑
i (yi j −∑

i yi j/n)2/(n −1))1/2. The eigenvalues ofXTX/(n −1) are
λ̂k = τ̂ 2k /(n −1), for k = 1, 2, . . ., M , where τ̂ 2k is the square of the kth singular value ofX.

We propose using the models

Y = A + �m + E, (4)

Y = A + (�m + E)�, (5)

Y = A + (�m + E)�, (6)

for non-scaled data, data scaled by means and data scaled by standard deviations, respec-
tively. In these models,A = 1nμT is a matrix of intercepts for the p variables,μT = (μ1, μ2,
. . ., μp), E is an n × p matrix of independent N(0, σ 2) distributed errors, � is a diagonal
matrix with elements μ1, μ2, . . ., μp in the diagonal, and � is a diagonal matrix with p
unknown standard deviations in the diagonal. The matrix �m can, through singular value
decomposition, be written as �m = USVT, where U is a p × m matrix of left singular
vectors, V is an n × m matrix of right singular vectors and S is a diagonal matrix of positive
singular values τ1, τ2, . . . , τm , sorted in descending order. The rank of �m +E is M , where
M = min(n − 1, p), but the rank of �m is m, where m < M . We are interested in the
unknown parameter m, i.e. the true order of the model.

3.2. NULL HYPOTHESES AND TEST STATISTIC

The null hypotheses are H0 : m = K , where K ∈ {0, 1, . . . , M −2}, with corresponding
alternative hypotheses H1 : m > K , where K is the candidate order of the model. Forkman
and Piepho (2014) proposed testing these null hypotheses sequentially, starting with K = 0
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and continuing with K = 1, 2, . . ., until a non-significant result is obtained or K = M − 2.
As long as K < M − 2, the statistic

T = τ̂ 2K+1∑M
k=K+1 τ̂ 2k

(7)

can be used as a test statistic for the null hypothesis H0 : m = K , as proposed byYochmowitz
and Cornell (1978). The sequential testing procedure ensures the level of significance con-
ditionally on the null model and protects against overfitting (Forkman and Piepho 2014).

3.3. BOOTSTRAP METHODS

For non-scaled data, the simple parametric bootstrapmethod (Forkman and Piepho 2014)
can be used for testing H0 : m = K :

For b = 1, 2, . . ., B, where B is large, do the following:

1. Generate an (n − 1 − K ) × (p − K ) matrix Zb = {zi j }, where zi j are independent
N(0, 1).

2. Compute the M − K singular values t1, t2, . . ., tM−K of Zb, and let Tb =
t21 /

∑M−K
k=1 t2k .

The estimate of the p value is the frequency of Tb larger than the observed test statistic T .
The main feature of the simple parametric bootstrap method is that the dimensions of the

matrix of randomstandardnormally distributedvalues are notn×p, but (n−1−K )×(p−K ).
Thus, the numbers of rows and columns are reduced by the number of principal components
assumed under the null hypothesis. In addition, the number of rows is reduced by 1, since the
columns ofX are centred around zero, which implies a linear relationship between the rows.
The idea of reducing the dimensions of the matrix originates fromMarasinghe (1985), who
used an approximation for the distribution of eigenvalues provided by Muirhead (1978).

The simple parametric bootstrap method is parametric, because it assumes a model with
a normal distribution of errors, and simple since it is based on sampling of random standard
normally distributed observations. Thus, no parameters must be estimated. In this regard,
the simple parametric bootstrap method differs from the full parametric bootstrap methods
that are now proposed for data scaled by means and data scaled by standard deviations.

Let μ̂ = (
∑n

i=1 yi1/n,
∑n

i=1 yi2/n, . . .,
∑n

i=1 yip/n), �̂ = diag(μ̂), and Â = 1nμ̂
T.

For K = 0, let �̂K = 0 (i.e. an n × p matrix of zeros). For K ∈ {1, 2, . . . , M − 2}, let
�̂K denote the singular value decomposition of X, as specified in Eqs. (2) or (3), with the
first K terms retained. Let σ̂ 2

K = ∑M
k=K+1 τ̂ 2k /((n − 1 − K )(p − K )), where τ̂k is the kth

singular value of X.
For b = 1, 2, . . ., B, where B is large, do the following:

1. Generate an n × p matrix Eb, where the elements are independent N(0, σ̂ 2
K ). If data

are scaled by means, let Yb = Â + (�̂K + Eb)�̂. If data are scaled by standard
deviations, let Yb = �̂K + Eb.
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2. Let ybi j denote the element in the i th row and j th column of Yb. If data are scaled
by means, let Xb = {(ybi j − ∑

i ybi j/n)/
∑

i ybi j/n)}. If data are scaled by stan-
dard deviations, let Xb = {(ybi j − ∑

i ybi j/n)/sbj }, where sbj = (
∑

i (ybi j −∑
i ybi j/n)2/(n − 1))1/2.

3. Compute the M singular values t1, t2, . . ., tM ofXb, and let Tb = t2K+1/
∑M

k=K+1 t2k .

The estimate of the p value is the frequency of Tb larger than the observed test statistic T .
For data scaled by standard deviations, estimates of A and � were not used in Step 1.

The obvious parametric bootstrap method would have been to define Yb as Â + (�̂K +
Eb)�̂, where �̂ is a diagonal matrix with diagonal elements s1, s2, . . . , sp. However, the
standardization ofYb in Step 2 gives the samematrixXb regardless of whetherYb is defined
as �̂K + Eb or Â + (�̂K + Eb)�̂. Thus, Â and �̂ were not needed in Step 1. A similar
shortcut was not possible for data scaled by means.

4. OTHER METHODS FOR ANALYSIS

4.1. THE PARALLEL METHOD

The simulation study compares the parametric bootstrap methods with the parallel
method, which is used for testing principal components when data are scaled by standard
deviations (Glorfeld 1995). The parallel method can be performed like this:

For b = 1, 2, . . ., B, where B is large, do the following:

1. Generate an n × p matrix Zb = {zi j }, where zi j are independent N(0, 1).

2. Standardize the columns of Zb using Eq. (3), with zi j substituted for yi j . Let Xb

denote the resulting standardized matrix.

3. Compute the (K + 1)th singular value tK+1 of Xb.

For the null hypothesis H0 : m = K , the estimate of the p value is the frequency of tK+1

larger than the observed (K + 1)th singular value of X, where X is computed using Eq. (3).
The main difference between the parallel method and the simple parametric bootstrap

method is that with the former, the dimensions of the random matrices are n × p, whereas
with the latter, the dimensions are (n−1−K )×(p−K ). The twomethods also use different
test statistics. Furthermore, using the parallel method, the columns of the random matrices
are centred and scaled. This is not done with the simple parametric bootstrap method. The
parallel method is equivalent to the full parametric bootstrap method for data scaled by
standard deviations when testing the significance of the first principal component, i.e. for
the hypothesis H0 : m = 0. These two methods differ when testing H0 : m = K , where
K > 0.
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4.2. METHODS USING THE TRACY–WIDOM DISTRIBUTION

Johnstone (2001) studied the distribution of the square of the largest singular value,
τ̂ 21 , of an n × p matrix when all elements of the matrix are standard normally distributed.
Specifically, Johnstone (2001) showed that V , defined as

V = (τ̂ 21 − μnp)/σnp , (8)

approximately has a Tracy–Widom distribution of order 1, where

μnp = (
√

n − 1 + √
p) 2, (9)

σnp = (
√

n − 1 + √
p)

(
1√

n − 1
+ 1√

p

)1/3

. (10)

Patterson et al. (2006) recommended V for inference on principal components in genetic
data. However, since the theorem of this approximation does not apply when PCA is per-
formed on a correlationmatrix, Johnstone (2001) also proposed an “ad hoc”method intended
for use in that case, i.e. when columns have been standardized to zero mean and unit vari-
ance. According to this ad hoc method, the largest singular value, l1, of XR/(n − 1) should
be computed, where X is the standardized matrix as specified in Eq. (3) and R is a diagonal
matrix with diagonal elements r j that are positive roots of independent χ2(n) distributed
variables, j = 1, 2, . . . , p. Approximately, W , defined as

W = (l21 − μnp)/σnp , (11)

follows a Tracy–Widom distribution of order 1.
Later, Johnstone (2007) proposed using

μnp = (√
n − 1/2 + √

p − 1/2
)2

, (12)

σnp = (√
n − 1/2 + √

p − 1/2
)( 1√

n − 1/2
+ 1√

p − 1/2

)1/3

(13)

in place of Eqs. (9) and (10). Thus, either V or W may be computed, using either the
Johnstone (2001) Eqs. (9) and (10) or the Johnstone (2007) Eqs. (12) and (13). In the
following, these four methods will, with obvious notation, be denoted V -2001, V -2007,
W -2001 and W -2007.

In summary, when Model 6 is used and columns are standardized using Eq. (3), the null
hypothesis H0 : m = 0, which is used for checking the significance of the first principal
component, is readily testable using theTracy–Widomdistribution. The distribution function
of the Tracy–Widom distribution is available in the RMTstat package of R.

5. SIMULATION STUDY

Method performance was investigated through simulation based on the three examples
of Sect. 2.
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For study of Type I error rates, data were repeatedly generated using Models (4), (5)
and (6), for non-scaled data, data scaled by means and data scaled by standard deviations,
respectively. In these models, �m was set equal to �̂K as defined in Sect. 3.3, but with X
defined as in either Eqs. (1), (2) or (3), depending on the model. Note that K equals m under
the null hypothesis. ThematricesA,�, and� were set equal to Â, �̂ and �̂, respectively, and
the variance σ 2, which is inlcuded in E, was set equal to σ̂ 2

K , all defined as in Sect. 3.3. With
these settings, 100,000 datasets were randomly generated for each example, model, method
and investigated value of K . The null hypotheses H0 : m = K , K = 0, 1, . . . , M − 2,
were tested at significance level 0.05. For resampling methods, B = 1000 was used. Since
100,000 datasets were simulated, an approximate 0.95 tolerance interval for probability
0.05 can be computed as 0.05 ± 1.96(0.05(1 − 0.05)/100,000)1/2 = 0.05 ± 0.00135.

For studies of power, data were repeatedly generated using the model

Y = A + (ψ�1 + E)� , (14)

which apart from ψ is the same as Model (6) with m = 1. The additional parameter ψ was
varied from 0.2 to 1.0 in steps of 0.1. Therefore, power was investigated at different strengths
of the first principal component. The other parameters ofModel (14) were set equal to values
exactly as described for Type I error (Model 6, m = 1). For each example (peanut, sparrows
and fish) and value of ψ , 10,000 datasets were generated. For each generated dataset, the
null hypothesis H0 : m = 0 was tested using the Tracy–Widom methods W-2001 and
W-2007, and the full parametric bootstrap method for data scaled by standard deviations.
Only m = 0 was tested, since the methods W-2001 and W-2007 were only defined for this
hypothesis. The full parametric bootstrap method was conducted with B = 1000 bootstrap
samples.

5.1. RESULTS OF THE SIMULATION STUDY

Table 2 presents observed Type I error rates for bootstrap and parallel methods. For non-
scaled observations, the simple parametric bootstrap method mostly showed frequencies
of Type I error close the nominal level 0.05. However, with the parameter settings of the
peanut dataset, the observed frequency of Type I error was clearly smaller than 0.05 for
K = 3, 4, . . . , 7. The simple parametric bootstrap method is based on an approximation of
the distribution of the first K squared singular values (Muirhead 1978). This approximation
requires that the null hypothesis is correct and the first K singular values are large. In
practice, using the simple parametric bootstrap method, hypotheses should always be tested
sequentially. As will be seen in Sect. 6, for the non-scaled peanut dataset, a non-significant
result was obtained at K = 2. Since, due to a non-significant result, the hypothesis testing
procedure is terminated at K = 2, the inferior performance with regard to Type I error
for K = 3, 4, . . . , 7 is of less concern. For the peanut and sparrows datasets, the simple
parametric bootstrapmethod usually worked well with regard to Type I error rates also when
observations were scaled by means. For the fish dataset, however, this was not the case. The
simulation study importantly revealed that the simple parametric bootstrap method does not
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Table 2. Results of the simulation study of Type I error rates, α̂, for the simple parametric bootstrap method, the
full parametric bootstrap method and the parallel method.

K Simple parametric bootstrap Full parametric bootstrap Parallel

Non-scaled Mean-scaled SD-scaled Mean-scaled SD-scaled SD-scaled

(a) The peanut dataset
0 0.050 0.059 0.006 0.049 0.050 0.050
1 0.049 0.053 0.018 0.049 0.045 0.026
2 0.049 0.051 0.034 0.049 0.044 0.002
3 0.045 0.049 0.038 0.049 0.043 0.000
4 0.047 0.043 0.042 0.045 0.046 0.000
5 0.038 0.045 0.044 0.049 0.048 0.000
6 0.038 0.043 0.041 0.045 0.044 0.000
7 0.043 0.044 0.043 0.048 0.046 0.000
(b) The sparrows dataset
0 0.048 0.049 0.009 0.050 0.050 0.051
1 0.050 0.049 0.058 0.051 0.049 0.000
2 0.050 0.050 0.044 0.050 0.044 0.000
3 0.049 0.049 0.047 0.050 0.045 0.000
(c) The fish dataset
0 0.051 0.188 0.006 0.021 0.050 0.049
1 0.051 0.095 0.032 0.042 0.045 0.018
2 0.049 0.066 0.048 0.049 0.050 0.001
3 0.049 0.054 0.047 0.050 0.049 0.000
4 0.049 0.051 0.050 0.050 0.050 0.000
5 0.051 0.049 0.049 0.050 0.050 0.000

The null hypothesis H0 : m = K , where m is the unknown true number of principal components, was tested at
significance level α = 0.05.

work well when variables are standardized to unit variance. In this case, Type I error rates
often deviated much from 0.05, especially for K = 0.

As a remedy to the problemwith the poor performance of the simple parametric bootstrap
method when PCA is performed on standardized data, Sect. 3.3 proposed full parametric
bootstrap methods. These full parametric bootstrap methods performed much better with
regard to Type I error rate than the simple parametric bootstrap method (Table 2). The
observed frequency of Type I error was close to 0.05 in most cases, but for data scaled by
means, there were some exceptions.

The last column of Table 2 presents observed Type I error rates for the parallel method.
This method performed very well with regard to Type I error rate when testing the first
principal component (K = 0). However, when testing higher-order principal components,
the parallel method did not give Type I error rates close to the nominal level 0.05. In these
cases, the null hypotheses were never or very rarely rejected.

Table 3 reports Type I error rates for Tracy–Widom methods. The methods V-2001 and
V-2007, which simply compare the scaled largest eigenvalue, Eq (8), with the Tracy–Widom
distribution of order 1, did not maintain the nominal level 0.05. The methods W-2001 and
W2007, using the Johnstone (2001) ad hoc method for standardized data, performed much
better, although some deviations from 0.05 were observed, especially for the peanut dataset.

In most cases, the full parametric bootstrap method for scaled data was more powerful
than the Tracy–Widommethods (Table 4). The only exceptions were observed for the peanut
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Table 3. Results of the simulation study of Type I error rates, α̂, for Tracy–Widom methods.

Example dataset Method

V-2001 V-2007 W-2001 W-2007

(a) The peanut dataset 0.000 0.000 0.085 0.081
(b) The sparrows dataset 0.001 0.001 0.038 0.049
(c) The fish dataset 0.000 0.000 0.061 0.063

The null hypothesis H0 : m = 0 was tested at significance level α = 0.05.

Table 4. Results of the simulation study of power of Tracy–Widom and full parametric (FP) bootstrap methods.

ψ Tracy–Widom FP bootstrap

W-2001 W-2007 SD-scaled

(a) The peanut dataset
0.2 0.085 0.082 0.052
0.3 0.094 0.090 0.059
0.4 0.106 0.102 0.086
0.5 0.140 0.134 0.148
0.6 0.198 0.191 0.260
0.7 0.312 0.305 0.431
0.8 0.436 0.426 0.642
0.9 0.576 0.566 0.820
1.0 0.714 0.705 0.931
(b) The sparrows dataset
0.2 0.081 0.099 0.156
0.3 0.309 0.347 0.626
0.4 0.736 0.768 0.969
0.5 0.967 0.975 1.000
0.6 0.999 0.999 1.000
0.7 1.000 1.000 1.000
0.8 1.000 1.000 1.000
0.9 1.000 1.000 1.000
1.0 1.000 1.000 1.000
(c) The fish dataset
0.2 0.060 0.063 0.053
0.3 0.071 0.074 0.057
0.4 0.075 0.078 0.086
0.5 0.098 0.101 0.136
0.6 0.130 0.134 0.230
0.7 0.187 0.193 0.361
0.8 0.267 0.274 0.543
0.9 0.344 0.351 0.708
1.0 0.440 0.447 0.841

The null hypothesis H0 : m = 0 was tested at significance level α = 0.05 when m = 1. The strength of the first
principal component was varied through the parameter ψ .

dataset when ψ ≤ 0.4 and for the fish dataset when ψ ≤ 0.3. These exceptions should be
viewed in relation to the too high Type I error rate for these datasets (Table 3). For the
fish dataset, ψ = 0.9, the full parametric bootstrap method was twice as powerful as the
Tracy–Widom methods.
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Table 5. Statistical analysis of the three example datasets.

K Non-scaled Mean-scaled SD-scaled

τ̂2K+1 T p-value τ̂2K+1 T p-value τ̂2K+1 T p-value

(a) The peanut dataset
0 11.71 0.48 0.000 3.03 0.54 0.000 49.1 0.37 0.002
1 5.89 0.46 0.001 1.25 0.49 0.000 34.4 0.40 0.006
2 2.69 0.40 0.114 0.58 0.45 0.015 17.6 0.34 0.408
3 0.26 0.36 0.586
(b) The sparrows dataset
0 1695 0.86 0.000 0.169 0.73 0.000 174 0.72 0.000
1 222 0.82 0.000 0.037 0.59 0.000 26 0.38 0.185
2 30 0.62 0.000 0.015 0.46 0.283
3 15 0.80 0.000
(c) The fish dataset
0 116,329,200 1.00 0.000 12.18 0.45 0.304 31.0 0.49 0.005
1 5775 0.73 0.000 17.0 0.53 0.049
2 1710 0.78 0.000 7.6 0.51 0.392
3 354 0.75 0.023
4 106 0.90 0.007
5 11 0.99 0.006

Non-scaled observations were analysed using the simple parametric bootstrap method. Observations scaled by
means and standard deviations (SD) were analysed using full parametric bootstrap methods. The null hypotheses
H0 : m = K , where m is the unknown true number of principal components, were tested using B = 100,000
bootstrap samples until K = M − 2 or a non-significant (p > 0.05) result was obtained.

6. ANALYSES OF THE EXAMPLES

Table 5 presents results of analyses using non-scaled data, Eq. (1), data scaled by column
means Eq. (2) and data scaled by column standard deviations, Eq. (3). The non-scaled
datasets were analysed using the simple parametric bootstrap method, whereas the datasets
scaled by means and standard deviations were analysed using the proposed full parametric
bootstrap methods, which are recommended based on the simulation study of Sect. 5. Tests
were carried out sequentially, for K = 0, 1, 2, . . ., up to K = M − 2, where M = min(n −
1, p), or a non-significant (p > 0.05) result was obtained.

For the peanut dataset, at most eight principal components could be tested (M = 9).
When data were standardized using means, three principal components were significant.
However, when observations were not scaled and when observations were scaled using
standard deviations, non-significant results were obtained when testing the third component.
In these two cases, PC2-by-PC1 biplots would illustrate the variation in all significant
principal components. Specifically for environment E09, which was considered in Sect. 2,
using observations standardized to zero means and unit variance, Model 6 with m = 2
principal components gives the estimate ȳ9 + θ̂39 s9 = 2.90 + 0.82 · 0.41 = 3.24 for the
yield of genotype G03. Here, ȳ9 and s9 are the mean and standard deviation, respectively, in
environment E09, and θ̂39 is the element in the third row and ninth column of �̂2, as defined
in Sect. 3.3.
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For the sparrows dataset, M = 5. Thus, a maximum of four principal components could
be tested. When observations were not scaled, all four principal components were highly
significant (p = 0.000) as a consequence of the large differences in standard deviation
between the five variables. When data were made unitless through division by means, the
first two principal components were highly significant (p = 0.000), but the third principal
component was not (p = 0.283). A coefficient of variation biplot (Underhill 1990) would
illustrate coefficients of variation and pairwise correlations in the space spanned by these two
first principal components, which are significant. When data were scaled to unit variance,
only the first principal component was significant (p = 0.000). In a biplot, patterns along
the second principal component, which was not significant (p = 0.185), would not be larger
than what could be expected by chance.

For the fish dataset, using no scaling, all principal components were significant. When
data were scaled using means, no principal components were significant. When standard
deviations were used for scaling, the first principal component was clearly significant
(p = 0.005), the second barely significant (p = 0.049) and the third not significant
(p = 0.392).

7. DISCUSSION

In this article, we proposed parametric bootstrap methods for testing principal compo-
nents in PCA when variables are standardized. Our interest in this problem derives from
observing that researchers often present summaries of datasets using a few principal com-
ponents without checking whether these are significant or not and whether the omitted com-
ponents are indeed negligible. Previously proposed methods for hypothesis testing assumed
non-standardized variables, although in practice standardization is usually needed.

An advantage of hypothesis tests, as compared to other approaches, is that p values
are provided for each principal component. A significant result indicates incompatibility
between the observed data and the model under the null hypothesis (Wasserstein and Lazar
2016); thus, suggesting a model with a more complex interaction would be preferable. By
refraining from reporting insignificant components, researchers protect themselves from
the risk of publishing random results, i.e. committing Type I errors. However, one should
be aware that computation of p values does not account for data-dependent decisions that
must be taken before the analysis (Gelman and Loken 2014), such as transformation and
standardization of variables, and which variables to include in the analysis. Furthermore,
the practice of publishing only significant results causes publication bias (Sterling 1959).

The simple parametric bootstrap method is exact, i.e. has the correct Type I error rate, at
testing the first principal component, and almost exact at testing higher-order components.
These are also the properties of the “exact” method proposed by Choi et al. (2017). Our
research confirmed the good performance of the simple parametric bootstrap method, but
using this method, variables must not be standardized to unit variance. This is a major
drawback, because in practice such standardization is often needed. Thus, for analysis of
standardized data, full parametric bootstrap methods were introduced that are just slightly
more complicated than the simple parametric bootstrap method.
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The results of the simulation study were similar between the three datasets. However, the
full parametric bootstrap method for data scaled by means showed a small Type I error rate,
0.021, at testing the first principal component of the fish dataset. Being the smallest of the
three datasets, the fish dataset is the most challenging. When observations were scaled by
standard deviations, the full parametric bootstrap method clearly outperformed the simple
parametric bootstrap method with regard to Type I error rate. In all datasets, the Tracy–
Widom methods intended for non-scaled data, i.e. V-2001 and V-2007, scarcely yielded
any significant results when the null hypothesis was true, i.e. the observed Type I error rate
was considerably lower than 0.05. The Tracy–Widom methods intended for scaled data,
i.e. W-2001 and W-2007, gave Type I error rates ranging from 0.038 to 0.085, whereas
the full parametric bootstrap method for data scaled by standard deviations showed the
correct Type I error rate, 0.050, in all three datasets. The full parametric bootstrap method
was up to twice as powerful as the Tracy–Widom methods. Moreover, the full parametric
bootstrap method can be used for testing all principal components, one at the time, whereas
the Tracy–Widom methods are defined only for testing the first principal component.

In the simulation study, parallel analysis did not perform well. The reason for this is the
following: In the three datasets studied,when the columnswere standardized to unit variance,
the first squared singular values τ̂ 21 were quite large in comparison with the following
squared singular values. Since for standardized data

∑M
k=1 τ̂ 2k is fixed and equals p(n −

1), a large τ̂ 21 implies small τ̂ 22 , τ̂ 23 , . . . , τ̂ 2M . Specifically, these squared singular values
τ̂ 22 , τ̂ 23 , . . . , τ̂ 2M become smaller than would be expected by chance if observations were
standardnormally distributed. In consequence, usingparallel analysis, higher-order principal
components typically do not become significantwhen the first principal component accounts
for a large portion of the total variance, as in the three examples.

Johnstone (2001) proposed W , Eq. (11), as a test statistic in PCA, using a scaled Tracy–
Widom distribution as an approximate reference. However, since W is not computable
from the data only, but is a function of the data and a random vector, W is not a statistic
(Shao 2003). Considering the random component involved in the computation of W , the
comparatively poor performance of this method with regard to power was not surprising.

The proposed simple and full parametric bootstrap methods are perhaps most useful for
comparatively small datasets, such as those encountered in analysis of multi-environment
crop variety trials. We tried the methods on several larger datasets, among them the genomic
chicken dataset used byHusson et al. (2011). That dataset includes 7407 columns (genes) and
43 rows (chicken). Two problemswere encountered when analysing these larger datasets: (i)
the proposed methods took much time to complete, due to the many variables and singular
value decompositions involved, and (ii) all or almost all principal components became
significant, due to high pairwise correlations. Indeed, each null hypothesis requires B (e.g.
100,000) singular value decompositions. However, since nowadays huge computational
resources exist, as well as fast algorithms for singular value decomposition, this problem
could potentially be overcome.

The simple parametric bootstrap method uses an approximation (Muirhead 1978, p. 23)
that improves as the values of the K positive singular values grow. Notably, n and p do not
need to be large. Thismakes the simple parametric bootstrapmethodwork for small datasets,
as verified in Sect. 5, as long as hypotheses are tested sequentially. Many other results for
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statistical inference on random matrices are asymptotically valid as n and p simultaneously
approach infinity, while p/n approaches γ ∈ (0,∞) (Paul and Aue 2014), but in many
applications either n or p or both of them are small.

Forkman and Piepho (2014) investigated power of the simple parametric bootstrap
method. The procedure was powerful in datasets of similar sizes as the examples of the
present article. However, the simple parametric bootstrap method is sensitive to the assump-
tion of normality (Forkman and Piepho 2015). The full parametric bootstrap methods for
standardized data have not been investigated with regard to robustness, but we would expect
similar sensitivity to departures from assumptions. For non-standardized data, Malik et al.
(2018) proposed nonparametric bootstrap and permutationmethodswith better performance
when data are non-normally distributed. More research is needed on methods for signifi-
cance testing of principal components in non-normally distributed datasets when variables
are standardized.

The main contributions of the present article are: (i) specifications on how to apply
the parametric bootstrap methodology to PCA when variables are standardized, (ii) the
observation that the simple parametric bootstrap method (Forkman and Piepho 2014) does
not work well when variables are standardized and (iii) the simulation study providing
information about performance of parametric bootstrap methods, Tracy–Widom methods
and parallel analysis.

As a practical conclusion, the full parametric bootstrap methods introduced in Sect. 3.3
are recommendedwhen variables are standardized. The simple parametric bootstrapmethod
(Forkman and Piepho 2014) is recommended when variables are not standardized.

8. SUPPLEMENTARY MATERIALS

R and SAS code for the recommended parametric bootstrap methods is available online.
The supplementary materials also present a fourth example dataset, including analysis and
simulation of Type I error and power. Results from that simulation study agree well with
the results of Sect. 5.
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