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Abstract
Wepresent amodel of discrete-timemean-field gamewith compact state and action spaces and
average reward. Under some strong ergodicity assumption, we show it possesses a stationary
mean-field equilibrium. We present an example showing that in general an equilibrium for
this game may not be a good approximation of Nash equilibria of the n-person stochastic
game counterparts of the mean-field game for large n. Finally, we identify two cases when
the approximation is good.

Keywords Mean-field game · Anonymous game · Stochastic game · Average reward ·
Ergodic reward · Stationary equilibrium · Geometric ergodicity

1 Introduction

Mean-field game theory has been developed independently by Lasry and Lions [39] and
by Huang et al. [37] to study non-cooperative differential games with a large number of
identical players. The main idea behind their models was that by approximating the game
with a limit where the number of players is infinite, we can reduce the game problem, which
for a large finite number of players becomes untractable, to a much simpler single-agent
decision problem. The idea has been largely accepted by the differential game community,
which resulted in a huge number of publications on the topic over the last decade. The reader
interested in differential-type mean-field game models discussed so far is referred to the
books [8,21] or the survey [32].

Our focus in this paper is, however, on similar discrete-time models, which, surprisingly,
appeared in the game-theoretic literature long before the pioneering works on mean-field
games. In the seminal paper by Jovanovic andRosenthal [38], each player controls an individ-
ual discrete-time Markov chain, while the global state of the game, defined as the probability
distribution over individual states of all the players, becomes deterministic. While the tools
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used there were significantly different from those considered in differential mean-field game
literature, the general principle, which was to simplify the original large game problem by
considering an approximation with one-agent optimization models, stayed the same. Some
generalizations of model of Jovanovic and Rosenthal were given in [2,9,10,22,27,45]. All
of these papers considered games with discounted rewards (costs). Discounted discrete-time
mean-field games were also studied in a number of economic applications, see references in
[2].

Our paper deals with a different reward criterion—long-run average reward (sometimes
also called ergodic reward), often used in Markov decision process and dynamic game prob-
lems, yet hardly present in the discrete-time mean-field game literature. To the best of our
knowledge, there are only three papers dealing with this kind of problems in a discrete-time
setting, discussed in more detail below. The literature on differential-type mean-field games
with this payoff criterion is a lot more extensive. In [28,39], results about relation between
gameswith a large finite number of players andmean-field games of this type are proved. [18–
20] discuss the relation between the solutions of ergodic mean-field games and mean-field
gameswith large fixed time horizon. Existence and uniqueness of solutions to average-reward
mean-field games are addressed in many articles including [5–7,23–25,30,31,39,40,42] and
a number of preprints. Finally, [1,4,15] provide some numerical methods for solving this
type of games. The first model of discrete-time mean-field game with average reward has
been introduced in [48], where the existence of a stationary mean-field equilibrium has been
proved under some ergodicity assumption in case when state and action spaces of the players
are finite. Under the additional assumption that the individual transitions of the players do
not depend on the empirical distribution of states or actions of all the players, it also shows
that the mean-field model approximates well the n-person models for n large enough. Similar
assumption has also been made in [12], where average-reward games with σ -compact Polish
individual state spaces were studied. The problem is that apart from this assumption, the
results in [12] used some strong regularity conditions stated in terms of a specific metric
topology on the state of stationary policies, which seem to be too strong to be satisfied under
any reasonable assumptions. In the last paper, we need to mention here [16] average-reward
discrete-time mean-field games were used to study a dynamic routing model. The main con-
tribution of the paper was presenting a linear-programming formulation of the problem of
finding a stationary equilibrium in games of this type.

In our paper, we do not consider such a general setting as that in [12], limiting ourselves
to the games with compact state and action spaces. In return, within this framework we make
assumptions that are satisfied by a large class of models. Moreover, we state them in terms of
basic primitives of the model, making them rather easy to verify. Finally, in general we do not
require the independence of the individual transitions from the empirical distribution of states
and actions of the players. In our article, we give the results of two types. First, under the
assumptions given in Sect. 3, we show that the mean-field game has a stationary equilibrium.
Then, we provide several results, both positive and negative, linking equilibria in the model
with a continuum of players with ε-equilibria in its n-person stochastic counterparts when n
is large.

The organization of the paper is as follows: In Sect. 2, we present the general framework
we are going to work with and define what kind of solutions we will be looking for. In Sect. 3,
we present our assumptions. Sections 4 and 5 provide our main results—in Sect. 4 we prove
the existence of the stationary equilibrium in the mean-field game model, while in Sect. 5 we
give results linking equilibria in the mean-field game with approximate equilibria in games
with large finite number of players. We end the paper with conclusions in Sect. 6.
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2 TheModel

2.1 Discrete-TimeMean-Field Games

A discrete-time mean-field game is described by the following objects:

– We assume that the game is played in discrete time, that is, t ∈ {1, 2, . . .}.
– The game is played by an infinite number (continuum) of players. Each player has a

private state s ∈ S, changing over time. We assume that the set of individual states S is
the same for each player and that it is a non-empty compact metric space. Private state of
player i at time t is denoted by sit . If we refer to an arbitrary player, we skip the superscript
i .

– A probability distribution μ over Borel sets1 of S is called a global state of the game.
It describes the proportion of the population which is in each of the individual states.
Global state at time t will be denoted by μt . We assume that at every stage of the game,
each player knows both his private state and the global state, and that his knowledge
about individual states of his opponents is limited to the global state.

– The set of actions available to any player in state (s, μ) is given by A(s, μ), with
A := ⋃

(s,μ)∈S×�(S) A(s, μ)—a compact metric space. A(·, ·) is a non-empty valued
correspondence.

– The global distribution of the state–action pairs is denoted by τ ∈ �(S × A). If we refer
to the global state–action distribution at a specific time t , we write τ t .

– Individual’s immediate reward is given by a bounded measurable function r : S × A ×
�(S × A) → R. r(s, a, τ ) gives the reward of a player at any stage of the game when
his private state is s, his action is a and the distribution of state–action pairs among the
entire player population is τ .

– Transitions are defined for each individual separately with a transition kernel Q : S ×
A × �(S × A) → �(S). Q(B|·, ·, τ ) is product measurable for any B ∈ B(S) and any
τ ∈ �(S × A).

– Global state at time t + 1 is given by the aggregation of individual transitions of the
players,

�
( · |τ t) =

∫

S×A
Q
( · |s, a, τ t

)
τ t
(
ds × da

)
,

As it can be clearly seen from the above formula, the transition of the global state is
deterministic.

A function f : S × �(S) → �(A), such that f (B|·, μ) is measurable for any B ∈ B(A)

and any μ ∈ �(S), satisfying f (A(s, μ)|s, μ) = 1 for every s ∈ S and μ ∈ �(S) is called a
stationary strategy. The set of all stationary strategies is denoted by F . In the paper, we never
consider general (history-dependent) strategies. When we talk about mean-field games, we
also use stationary strategies depending only on the individual state of the player. Since in
general the set of feasible actions is also a function of the global state, we define F(μ) as the
set of functions f : S → �(A) such that f (B|·) is measurable for any B ∈ B(A), satisfying
f (A(s, μ)|s) = 1 for every s ∈ S. We can identify any f ∈ F(μ) with the class of all
stationary strategies f̃ ∈ F satisfying f (·|s) = f̃ (·|s, μ) for any s ∈ S.

1 Here and in the sequel, the Borel σ -algebra on a given set X is denoted byB(X), while the set of probability
distributions on (X ,B(X)) is denoted by �(X).
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Next, let �( f , μ) denote the state–action distribution of the players in the mean-field
game corresponding to a global state μ and a stationary strategy f ∈ F(μ), that is2

�( f , μ)(D) :=
∫

D
f (da|s)μ(ds) for D ∈ B(S × A).

Given the evolution of the global state, which depends on the strategies of the players in
a deterministic manner, we can define the individual history of a player i as the sequence
of his consecutive individual states and actions h = (si0, a

i
0, s

i
1, a

i
1, . . .). By the Ionescu-

Tulcea theorem (see Chap. 7 in [11]), for any stationary strategies f of player i and g of
other players and any initial individual state distribution μ0, there exists a unique probability
measure Pμ0,Q, f ,g on the set of all infinite histories of the game H = (S × A)∞ endowed
with Borel σ -algebra, such that for any B ∈ B(S), D ∈ B(A) and any partial history
hit = (si0, a

i
0, . . . , s

i
t−1, a

i
t−1, s

i
t ) ∈ (S × A)t × S =: Ht , t ∈ N,

P
μ0,Q, f ,g

(
h ∈ H : si0 ∈ B

)
= μ0(B), (1)

P
μ0,Q, f ,g

(
h ∈ H : ait ∈ D|hit

)
= f

(
D|sit

)
,

P
μ0,Q, f ,g

(
h ∈ H : sit+1 ∈ B|

(
hit , a

i
t

))
= Q

(
B|sit , ait , τ t

)
, (2)

with state–action distributions defined recursively by τ 0 = �(g, μ0), τ t+1 = �(g,�(·|τ t ))
for t = 1, 2, . . .. We can define the long-time average reward of a player using policy f ∈ F
when all the other players use policy g ∈ F and the initial state distribution (both of the
player and his opponents) is μ0, to be3

J
(
μ0, f , g

) = lim inf
T→∞

1

T + 1
E

μ0,Q, f ,g
T∑

t=0

r
(
st , at , τ

t ),

where τ 0 = �(g, μ0) and τ t+1 = �(g,�(·|τ t )) for t = 1, 2, . . ..
Next, we define the solution we will be looking for:

Definition 1 A stationary strategy f and a measure μ ∈ �(S) form a stationary mean-field
equilibrium in the long-time average reward game if f ∈ F(μ), for every other stationary
strategy g ∈ F(μ)

J (μ, f , f ) ≥ J (μ, g, f )

and μ = �(·|�( f , μ)) (i.e. if μ0 = μ then μt = μ for every t ≥ 1).

2.2 n-Person Stochastic Games

Themain reason to consider mean-field games is that usually under some fairly mild assump-
tions they can approximate well some n-person dynamic games defined with the same data
when n is large enough. It is similar in our case. The n-person games that will be approxi-
mated by our model are discrete-time n-person stochastic games as defined in [34]. In our
case, we consider n-person stochastic counterparts of the mean-field game defined by the
following objects:

2 We shall use similar notation also in case of general stationary strategies from F . In that case,
�( f (·|·, μ1), μ2)(D) will denote

∫
D f (da|s, μ1)μ2(ds).

3 Here we omit the superscript i used to define the measure Pμ0,Q, f , as the situation is symmetric.
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– The state space is Sn and the action space for each player is A. Similarly as in the case
of the mean-field game, the set of actions available to player i in state s = (s1, . . . , sn)

is given by Ai
n(s) := A

(
si ,

1
n

∑n
j=1 δs j

)
.

– Individual immediate reward of player i , r in : Sn × An → R, i = 1, . . . , n is defined
for any profile of players’ states s = (s1, . . . , sn) and any profile of players’ actions
a = (a1, . . . , an) by

r in(s, a) := r

⎛

⎝si , ai ,
1

n

n∑

j=1

δ(s j ,a j )

⎞

⎠ .

– The transition probability Qn : Sn × An → �(Sn) can be defined for any s ∈ Sn and
a ∈ An by the formula (for the clarity of exposition we write it only for Borel rectangles,
which obviously defines the product measure):

Qn(B1 × . . . × Bn |s, a)

:= Q

⎛

⎝B1|s1, a1, 1
n

n∑

j=1

δ(s j ,a j )

⎞

⎠ . . . Q

⎛

⎝Bn |sn, an, 1
n

n∑

j=1

δ(s j ,a j )

⎞

⎠ .

– In n-person game, we consider stationary strategies f : Sn → �(A) (satisfying, for
each player i , two standard conditions: f (B|·) is measurable for any B ∈ B(A) and
f (Ai

n(s)|s) = 1 for every s ∈ Sn). The set of all stationary strategies for player i is
denoted by F i

n .
– The functional maximized by each player is his average reward defined for any initial

state s0 ∈ Sn and any profile of stationary strategies f = ( f1, . . . , fn) by the formula

J in
(
s0, f

) := lim inf
T→∞

1

T + 1
E
s0,Qn , f

T∑

t=0

r in(st , at )

with P
s0,Qn , f denoting the measure on the set of all infinite histories of the game corre-

sponding to s0, Qn and f defined with the help of the Ionescu-Tulcea theorem similarly
as in case of the mean-field game.

– Finally, the solution we will be looking for in n-person counterparts of the stochastic
game is that of Nash equilibrium, which is the standard solution concept considered in
the stochastic game literature:

Definition 2 A profile of strategies f ∈ F1
n × . . .×Fn

n is a Nash equilibrium in the n-person
stochastic game if

J in
(
s, f

) ≥ J in
(
s,

[
f −i , g

])
(3)

for any s, any g ∈ F i
n , and i ∈ {1, . . . , n}.

The notation [ f −i , g] denotes here and in the sequel the profile of strategies f with its i th
component replaced by g. If we only show that the above inequality is only true for strategies
g from some subclasses F i

n(0) ⊂ F i
n , we say that f is a Nash equilibrium in the class

F1
n (0) × . . . × F1

n (0). If (3) is true up to some ε > 0, we say that f ∈ F1
n × . . . × Fn

n is an
ε-Nash equilibrium.

Remark 1 Note that for any n and any i ∈ {1, . . . , n}, F can be viewed as a subset of F i
n .

Moreover, it can be easily seen that in case all the players except some player i in an n-person
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counterpart of the mean-field game use strategies from F , the best response of i is also to
use a strategy from F . This immediately implies that a Nash equilibrium in the class (F)n

is in fact a Nash equilibrium in F1
n × . . . × Fn

n . For that reason, in the sequel we will no
longer use general strategies from F i

n when we talk about n-person games, concentrating on
strategies from F or from some subsets of this set.

2.3 Notation

As we have written, we assume that state and action spaces S and A are compact metric. The
metric on S will be denoted by dS while that on A by dA. Whenever we relate to a metric on
a product space, we mean the sum of the metrics on its coordinates.

The convergence of probability measures defined on one of these spaces may be of three
types. The one that we will use most often is the weak convergence. To denote the weak
convergence of measures, we will always use the symbol ⇒. It is known that for a compact
metric set X , �(X) endowed with weak convergence topology is compact and metrizable
(see e.g. Prop. 7.22 in [11]). There are several metrics consistent with weak convergence
topology. In all of our considerations, whenever we use a metric on �(X) defining the weak
convergence, we use the metric (see Theorem 11.3.3 in [26])

ρ(μ1, μ2) = sup

{∣
∣
∣
∣

∫

X
f (x)(μ1 − μ2)(dx)

∣
∣
∣
∣ , ‖ f ‖BL ≤ 1

}

,

where μ1, μ2 ∈ �(X) and ‖ · ‖BL is the metric on the set of bounded Lipschitz continuous
functions from X to R defined by the formula

‖ f ‖BL = ‖ f ‖∞ + ‖ f ‖L with ‖ f ‖L = sup
x 
=y

| f (x) − f (y)|
dX (x, y)

.

To make a distinction between metrics defining weak convergence on different sets, we will
also use subscripts S, A etc.

The second type of convergence used in the paper is the convergence in the complete
variation norm ‖·‖v (usually simply called ‘norm convergence’) defined for any finite signed
measure μ on (X ,B(X)) as follows:

‖μ‖v = sup
B∈B(X)

μ(B) + | inf
B∈B(X)

μ(B)|.

When writing about this type of convergence, we will directly relate to the norm.
The last type of convergence we will be using is the strong (or setwise) convergence

denoted by → and defined as follows:

μn → μ ⇐⇒ μn(B) → μ(B) for any B ∈ B(X).

It is weaker than norm convergence, but the topology defined by it is neither metrizable nor
sequential, which makes it much less useful in practice.

Finally, in some proofs, we will also make use of the 1-Wasserstein distance defined
for measures on (X ,B(X)) with finite 1st moment. If we assume that X is compact, each
probability measure has a finite 1st moment; hence, the 1-Wasserstein distance can be used
for any μ1, μ2 ∈ �(X). One of equivalent definitions of the 1-Wasserstein distance W1 is
then as follows (see p. 234 in [13]):

W1(μ1, μ2) = sup

{∣
∣
∣
∣

∫

X
f (x)(μ1 − μ2)(dx)

∣
∣
∣
∣ , ‖ f ‖L ≤ 1

}

.
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It is clear from the definitions of ρ, ‖ · ‖v and W1 that for any μ1, μ2 ∈ �(S) we have

W1(μ1, μ2) ≥ ρ(μ1, μ2) and ‖μ1 − μ2‖v ≥ ρ(μ1, μ2).

We will make use of these inequalities several times in our proofs.
Whenever we speak about continuity of correspondences, we refer to the following defi-

nitions:
Let X and Y be two metric spaces and F : X → Y , a correspondence. Let F−1(G) = {x ∈
X : F(x) ∩ G 
= ∅}. We say that F is upper semicontinuous iff F−1(G) is closed for any
closed G ⊂ Y . F is lower semicontinuous iff F−1(G) is open for any open G ⊂ Y . F is said
to be continuous iff it is both upper and lower semicontinuous. For more on (semi)continuity
of correspondences, see [35], “Appendix D” or [3], Chapter 17.2.

Further, we define k-step transitions inmean-field and n-personmodels. For any stationary
strategy f ∈ F and any constant state–action distribution τ ∈ �(S × A), we can define k-
step individual transition probability corresponding to Q when player uses strategy f against
state–action distribution of the others τ as follows4:

Q(·|s, f , τ ) :=
∫

A
Q(·|s, a, τ ) f (da|s, τS),

Qk(·|s, f , τ ) :=
∫

S

∫

A
Q(·|ŝ, a, τ ) f (da|ŝ, τS)Qk−1(dŝ|s, f , τ ).

Here, Q1(·|s, f , τ ) = Q(·|s, f , τ ).
Next, let us define k-step transition probability in n-person counterpart of the mean-field

game corresponding to Qn and the profile of stationary strategies f = ( f1, . . . , fn) ∈ Fn

when the initial states of the players are s1, . . . , sn (for the clarity of exposition again we
write it only for Borel rectangles):

Qn
(
B1 × . . . × Bn |(s1, . . . , sn), f

)

:=
∫

An
Q

(

B1|s1, a1, 1
n

n∑

i=1

δ(si ,ai )

)

. . . Q

(

Bn |sn, an, 1
n

n∑

i=1

δ(si ,ai )

)

f1

(

da1|s1, 1
n

n∑

i=1

δsi

)

. . . fn

(

dan |sn, 1
n

n∑

i=1

δsi

)

,

Qk
n(B1 × . . . × Bn |(s1, . . . , sn), f )

:=
∫

Sn

∫

An
Q

(

B1|ŝ1, a1, 1
n

n∑

i=1

δ(ŝi ,ai )

)

. . . Q

(

Bn |ŝn, an, 1
n

n∑

i=1

δ(ŝi ,ai )

)

f1

(

da1|ŝ1, 1
n

n∑

i=1

δŝi

)

. . . fn

(

dan |ŝn, 1
n

n∑

i=1

δŝi

)

Qk−1
n (dŝ1 × . . . × dŝn |(s1, . . . , sn), f ).

As before, we use the convention that Q1
n(·|(s1, . . . , sn), f ) = Qn(·|(s1, . . . , sn), f ).

4 Here and in the sequel, for any τ ∈ �(S × A), τS denotes the S-marginal of the measure τ .
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3 Assumptions

In the following section, we present our main assumptions which will be used in case of both
mean-field games and their stochastic counterparts. Unlike in [12], all the assumptions are
directly related to the primitives of the model.

(A1) Function r is continuous on S × A × �(S × A).
(A2) For any sequence {sn, an, τn} ⊂ S × A×�(S × A) such that sn → s∗, an → a∗

and τn ⇒ τ ∗, Q(·|sn, an, τn) ⇒ Q(·|s∗, a∗, τ ∗). Moreover, for any fixed s and
any sequence {an, τn} ⊂ A × �(S × A) such that an → a∗ and τn ⇒ τ ∗,
Q(·|s, an, τn) → Q(·|s, a∗, τ ∗).

(A3) (minorization property) There exist a constant γ > 0 and a probability measure
P ∈ �(S) such that

Q(D|s, a, τ ) ≥ γ P(D)

for every s ∈ S, a ∈ A, τ ∈ �(S × A) and any Borel set D ⊂ S.
(A4) The correspondence A is continuous.5

A weaker version of assumption (A2) will be used in several places:

(A2’) For any sequence {sn, an, τn} ⊂ S × A×�(S × A) such that sn → s∗, an → a∗
and τn ⇒ τ ∗, Q(·|sn, an, τn) ⇒ Q(·|s∗, a∗, τ ∗).

Remark 2 While assumptions (A1) and (A4) are both quite easy to check and satisfied for
a wide variety of models, for many readers it may not be obvious, what kind of stochastic
kernels satisfy assumptions (A2–A3). In the following, we try to answer this question. The
most natural type of stochastic kernels that satisfy (A2) is defined by the formula

Q(B|s, a, τ ) =
∫

B

∫

S×A
q
(
z, s, a, s′, a′)τ

(
ds′ × da′)μ(dz)

for B ∈ B(S), s ∈ S, a ∈ A, τ ∈ �(S × A), (4)

where q : S × S × A × S × A → R
+ ∪ {0} is a measurable probability density function

continuous with respect to (s, a, s′, a′) for every fixed z ∈ S, and μ is any fixed σ -finite
measure on S. This gives already quite a large class of transition probabilities satisfying
(A2), including as a particular case any kernel concentrated on a fixed discrete subset of S.
It can be further extended by considering stochastic kernels being convex combinations with
continuous weight functions λi : S × A× �(S × A) → [0, 1] of several kernels of form (4)
(probably defined with the help of different measures μi ) and those of two following forms
(in both cases the transition does not depend on a or τ ):

Q(B|s, a, τ ) = δh(s)(B) for B ∈ B(S), s ∈ S, a ∈ A, τ ∈ �(S × A),

where h : S → S is continuous;

Q(B|s, a, τ ) =
∫

S
1B(F(s, y))ν(dy) for B ∈ B(S), s ∈ S, a ∈ A, τ ∈ �(S × A), (5)

where Y is some Borel space, F : S × Y → S is a measurable function such that
F(·, y) is continuous on S for every fixed y ∈ Y and ν is a probability distribution on
Y . If we assume that for some i0, Q(B|s, a, τ ) ≡ μi0 for some probability measure μi0

5 With the source space �(S) endowed with the weak convergence topology.
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[this is obviously a specific case of kernel of type (4)] and λi0 > 0, the transition prob-
ability obtained automatically satisfies the minorization property (A3) with P = μi0 and
γ = min(s,a,τ )∈S×A×�(S×A) λi0(s, a, τ ).

A stochastic kernel satisfying (A2’) and (A3) can be constructed in a similar manner, but
here we should consider convex combinations of kernels of types (4), (5) with kernels defined
by

Q(B|s, a, τ ) = δh(s,a,τ )(B) for B ∈ B(S), s ∈ S, a ∈ A, τ ∈ �(S × A),

with h : S × A × �(S × A) → S continuous.

It is a standard result in dynamic programming [43] that the minorization property is for a
time-invariant Markov decision process equivalent to another property of uniform geometric
ergodicity. In the following, we present a lemma that adapts this result to our case, linking
the constants appearing in both assumptions. It also summarizes some other useful properties
implied by (A3).

Lemma 1 Suppose the transition probability Q satisfies assumption (A3). Then:

(a) for any f ∈ F and any fixed state–action distribution of other players τ ∈ �(S × A)

there exists a unique measure p f ,τ ∈ �(S) such that
∥
∥
∥Qk(·|s, f , τ ) − p f ,τ

∥
∥
∥

v
≤ 2

(
1 − γ

2

)k
for k ≥ 1, s ∈ S. (6)

(b) for any n ∈ N and f1, . . . , fn ∈ F there exists a unique measure pnf1,..., fn ∈ �(Sn) such
that

∥
∥
∥Qk

n(·|s, f1, . . . , fn) − pnf1,..., fn

∥
∥
∥

v
≤ 2

(

1 − γ n

2

)k

for k ≥ 1, s ∈ Sn . (7)

with6 pn
f

= p(n)

f1, f
. . . p(n)

fn , f
, where p(n)

fi , f
∈ �(S), i = 1, . . . , n depend only on individual

strategy of the player and the profile f ; in particular, they are equal for any two players
using the same strategy.

The proof of this lemma is given in “Appendix”.

Remark 3 Note that using (6) we can show that for any B ∈ B(S), τ ∈ �(S × A), f ∈ F
and k ∈ N

∣
∣
∣
∣

∫

S
Q(B|s, f , τ )p f ,τ (ds) − p f ,τ (B)

∣
∣
∣
∣

≤
∣
∣
∣
∣Q

k+1(B|s, f , τ ) −
∫

S
Q(B|s, f , τ )p f ,τ (ds)

∣
∣
∣
∣ +

∣
∣
∣Qk+1(B|s, f , τ ) − p f ,τ (B)

∣
∣
∣

≤
∥
∥
∥Qk(·|s, f , τ ) − p f ,τ (·)

∥
∥
∥

v
+

∥
∥
∥Qk+1(·|s, f , τ ) − p f ,τ (·)

∥
∥
∥

v
→k→∞ 0,

which implies that

p f ,τ (·) =
∫

S
Q(·|s, f , τ )p f ,τ (ds). (8)

6 The notation P = P1 · · · Pn stands here and in the sequel for the product measure P ∈ �(Sn) defined by
the formula

P(B) =
∫

B
P1(ds1) · . . . · Pn(dsn) for B ∈ B(Sn).
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As the Markov chain of individual states of a player using f against τ is by Lemma 1
geometrically ergodic, it is known that for any strategy f ∈ F , any distribution of initial
individual state μ0 and any τ ∈ �(S × A) fixed over time,

lim
T→∞

1

T + 1
E

μ0,Q(·|·,·,τ ), f
T∑

t=0

r(st , at , τ ) =
∫

S
r(s, a, τ ) f (da|s, (τ )S)p f ,τ (ds), (9)

with expectation on the LHS taken with respect to the unique probability measure
P

μ0,Q(·|·,·,τ ), f on H satisfying for any B ∈ B(S), D ∈ B(A) and hit = (si0, a
i
0, . . . , s

i
t−1,

ait−1, s
i
t ) ∈ Ht , t ∈ N, (1–2) (with superscript μ0, Q, f , g replaced by μ0, Q(·|·, ·, τ ), f )

and

P
μ0,Q(·|·,·,τ ), f

(
h ∈ H : sit+1 ∈ B|(hit , ait )

)
= Q

(
B|sit , ait , τ

)
,

defined with the help of the Ionescu-Tulcea theorem.
Similarly, we can show that (7) implies for any s0 ∈ Sn and f ∈ Fn

pn
f
(·) =

∫

Sn
Qn

( · |s, f
)
pn
f
(ds1 × . . . × dsn) (10)

and

Jni (s0, f ) =
∫

Sn

∫

An
r

(

si , ai ,
1

n

n∑

i=1

δ(si ,ai )

)

× f1

(

da1|s1, 1
n

n∑

i=1

δsi

)

· . . . · fn

(

dan |sn, 1
n

n∑

i=1

δsi

)

pn
f

(
ds1 × . . . × dsn

)
.

(11)

These are important properties that we will repeatedly use to compute average rewards corre-
sponding to strategies in both the mean-field game and its n-person stochastic counterparts.

Example 1 It is important to note that the thesis of part (a) of Lemma 1 cannot be strengthened
by showing that the limit measure p f ,τ does not depend on the initial global stateμ0 = τS—
-only on strategies used by the players. Suppose S = {0, 1} and the transition kernel Q
depends only on the global state of the game (thus, whatever the strategy, it does not affect
the transitions) in the following way:

Q(·|μ) =
{

(2μ0 − 1)δ0 + 2μ1δ1 if μ0 ≥ α+1
2

αδ0 + (1 − α)δ1 if μ0 < α+1
2

It is easy to check that for any α ∈ (0, 1), Q satisfies all the assumptions of our model; in
particular, assumption (A3) is satisfied for γ = α and P = δ0. Clearly, however, for μ = δ0
the individual state of the player moves after one step to 0 and stays there forever, while for
μ = αδ0 + (1 − α)δ1, Qk(·|μ) ≡ αδ0 + (1 − α)δ1.

The fact that, unlike in n-person games considered in case (b) of the lemma, the limit
distribution of individual states of a player may depend on the initial global state of the
mean-field game suggests that in general the stationary behaviour of the mean-field game
will not approximate well the limit behaviour of its n-person counterparts for large n.
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4 The Existence of a StationaryMean-Field Equilibrium

In this section, we address the problem of the existence of an equilibrium of discrete-time
mean-field games with long-run average payoff. Its main result is given as follows.

Theorem 1 Any discrete-time mean-field game with long-run average payoff satisfying
assumptions (A1–A4) has a stationary mean-field equilibrium.

Remark 4 Some ergodicity assumption is necessary for the existence of an equilibrium in
discrete-time average-payoff mean-field game. See Example 3.1 in [48]. It is a matter of
discussion though if we can assume less than (A3).

We precede the proof of the theorem with three lemmas.

Lemma 2 Suppose assumption (A4) holds. Then for any μ ∈ �(S) and ε > 0 there exist
Kμ

ε ∈ N and Borel-measurable functions α
μ
i : S → A, i = 1, . . . , Kμ

ε such that for any
a ∈ A(s, μ), mini≤Kμ

ε
dA(a, α

μ
i (s)) < ε.

Proof Let us fix μ ∈ �(S) and ε > 0. A is compact, which implies it has a finite ε
2 -

net {a1, . . . , aKμ
ε
}. Then for i = 1, . . . , Kμ

ε we define correspondences Ai : S → A,
i = 1, . . . , Kμ

ε , as follows:

Aμ
i (s) := arg min

a∈A(s,μ)
dA(a, ai ).

The map A(s, μ) is continuous with non-empty compact values, and the functions a �→
dA(a, ai ) are continuous.Hence, byTheorem18.19 in [3] each Aμ

i admits aBorel-measurable
selection. Let α

μ
i be the measurable selector from Aμ

i . Then by the definition of ε
2 -net for

any s ∈ S and any a ∈ A(s, μ) there exists an i such that dA(a, ai ) < ε
2 . But for such an i ,

dA
(
α

μ
i (s), a

) ≤ dA(a, ai ) + dA
(
α

μ
i (s), ai

)
<

ε

2
+ ε

2
= ε,

as by the definition of Aμ
i , dA(â, ai ) < ε

2 for any â ∈ Aμ
i (s). ��

In the previous lemma, we have proved the existence of a finite set of measurable functions
α

μ
i such that for any s ∈ S and μ ∈ �(S) the set of values of these functions at s is an ε-net

of A(s, μ). In the next one, for any sequence of state–action distributions ηn ⇒ η and any
strategy f ∈ F(ηS), we construct strategies fn ∈ F((ηn)S) using at any point (s, μ) only
actions from the set {αμ

i (s), i = 1, . . . , Kμ
1
n
}, which approximate well in some sense the

strategy f . This will be used to prove that the graph of the best response correspondence is
closed in weak convergence topology.

Lemma 3 Suppose (A1–A4) are satisfied and η, ηn ∈ �(S × A), n = 1, 2, . . . are such that
ηn ⇒ η. Let f ∈ F(ηS) and define for n = 1, 2, . . ., i = 1, . . . , K (ηn)S

1
n

An
i (s) : =

{
a ∈ A(s, η) : dA

(
α

(ηn)S
i (s), a

)
< dA

(
α

(ηn)S
j (s), a

)
for j < i

and dA
(
α

(ηn)S
i (s), a

) ≤ dA
(
α

(ηn)S
j (s), a

)
for j ≥ i

}
,

fn(·|s) :=
K

(ηn )S
1
n∑

i=1

f
(An

i (s)|s
)
δ
α

(ηn )S
i (s)

(·)
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(where α
(ηn)S
i are the functions defined in Lemma 2 with ε = 1

n ). Then fn ∈ F((ηn)S) and
�( fn, p fn ,ηn ) ⇒ �( f , p f ,η).

Proof It is clear that
⋃K

(ηn )S
1
n

i=1 An
i (s) = A(s, η), which implies

fn(A(s, ηn)|s) =
K

(ηn )S
1
n∑

i=1

f
(An

i (s)|s
) = 1

for any s ∈ S. Thus, proving that fn ∈ F((ηn)S) requires only showing that for any fixed
B ∈ B(A), fn(B|s) is a measurable function of s. First note that

fn(B|s) =
∑

i :α(ηn )S
i (s)∈B

f
(An

i (s)|s
)
,

thus to prove the measurability of fn(B|·) we only need to show that for every n and i ,
function f (An

i (·)|·) is measurable. Clearly,

f
(An

i (s)|s
) =

∫

A
1An

i (s)
(a) f (da|s).

Since f is a Borel-measurable stochastic kernel, according to Proposition 7.29 in [11], to
prove that f (An

i (·)|·) is measurable we need to show that ξni : S × A → R defined by

ξni (s, a) := 1An
i (s)

(a)

is Borel-measurable. Clearly, for any E ⊂ R, (ξni )−1(E) = {(s, a) ∈ S× A : a ∈ An
i (s)} =:

Cni , its complement or the empty set. Thus, what we only need to show is that for any n and
i the set Cni ∈ B(S × A). To this end, first note that

Cni = {
(s, a) ∈ S × A : a ∈ A(s, ηS)

}

∩
⋂

j<i

{
(s, a) ∈ S × A : dA

(
α

(ηn)S
i (s), a

)
− dA

(
α

(ηn)S
j (s), a

)
< 0

}

∩
⋂

j>i

{
(s, a) ∈ S × A : dA

(
α

(ηn)S
j (s), a

)
− dA

(
α

(ηn)S
i (s), a

)
< 0

}C
.

The first set is the graph of A(·, ηS), which is closed by (A4). To show that each of the
K (ηn)S

1
n

−1 other sets is Borel, we only need to note that for any two functions g : A× A → R

and h : S → A such that g is continuous and h Borel-measurable, the set {(s, a) ∈ S × A :
g(h(s), a) < 0} is Borel, as (s, a) �→ g(h(s), a) is a composition of Borel functions and
hence also a Borel function. This leads us to the conclusion that each Cni is also Borel as a
finite intersection of Borel sets, which proves that functions fn(B|·) are measurable.

Next, let us define

εn := sup
s∈S

sup
a∈A(s,ηS)

min
i :1≤i≤K

(ηn )S
1
n

dA
(
a, α

(ηn)S
i (s)

)
.

We will show that εn →n→∞ 0. Suppose it is not the case, which means that there exists a
subsequence of {εn} converging to some β > 0. Without loss of generality, we may assume



234 Dynamic Games and Applications (2020) 10:222–256

that it is the entire sequence {εn} that converges to β. This implies that for n big enough there
exist sn ∈ S and an ∈ A(sn, ηS) such that

min
i :1≤i≤K

(ηn )S
1
n

dA
(
an, α

(ηn)S
i (sn)

)
>

β

2
(12)

Since A and S are compact, there exists a subsequence of {sn, an}, {snk , ank }, converging to
some (s∗, a∗). The values of A are closed, so a∗ ∈ A(s∗, ηS). Next, since by assumption
(A4) A is continuous, there exists another sequence {̂ank } such that ânk ∈ A(snk , (ηnk )S) for

each k and limk→∞ ânk = a∗. From the definition of functions α
(ηn)S
i , we know that for each

k there exists an ik such that

dA
(
α

(ηnk )S

ik
(snk ), ânk

)
<

1

nk
. (13)

Then

min
i :1≤i≤K

(ηnk )S
1
nk

dA
(
ank , α

(ηnk )S

i (snk )
)

≤ dA
(
ânk , α

(ηnk )S

ik
(snk )

)
+ dA

(
ânk , ank

)
.

However, this, together with (13), and the fact that {ank } and {̂ank } have the same limit imply
that

lim
k→∞ min

i :1≤i≤K
(ηnk )S
1
nk

dA
(
ank , α

(ηnk )S

i (snk )
)

= 0,

so for k large enough

min
i :1≤i≤K

(ηnk )S
1
nk

dA
(
ank , α

(ηnk )S

i (snk )
)

<
β

4
,

which contradicts (12).
Now, using the above fact about the sequence of εn we prove that �( fn, p fn ,ηn ) ⇒

�( f , p f ,η). We do it in three steps. In step 1, we prove by induction that for any fixed values
of k ∈ N and s ∈ S, Qk(·|s, fn, ηn) → Qk(·|s, f , η).

Let us take any ε > 0. For k = 1 and any B ∈ B(S), we have

|Q1(B|s, fn, ηn) − Q1(B|s, f , η)|
=

∣
∣
∣
∣

∫

A
Q(B|s, a, ηn) fn(da|s) −

∫

A
Q(B|s, a, η) f (da|s)

∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

K
(ηn )S
1
n∑

i=1

∫

An
i (s)

Q
(
B|s, α(ηn)S

i (s), ηn
)
f (da|s) − Q(B|s, a, η) f (da|s)

∣
∣
∣
∣
∣
∣
∣
∣

≤
K

(ηn )S
1
n∑

i=1

∫

An
i (s)

|Q
(
B|s, α(ηn)S

i (s), ηn
)

− Q(B|s, a, η)| f (da|s).

The function Q(B|s, ·, ·) is by (A2) continuous on a compact domain A × �(S × A),
hence uniformly continuous. Then there exists a ζ > 0 such that for any a1, a2 ∈ A such
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that dA(a1, a2) < ζ and τ1, τ2 ∈ �(S × A) such that ρS×A(τ1, τ2) < ζ , |Q(B|s, a1, τ1) −
Q(B|s, a2, τ2)| < ε. If we now take an n0 such that for n ≥ n0, ρS×A(ηn, η) < ζ and
εn < ζ , we obtain

K
(ηn )S
1
n∑

i=1

∫

An
i (s)

|Q
(
B|s, α(ηn)S

i (s), ηn
)

− Q(B|s, a, η)| f (da|s)

<

K
(ηn )S
1
n∑

i=1

∫

An
i (s)

ε f (da|s) = ε,

which proves that Q1(·|s, fn, ηn) → Q1(·|s, f , η).
Now suppose that for any fixed s, Qk(·|s, fn, ηn) → Qk(·|s, f , η). We will prove the

same is true for k + 1. As before, we fix B ∈ B(S).

|Qk+1(B|s, fn, ηn) − Qk+1(B|s, f , η)|
=

∣
∣
∣
∣

∫

S
Q(B |̂s, fn, ηn)Q

k(d̂s|s, fn, ηn) −
∫

S
Q(B |̂s, f , η)Qk(d̂s|s, f , η)

∣
∣
∣
∣ , (14)

but, as Qk+1(·|s, fn, ηn) → Qk+1(·|s, f , η) by the induction assumption and Q(B |̂s,
fn, ηn) → Q(B |̂s, f , η) for any ŝ by the first step of the induction, Prop. C.12 in [35]
(see also [44] p. 232) implies that (14) goes to zero as n goes to infinity, proving that for any
k ∈ N and s ∈ S, Qk(·|s, fn, ηn) → Qk(·|s, f , η).

The next step of the proof is showing that p fn ,ηn → p f ,η. Take an ε > 0 and fix any
B ∈ B(S) and s0 ∈ S. By Lemma 1,

∣
∣
∣Qk(B|s0, f , τ ) − p f ,τ (B)

∣
∣
∣ ≤

(
1 − γ

2

)k
<

ε

3
(15)

and ∣
∣
∣Qk(B|s0, fn, τn) − p fn ,τn (B)

∣
∣
∣ ≤

(
1 − γ

2

)k
<

ε

3
(16)

for k big enough, say k ≥ k0. Fromwhat we have already shown, we can also find an n0 ∈ N,
such that for n ≥ n0,

∣
∣Qk(B|s0, fn, ηn) − Qk(B|s0, f , η)

∣
∣ <

ε

3
. (17)

If we add (15–17) side by side, we obtain

|p f ,τ (B) − p fn ,τn (B)| ≤
∣
∣
∣Qk(B|s0, f , τ ) − p f ,τ (B)

∣
∣
∣

+ |Qk(B|s0, fn, ηn) − Qk(B|s0, f , η)| +
∣
∣
∣Qk(B|s0, fn, τn) − p fn ,τn (B)

∣
∣
∣ < ε.

The value of ε was arbitrary, so this proves that p fn ,ηn → p f ,η. To end the proof of the
lemma, we only need to show that �( fn, p fn ,ηn ) ⇒ �( f , p f ,η).
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Take any bounded continuous function w : S × A → R.
∣
∣
∣
∣

∫

S×A
w(s, a)�( fn, p fn ,ηn )(ds × da) −

∫

S×A
w(s, a)�( f , p f ,η)(ds × da)

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

S

∫

A
w(s, a) fn(da|s)p fn ,ηn (ds) −

∫

S

∫

A
w(s, a) f (da|s)p f ,η(ds)

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

S

∫

A
w(s, a) f (da|s)p fn ,ηn (ds) −

∫

S

∫

A
w(s, a) f (da|s)p f ,η(ds)

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

S

∫

A
w(s, a) fn(da|s)p fn ,ηn (ds) −

∫

S

∫

A
w(s, a) f (da|s)p fn ,ηn (ds)

∣
∣
∣
∣ (18)

The first term goes to zero as n goes to infinity, as
∫
A w(s, a) f (da|s) is a boundedmeasurable

function and, as we have just shown, p fn ,ηn → p f ,η. To prove that the second term also
converges to zero as n → ∞, take any ε > 0

∣
∣
∣
∣

∫

S

∫

A
w(s, a) fn(da|s)p fn ,ηn (ds) −

∫

S

∫

A
w(s, a) f (da|s)p fn ,ηn (ds)

∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

∫

S

K
(ηn )S
1
n∑

i

∫

An
i (s)

[
w(s, α(ηn)S

i (s)) − w(s, a)
]
f (da|s)p fn ,ηn (ds)

∣
∣
∣
∣
∣
∣
∣
∣

≤
∫

S

K
(ηn )S
1
n∑

i

∫

An
i (s)

∣
∣
∣w(s, α(ηn)S

i (s)) − w(s, a)

∣
∣
∣ f (da|s)p fn ,ηn (ds). (19)

w is a continuous function defined on a compact domain, hence uniformly continuous. Let
thus ζ > 0 be such that for a1, a2 ∈ A and s ∈ A, |w(s, a1)−w(s, a2)| < ε if dA(a1, a2) < ζ

and let n0 be such that εn < ζ for n ≥ n0. Then (19) is smaller than ε. As εwas taken arbitrary,
this proves that the second term in (18) goes to zero as n goes to infinity, ending the proof
that �( fn, p fn ,ηn ) ⇒ �( f , p f ,η). ��

In the next lemma, we show that any state–action distribution satisfying certain invariance
property can be disintegrated into a stationary strategy and an invariantmeasure [as introduced
in part (a) of Lemma 1] corresponding to this strategy. This will allow us to construct the
best response correspondence used in the proof of Theorem 1 as a correspondence on the set
of state–action measures rather than on a set of strategies.

Lemma 4 Let τ ∈ �(S × A) and suppose η ∈ �(S × A) satisfies

ηS(·) =
∫

S×A
Q(·|s, a, τ )η(ds × da) (20)

and ∫

Gr(A(·,τS))
η(ds × da) = 1. (21)

Then there exists a stationary strategy f ∈ F(τS) such that

η(D) =
∫

D
f (da|s)p f ,τ (ds) for D ∈ B(S × A).



Dynamic Games and Applications (2020) 10:222–256 237

Moreover, for any initial distribution of the private state μ0 ∈ �(S)

∫

S×A
r(s, a, τ )η(ds × da) = lim

T→∞
1

T + 1
E

μ0,Q(·|·,·,τ ), f
T∑

t=0

r(st , at , τ ). (22)

Proof It is known from e.g. [36] p. 89, that η satisfying (21) can be disintegrated into a
stochastic kernel f ∈ F(τS) and itsmarginal on S,ηS , that is, satisfying for any D ∈ B(S×A)

η(D) =
∫

D
f (da|s)ηS(ds).

If we input this into (20), we obtain

ηS(·) =
∫

S

∫

A
Q(·|s, a, τ ) f (da|s)ηS(ds) =

∫

S
Q(·|s, f , τ )ηS(ds)

Iterating this equation k times, we obtain

ηS(·) =
∫

S
Qk(·|s, f , τ )ηS(ds). (23)

Now take any B ∈ B(S). By (23) and part (a) of Lemma 1, we have

|ηS(B) − p f ,τ (B)| =
∣
∣
∣
∣

∫

S
Qk(B|s, f , τ )ηS(ds) −

∫

S
p f ,τ (B)ηS(ds)

∣
∣
∣
∣

≤ sup
s∈S

∣
∣
∣Qk(B|s, f , τ ) − p f ,τ (B)

∣
∣
∣

∫

S
ηS(ds) ≤

(
1 − γ

2

)k
.

Passing to the limit as k → ∞, we obtain that ηS = p f ,τ . Now, (22) follows from (9). ��
Proof of Theorem 1 Let us consider the correspondences defined on �(S × A):

�(τ) :=
{

η ∈ �(S × A) : ηS(·) =
∫

S×A
Q(·|s, a, τ )η(ds × da)

and
∫

Gr(A(·,τS))
η(ds × da) = 1

}

,

�(τ) :=
{

η ∈ �(τ) :
∫

S×A
r(s, a, τ )η(ds × da)

≥
∫

S×A
r(s, a, τ )σ (ds × da) for all σ ∈ �(τ)

}

Wewill show that� has a fixed point and then that this fixed point corresponds to a stationary
mean-field equilibrium in the game.

First note that for any τ ∈ �(S × A), and any stationary strategy f ∈ F(τS), η =
�( f , p f ,τ ) ∈ �(τ), as for any B ∈ B(S),

(
�( f , p f ,τ )

)
S (B) = p f ,τ (B) = lim

k→∞ Qk+1(B |̂s, f , τ )

= lim
k→∞

∫

S
Q(B|s, f , τ )Qk(ds |̂s, f , τ ) =

∫

S
Q(B|s, f , τ )

[

lim
k→∞ Qk(ds |̂s, f , τ )

]

=
∫

S
Q(B|s, f , τ )p f ,τ (ds) =

∫

S
Q(B|s, f , τ )�( f , p f ,τ )(ds × da),
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where the first equality and the last equality follow from the definition of �(·, ·), the second
and penultimate ones follow from Lemma 1, the third from the definition of the k + 1-step
transition probability, while the fourth one from the fact that Q(B|·, f , τ ) is a measurable
function bounded by 1.

Next we show that the graph of � is closed in weak convergence topology. To prove that,
first note that for any bounded continuous function w : S → R,

∫
S w(s)Q(ds|·, ·, ·) is, by

the weak continuity of Q, a continuous function. This then implies that for any sequences
ηn, τn ∈ �(S × A) such that ηn ∈ �(τn) with ηn ⇒ η and τn ⇒ τ ,

∫
S w(s)Q(ds|·, ·, τn)

converges continuously to
∫
S w(s)Q(ds|·, ·, τ ); hence, by Theorem 3.3 in [46] we have

∫

S×A

∫

S
w(s)Q(ds |̂s, â, τn)ηn(d̂s × dâ) →

∫

S×A

∫

S
w(s)Q(ds |̂s, â, τ )η(d̂s × dâ),

which means that
∫
S×A Q(·|s, a, τn)ηn(ds × da) ⇒ ∫

S×A Q(·|s, a, τ )η(ds × da). From the
uniqueness of the limit this implies that η = ∫

S×A Q(·|s, a, τ )η(ds × da), hence η ∈ �(τ),
which implies that the graph of � is closed.

Since uτ (η) := ∫
S×A r(s, a, τ )η(ds × da) is clearly a continuous function as by (A1) r

is continuous, it assumes a maximum on �(τ), which implies that for any τ ∈ �(S × A),
�(τ) 
= ∅. From the linearity of integral, it is also clear that for each τ ∈ �(S × A), �(τ)

is convex.
Next we show that the graph of � is closed. Suppose it is not. Then there exist sequences

τn, ηn ∈ �(S × A) such that ηn ∈ �(τn) with ηn ⇒ η and τn ⇒ τ satisfying η /∈ �(τ).
Since the graph of � is closed, this implies that there exists a σ ∈ �(τ) such that

∫

S×A
r(s, a, τ )σ (ds × da) >

∫

S×A
r(s, a, τ )η(ds × da) + ε (24)

for some ε > 0. By Lemma 4, there exists a stationary strategy fσ ∈ F(τS) such that
∫

S×A
r(s, a, τ )σ (ds × da) =

∫

S

∫

A
r(s, a, τ ) fσ (da|s)p fσ ,τ (ds).

Then byLemma 3 there exist stationary strategies f nσ ∈ F((τn)S) such that�( f nσ , p f nσ ,τn ) ⇒
�( fσ , p fσ ,τ ) = σ . By (A1), r is a continuous function; hence, for n large enough, say n ≥ n0,

∣
∣
∣
∣

∫

S×A
r(s, a, τ )�

(
f nσ , p f nσ ,τn

)
(ds × da) −

∫

S×A
r(s, a, τ )σ (ds × da)

∣
∣
∣
∣ <

ε

3
(25)

and ∣
∣
∣
∣

∫

S×A
r(s, a, τ )ηn(ds × da) −

∫

S×A
r(s, a, τ )η(ds × da)

∣
∣
∣
∣ <

ε

3
. (26)

On the other hand, we can easily show that for each n, �( f nσ , p f nσ ,τn ) ∈ �(τn). Suppose it
is not the case. Then there exists a B ∈ B(S) and a ζ > 0 such that

∣
∣
∣
∣p f nσ ,τn (B) −

∫

S
Q

(
B|s, f nσ , τn

)
p f nσ ,τn (ds)

∣
∣
∣
∣ > ζ.

However, by the definition of p f nσ ,τn and the fact that Q(B|·, f nσ , τn) is a boundedmeasurable
function, this can be rewritten for some ŝ ∈ S as

ζ <

∣
∣
∣
∣p f nσ ,τn (B) − lim

k→∞

∫

S
Q

(
B|s, f nσ , τn

)
Qk (ds |̂s, f nσ , τn

)
∣
∣
∣
∣

=
∣
∣
∣
∣p f nσ ,τn (B) − lim

k→∞ Qk+1 (B |̂s, f nσ , τn
)
∣
∣
∣
∣ = ∣

∣p f nσ ,τn (B) − p f nσ ,τn (B)
∣
∣ = 0,
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which is an obvious contradiction. As ηn ∈ �(τn), �( f nσ , p f nσ ,τn ) ∈ �(τn) implies that
∫

S×A
r(s, a, τ )�( f nσ , p f nσ ,τn )(ds × da) ≤

∫

S×A
r(s, a, τn)ηn(ds × da). (27)

Combining (25–27) we obtain
∫

S×A
r(s, a, τ )σ (ds × da) <

∫

S×A
r(s, a, τ )η(ds × da) + 2

3
ε,

which contradicts (24), ending the proof that the graph of � is closed.
The existence of a fixed point of � follows now from Glickberg’s fixed point theorem

[29].
Suppose τ ∗ is this fixed point. By Lemma 4, there exists a stationary strategy f ∗ ∈ F(τ ∗

S )

such that

τ ∗(D) =
∫

D
f ∗(da|s)p f ∗,τ∗(ds) for D ∈ B(S × A)

with p f ∗,τ∗ = τ ∗
S . We will show that ( f ∗, p f ∗,τ∗) is a stationary mean-field equilibrium in

our game.Clearly, as τ ∗ ∈ �(τ ∗),μ0 = p f ∗,τ∗ impliesμt = p f ∗,τ∗ for any t ∈ N. Next, take
any g ∈ F(τ ∗

S ). Using exactly the same arguments as in the proof that�( f nσ , p f nσ ,τn ) ∈ �(τn)

we can show that �(g, pg,τ∗) ∈ �(τ ∗), which, as τ ∗ ∈ �(τ ∗), implies that
∫

S×A
r(s, a, τ ∗)τ ∗(ds × da) ≥

∫

S×A
r(s, a, τ ∗)�(g, pg,τ∗)(ds × da).

However, by Lemma 4 this can be rewritten as

lim
T→∞

1

T + 1
E

μ0,Q(·|·,·,τ ), f ∗
T∑

t=0

r(st , at , τ
∗) ≥ lim

T→∞
1

T + 1
E

μ0,Q(·|·,·,τ ),g
T∑

t=0

r(st , at , τ
∗),

where both sides of the inequality are independent of the initial state distribution μ0, which
implies that J (p f ∗,τ∗ , f ∗, f ∗) ≥ J (p f ∗,τ∗ , g, f ∗). ��
Remark 5 Note that the strong continuity part of assumption (A2) was only used in the proof
of Lemma 3, which, in turn, was used to prove that the graph of � is closed. If we assume
that the feasible action correspondence A(s, μ) does not depend on μ, then we do not need
Lemma 3 for that ( f nσ = fσ ∈ F((τn)S) for any n, as F(μ) ≡ F in that case). Hence, in that
case the thesis of Theorem 1 is true under assumptions (A1), (A2’), (A3) and (A4).

5 Approximate Equilibria of n-Person Stochastic Games

In this section, we present two results showing that under some additional assumptions
stationary equilibria ofmean-field games considered in the previous sectionwell approximate
stationary strategy Nash equilibria of their n-person stochastic counterparts when n is large
enough. The main problem with making such an approximation is that stationary mean-
field equilibria only specify the behaviour of the players for one value of the global state
of the game. It may be enough for the mean-field game, as there we can guarantee that
this initial global state does not change over the course of the game, but certainly is not
enough in case of its n-person counterparts. What we can do there whenever the game is in a
global state different than the one specified by the mean-field equilibrium is to approximate
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it in some sense using the values of the equilibrium strategy specified for the mean-field
equilibrium stationary global state. It turns out, in general, this is not enough to obtain a good
approximation of equilibrium for n-person stochastic counterparts of the mean-field game, as
shown by the following example. It is worth mentioning here that we know of only one other
result of this kind appearing in the mean-field game literature [17]. In that paper, however,
failure of the usual n-player game approximation by its mean-field counterpart is a result of
absorbing states in the model, whereas in the present paper this phenomenon seems to come
from the ergodic cost structure.

Example 2 Consider an average-reward mean-field game with S = {0, 1} = A defined with
the individual transition kernel Q and the reward function r depending only on the state and
the action of the individual and the global state of the game μ rather than the state–action
distribution τ in the following way:

Q(·|s, a, μ) =

⎧
⎪⎪⎨

⎪⎪⎩

(2μ0 − 1)δ0 + 2μ1δ1 if a = 0 and μ0 ≥ 2
3

1
3δ0 + 2

3δ1 if a = 0 and μ0 < 2
3

2μ0+1
3 δ0 + 2μ1

3 δ1 if a = 1

r(s, a, μ) =
{
6s if a = 0
1 − s if a = 1

Q and r clearly satisfy (A1–A4).Wewill show that f ∗ ∈ F prescribing always to take action 0
and stationary distributionμ∗ = 1

3δ0+ 2
3δ1 is a stationarymean-field equilibrium in this game.

μ∗ is clearly a stationary distribution corresponding to f ∗; hence, if the game starts in global
state μ∗ and all the players use strategy f ∗, the global state does not change. Suppose that a
player uses stationary strategy g ∈ F(μ∗) definedwith the formula g(·|s) = αsδ0+(1−αs)δ1
where α0, α1 ∈ [0, 1] against constant global state μ∗. It is easy to see that

Q(·|s, g, μ∗) = αs

(
1

3
δ0 + 2

3
δ1

)

+ (1 − αs)

(
5

9
δ0 + 4

9
δ1

)

= 5 − 2αs

9
δ0 + 4 + 2αs

9
δ1,

which gives unique stationary distribution
(

5−2α1
9+2α0−2α1

, 4+2α0
9+2α0−2α1

)
. Thus, the average reward

corresponding to strategy g and global state μ∗ equals

6α1
4 + 2α0

9 + 2α0 − 2α1
+ (1 − α0)

5 − 2α1

9 + 2α0 − 2α1
= 14α0α1 − 5α0 + 22α1 + 5

9 + 2α0 − 2α1
.

It is tedious but elementary to show that it attains maximum over [0, 1]2 for α0 = α1 = 1
which corresponds to strategy f ∗, which shows that indeed ( f ∗, μ∗) is a stationarymean-field
equilibrium in our game.

Now suppose all the players in n-person counterpart of this game use strategy f ∗. Note
that the situation when all the individual states are zeros is clearly an absorbing state of the
Markov chain of states of the n-person game. Also, regardless of the initial state of the game,
the probability of not reaching it after t stages of the game is no more than

(
1 − 1

3n
)t
, which

goes to zero as t goes to infinity. This clearly implies that after a finite number of stages all
private states become zeros with probability 1. Hence, the average reward corresponding to
the profile consisting of strategies f ∗ in the n-person counterpart of the mean-field game is
0. Now suppose that one of the players changes his strategy to g(·|s, μ) = δ1(·). Then the
game is still absorbed at all private states equal to 0, but the ergodic reward of the player using
strategy g is 1, so the profile of f ∗ is not an ε- stationary Nash equilibrium in the n-person
game for any ε < 1.
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In the following, we present two results showing that under some additional assumption
the mean-field approximation of n-person anonymous stochastic games is good. In the first
one, we consider the case where the individual transitions are independent from the global
state of the game. This kind of assumption often appears in the mean-field game literature.
Notably, it is considered in both existing papers on discrete-time mean-field games with
average rewards [12,48].

Theorem 2 Suppose that ( f ∗, μ∗) is a mean-field equilibrium in a discrete-time mean-field
game with long-run average payoff satisfying assumptions (A1), (A2’), (A3) and (A4).
Assume further that the individual transitions of the players Q(·|s, a, τ ) = Q̃(·|s, a) for
any s ∈ S, a ∈ A and τ ∈ �(S × A) and that the feasible action correspondence A(s, μ)

does not depend on μ. Then for any ε > 0 there exists an n0 such that for any n ≥ n0
the profile of strategies where each player uses strategy f (·|s, μ) ≡ f ∗(·|s) is an ε-Nash
equilibrium in n-person counterpart of the mean-field game.

The proof of this theorem is preceded by a lemma.

Lemma 5 Suppose that Q(·|s, a, τ ) = Q̃(·|s, a) for any s ∈ S, a ∈ A and τ ∈ �(S × A)

and that the feasible action correspondence A(s, μ) does not depend on μ. Then for any
strategies f1, . . . , fn ∈ F such that fi (·|s, μ) = f̃i (·|s) for any s ∈ S, μ ∈ �(S) and
i = 1, . . . , n,

Qk
n(B1 × . . . × Bn |(s1, . . . , sn), f ) = Qk(B1|s1, f1, τ ) · . . . · Qk(Bn |sn, fn, τ )

for any B1, . . . , Bn ∈ B(S), τ ∈ �(S × A) and k ∈ N.

Proof We prove the result by induction. First note that for any B1, . . . , Bn ∈ B(S) and any
τ ∈ �(S × A)

Qn
(
B1 × . . . × Bn |(s1, . . . , sn), f

)

=
∫

A
Q̃(B1|s1, a1) f̃1(da1|s1) · . . . ·

∫

A
Q̃(Bn |sn, an) f̃n(dan |sn)

= Q(B1|s1, f1, τ ) · . . . · Q(Bn |sn, fn, τ ).

Next assume that the statement of lemma is true for k and consider k + 1.

Qk+1
n

(
B1 × . . . × Bn |(s1, . . . , sn), f

)

=
∫

S

∫

A
Q̃(B1|ŝ1, a1) f̃1(da1|ŝ1)Qk(dŝ1|s1, f1, τ )

· . . . ·
∫

S

∫

A
Q̃(Bn |ŝn, an) f̃n(dan |ŝn)Qk(dŝn |sn, fn, τ )

= Qk+1(B1|s1, f1, τ ) · . . . · Qk+1(Bn |sn, fn, τ )

which by the induction principle shows that Qk
n(B1 × . . . × Bn |(s1, . . . , sn) f ) =

Qk(B1|s1, f1, τ ) · . . . · Qk(Bn |sn, fn, τ ) for any k. ��
Proof of Theorem 2 Before we start the actual proof note that since the individual transitions
do not depend on the global state–action distribution τ , neither does p f ∗,τ (the same is true
for any other strategy). Moreover, since by (8) p f ∗,τ must be the invariant distribution of the
Markov chain of individual states of the player corresponding to strategy f and μ∗ is one by
the definition of stationary mean-field equilibrium,

p f ∗,τ = μ∗ for any τ ∈ �(S × A). (28)
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On the other hand, if we combine the results of Lemmas 1 and 5, we immediately see that
for any g ∈ F ,

pn
( f )−i ,g)

= �i−1
j=1 p f ∗,τ · pg,τ · �n

j=i+1 p f ∗,τ = �i−1
j=1μ

∗ · pg,τ · �n
j=i+1μ

∗. (29)

Now, let us take an ε > 0. By (9), (28) and the fact that pg,τ does not depend on τ , for
any g ∈ F we have

J
(
μ∗, g, f ∗) =

∫

S

∫

A
r
(
s, a,�( f ∗, μ∗)

)
g(da|s)pg,τ (ds) (30)

Similarly, by (11) and (29),

Jni
(
s,

(
f ∗−i , g

)) =
∫

Sn

∫

An
r

⎛

⎝si , ai ,
1

n

n∑

j=1

δ(s j ,a j )

⎞

⎠

× f ∗(da1|ds1) · . . . · f ∗(dai−1|dsi−1)g(dai |dsi ) f ∗(dai+1|dsi+1) · . . . · f ∗(dan |dsn)
×μ∗(ds1) · . . . · μ∗(dsi−1)pg,τ (dsi )μ

∗(dsi+1) · . . . · μ∗(dsn). (31)

Let us denote here and in the sequel by �m( f ∗, μ∗), m ∈ N the random measure
describing the empirical distribution of state–action pairs when m players employ global-
state-independent strategy f ∗ when their states are drawn according to μ∗. Then (31) can be
written as

E

[∫

S

∫

A
r

(

si , ai ,
n − 1

n
�n−1( f ∗, μ∗) + 1

n
δ(si ,ai )

)

g(dai |si )pg,τ (dsi )
]

. (32)

We can now write using (30) and (32) that for any g ∈ F ,

|J (μ∗, g, f ∗) − Jni (s, ( f ∗−i , g))| =
∣
∣
∣
∣

∫

S

∫

A
r(s, a,�( f ∗, μ∗))g(da|s)pg,τ (ds)

− E

[∫

S

∫

A
r

(

s, a,
n − 1

n
�n−1( f ∗, μ∗) + 1

n
δ(si ,ai )

)

g(dai |si )pg,τ (dsi )
]∣
∣
∣
∣

≤ E

[∫

S

∫

A

∣
∣
∣
∣r(si , ai ,�n( f ∗, μ∗)) − r

(

si , ai ,
n − 1

n
�n−1( f ∗, μ∗) + 1

n
δ(si ,ai )

)∣
∣
∣
∣

× g(dai |si )pg,τ (dsi )
]

+
∫

S

∫

A

∣
∣r(s, a,�( f ∗, μ∗)) − E

[
r(s, a,�n( f ∗, μ∗))

]∣
∣ g(da|s)pg,τ (ds) (33)

We will now show that the first term on the RHS of (33) is smaller than ε
6 for n large enough

and that the second one is at most twice bigger.
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To show it for the first term, note that for any bounded continuous w : S × A :→ R and
any measure τ̃ ∈ �(S × A)

∣
∣
∣
∣E

[∫

S

∫

A
w(s, a)

(
n − 1

n
�n−1( f ∗, μ∗) + 1

n
τ̃

)

(ds × da)

]

− E

[∫

S

∫

A
w(s, a)�n( f ∗, μ∗)(ds × da)

]∣
∣
∣
∣ =

∣
∣
∣
∣
1

n
E

[∫

S

∫

A
w(s, a)̃τ (ds × da)

]

+n − 1

n
E

[∫

S

∫

A
w(s, a)�n−1( f ∗, μ∗)(ds × da)

]

−n − 1

n
E

[∫

S

∫

A
w(s, a)�n−1( f ∗, μ∗)(ds × da)

]

− 1

n
E

[∫

S

∫

A
w(s, a)�1( f ∗, μ∗)(ds × da)

]∣
∣
∣
∣ = 1

n

∣
∣
∣
∣E

[∫

S

∫

A
w(s, a)̃τ (ds × da)

−
∫

S

∫

A
w(s, a)�1( f ∗, μ∗)(ds × da)

]∣
∣
∣
∣ ≤ 2‖w‖∞

n
.

If we now take n1 such that for every s ∈ S, a ∈ A and τ 1, τ 2 ∈ �(S × A) such that
ρS×A(τ 1, τ 2) < 2

n1
, |r(s, a, τ 1)−r(s, a, τ 2)| < ε

6 , we immediately obtain that the first term
on the RHS of (33) is smaller than ε

6 .
To show the inequality for the second term note that by Corollary 2.5 in [14], there exist

positive constants C1 and C2 such that

P
�( f ∗,μ∗)

{

W1(�( f ∗, μ∗),�n( f ∗, μ∗)) >
2

n1

}

≤ C1e−C2n .

If we take n2 ≥ n1 such that C1e−C2n2 < ε
12‖r‖∞ , we can rewrite the second term on the

RHS of (33) as

P
�( f ∗,μ∗)

{

W1(�( f ∗, μ∗),�n( f ∗, μ∗)) ≤ 2

n1

}∫

S

∫

A

∣
∣
∣r(s, a,�( f ∗, μ∗))

− E

[

r(s, a,�n( f ∗, μ∗))
∣
∣
∣W1(�( f ∗, μ∗),�n( f ∗, μ∗)) ≤ 2

n1

]∣
∣
∣
∣ g(da|s)pg,τ (ds)

+P
�( f ∗,μ∗)

{

W1(�( f ∗, μ∗),�n( f ∗, μ∗)) >
2

n1

}∫

S

∫

A

∣
∣
∣r(s, a,�( f ∗, μ∗))

− E

[

r(s, a,�n( f ∗, μ∗))
∣
∣
∣W1(�( f ∗, μ∗),�n( f ∗, μ∗)) >

2

n1

]∣
∣
∣
∣

× g(da|s)pg,τ (ds) < 1 · ε

6
+ ε

12‖r‖∞
· 2‖r‖∞ = ε

3

for n ≥ n2, where the inequality follows from the definition of n2 and the fact that W1

majorizes ρ. This shows that for n ≥ n2,

∣
∣J

(
μ∗, g, f ∗) − Jni

(
s,

(
f ∗−i , g

))∣
∣ <

ε

2
(34)

for any g ∈ F and s ∈ Sn .
By the definition of stationary mean-field equilibrium, for any g ∈ F ,

J
(
μ∗, f ∗, f ∗) ≥ J

(
μ∗, g, f ∗).
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If we combine it with (34) applied to strategies g and f ∗, we obtain

Jni
(
s, ( f ∗)

) ≥ Jni
(
s, ( f ∗−i , g)

) − ε

for n ≥ n2, which shows that for such an n the profile of f ∗ strategies is an ε-Nash equilibrium
in the n-person stochastic counterpart of the mean-field game. ��

It turns out that when we assume that the transitions of the players depend on the global
state–action distribution, obtaining a result linking equilibria in the mean-field game with
ε-equilibria in its n-person counterparts requires some very strong assumptions both about
the transition kernel Q and about the mean-field game equilibrium strategy, which can imply
the independence from τ of the invariant measure of the Markov chain governed by the
transition probability Q(·|s, g, τ ) for any given strategy g. This kind of conditions is used in
the next theorem. What is worse though is that in that case we can no longer show that the
profile of mean-field equilibrium strategies is an ε-equilibrium in n-person counterpart of the
mean-field game for n large enough in the class of all stationary strategies of the players F ,
but we need to limit ourselves to the class defined as follows.

FL = { f ∈ F : f is weakly continuous and for any s ∈ S,

f (·|s, ·) is weakly Lipschitz continuous with constant L} .

Theorem 3 Suppose that ( f ∗, μ∗) is a mean-field equilibrium in a discrete-time mean-field
game with long-run average payoff satisfying assumptions (A1–A4). Assume further that:

(a) The stationary strategy f defined with the formula f (·|s, μ) = f ∗(·|s) for any s ∈ S and
μ ∈ �(S) is an element of F . Moreover, it is weakly Lipschitz continuous with constant
β f as a function of s.

(b) The transition kernel Q satisfies for any s ∈ S, a1, a2 ∈ A and τ1, τ2 ∈ �(S × A)

‖Q(·|s, a1, τ1) − Q(·|s, a2, τ2)}‖v ≤ βQ(max{dA(a1, a2), ρS×A(τ1, τ2)}). (35)

(c) The constants β f , βQ satisfy βQ(1 + β f ) <
γ
2 .

Then for any ε > 0 and L > 0 there exists an n0 such that for any n ≥ n0 the profile of
strategies where each player uses strategy f is an ε-Nash equilibrium in the class (FL)n in
the n-person counterpart of the mean-field game.

The proof of the theorem is preceded by three lemmas. In the first one, we prove that under
the assumptions of Theorem 3 the invariant measures of the process of individual states of
any given player in the mean-field game are uniquely determined given a strategy of this
player and that of his opponents, which, as shown in Example 1, is not true in general.

Lemma 6 Suppose that all the assumptions of Theorem 3 are satisfied. Then for any g ∈ F
there exists exactly one μg f ∈ �(S) such that for any B ∈ B(S),

μg f (B) =
∫

S
Q

(
B|s, g,�( f , μ f f )

)
μg f (ds). (36)

Moreover, μg f = pg,�( f ,μ f f ).

Proof We start by defining the operator M f : �(S) → �(S) as follows:

M f (μ) = p f ,�( f ,μ).



Dynamic Games and Applications (2020) 10:222–256 245

In what follows, we will show that M f is a contraction mapping. Let w : S × A → R be a
function with ‖w‖BL ≤ 1 and let μ be an arbitrary element of �(S). We define

w
μ
f (s) :=

∫

A
w(s, a) f (da|s, μ).

For any s1, s2 ∈ S, we have

|wμ
f (s1) − w

μ
f (s2)| =

∣
∣
∣
∣

∫

A
w(s1, a) f (da|s1, μ) −

∫

A
w(s2, a) f (da|s2, μ)

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

A
w(s1, a)( f (da|s1, μ) − f (da|s2, μ))

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

A
(w(s1, a) − w(s2, a)) f (da|s2, μ)

∣
∣
∣
∣

≤ β f dS(s1, s2)‖w‖BL + dS(s1, s2)‖w‖BL = (1 + β f )dS(s1, s2),

where the last inequality follows from the Lipschitz continuity of f and w. This proves that
w

μ
f is a (1+ β f )-Lipschitz continuous function. Next let μ1, μ2 ∈ �(S). We will show that

�( f , ·) is Lipschitz continuous with the same constant.
∣
∣
∣
∣

∫

S×A
w(s, a)�( f , μ1)(ds × da) −

∫

S×A
w(s, a)�( f , μ2)(ds × da)

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

S

∫

A
w(s, a) f (da|s, μ1)μ1(ds) −

∫

S

∫

A
w(s, a) f (da|s, μ2)μ2(ds)

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

S

∫

A
w(s, a) f (da|s, μ2)(μ1 − μ2)(ds)

∣
∣
∣
∣

≤ (1 + β f )‖w‖BLρS(μ1, μ2) ≤ (1 + β f )ρS(μ1, μ2),

where the second equality is true because f does not depend on the global state while the
penultimate inequality makes use of the Lipschitz continuity of w

μ2
f . Obviously, this implies

that
ρS×A(�( f , μ1),�( f , μ2)) ≤ (1 + β f )ρS(μ1, μ2) (37)

and further that

‖Q(·|s, f ,�( f , μ1)) − Q(·|s, f ,�( f , μ2))‖v

=
∥
∥
∥
∥

∫

A
Q(·|s, a,�( f , μ1)) f (da|s, μ1) −

∫

A
Q(·|s, a,�( f , μ2)) f (da|s, μ2)

∥
∥
∥
∥

v

=
∥
∥
∥
∥

∫

A
(Q(·|s, a,�( f , μ1)) − Q(·|s, a,�( f , μ2))) f (da|s, μ1)

∥
∥
∥
∥

v

≤ (1 + β f )βQρS(μ1, μ2), (38)

where the last inequality follows from (37) and (35).
Next, (38), (52) and Corollary 2 in [41] imply that

‖M f (μ1) − M f (μ2)‖v ≤ βQ(1 + β f )ρS(μ1, μ2)

1 − (
1 − γ

2

) = βρS(μ1, μ2),

where β := 2βQ(1+β f )

γ
< 1. Since ρS(M f (μ1), M f (μ2)) ≤ ‖M f (μ1) − M f (μ2)‖v , this

implies that M f is a contraction mapping from �(S) into itself. As �(S) is compact metric
and hence complete, Banach fixed point theorem [33] implies that it has a unique fixed point,
say μ f f . Note, however, that by (8) μ f f = p f ,�( f ,μ f f ) implies (36). Moreover, if some
μ̃ 
= μ f f satisfies (36), it is an invariant distribution of the Markov chain of individual states
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of a player corresponding to f and μ̃ and hence (by the uniqueness of the invariant measure
for a geometrically ergodic Markov chain) it must be equal to p f ,�( f ,μ̃). Then (8) implies it
is a fixed point of M f which contradicts the uniqueness of such a fixed point. This establishes
the first part of the lemma for g = f .

To prove the lemma for g 
= f , note that by (8), pg,�( f ,μ f f ) is an invariant measure
corresponding to the Markov chain of individual states of a player when the behaviour of
other players is distributed according to the distribution �( f , μ f f ), so μg f = pg,�( f ,μ f f )

satisfies (36). As by Lemma 1, the chain is geometrically ergodic, the invariant measure is
unique, so μg f = pg,�( f ,μ f f ). ��

The next lemma provides a strong technical result which will be repeatedly used to prove
the convergence of the utilities in n-person counterparts of the mean-field game to those in
the mean-field game as n goes to infinity.

Lemma 7 (a) Suppose f is as given in Theorem 3 and let g1, h1, g2, h2 . . . ∈ FL . Let
further μn

f , μ
n
g, μ

n
h ∈ �(S), n = 1, 2, . . . and τ ng = �(gn(·|·, μn

f ), μ
n
g), τ nh =

�(hn(·|·, μn
f ), μ

n
h)and τ nf = �( f (·|·, μn

f ), μ
n
f ). If there exists a sequence {nm} such that

τ
nm
g ⇒m→∞ τ ∗

g , τ
nm
h ⇒m→∞ τ ∗

h and τ
nm
f ⇒m→∞ τ ∗

f for some τ ∗
g , τ ∗

h , τ ∗
f ∈ �(S × A),

then for any continuous function u : S × A × �(S × A) → R the following is true:

∫

Snm

∫

Anm
u

(

si , ai ,
1

nm

nm∑

k=1

δ(sk ,ak )

)

g

(

dai |si , 1

nm

nm∑

k=1

δsk

)

× h

(

dal |sl , 1

nm

nm∑

k=1

δsk

)

� j 
=i,l f

(

da j |s j , 1

nm

nm∑

k=1

δsk

)

×μnm
g (dsi )μ

nm
h (dsl)� j 
=i,lμ

nm
f (ds j ) →m→∞

∫

S

∫

A
u(si , ai , τ

∗
f )τ

∗
g (dsi × dai ) (39)

(b) If for each n, gn = g, then the RHS of (39) can be written as
∫

S

∫

A
u
(
si , ai , τ

∗
f

)
g(dai |si ,

(
τ ∗
f

)
S)
(
τ ∗
g

)
S(dsi ).

Proof First note that the function � : (�(S × A))2 → R defined by

�(τ, η) =
∫

S×A
u(s, a, τ )η(ds × da)

is clearly continuous as for τn ⇒ τ and ηn ⇒ η we have
∣
∣
∣
∣

∫

S×A
u(s, a, τn)ηn(ds × da) −

∫

S×A
u(s, a, τ )η(ds × da)

∣
∣
∣
∣ →n→∞ 0

by Theorem 3.3 in [46].

To complete the proof of the lemma let us introduce some additional notation. Let
[
τ nf

]k
be

a random measure describing empirical distribution when k players’ behaviour is consistent
with the distribution τ nf , that is,

[
τ nf

]k = �k
(
f , μn

f

)
.
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Note that
∫

Sn

∫

An
u

(

si , ai ,
1

n

n∑

k=1

δ(sk ,ak )

)

gn

(

dai |si , 1
n

n∑

k=1

δsk

)

hn

(

dal |sl , 1
n

n∑

k=1

δsk

)

×� j 
=i,l f

(

da j |s j , 1
n

n∑

k=1

δsk

)

μn
g(dsi )μ

n
h(dsl)� j 
=i,lμ

n
f (ds j )

can be written using random measures
[
τ nf

]k
as

E

[∫

S2

∫

A2
u

(

si , ai ,
n − 2

n

[
τ nf

]n−2 + 1

n
δ(si ,ai ) + 1

n
δ(sl ,al )

)

×gn

(

dai |si , n − 2

n

([
τ nf

]n−2
)

S
+ 1

n
δsi + 1

n
δsl

)

× hn

(

dal |sl , n − 2

n

([
τ nf

]n−2
)

S
+ 1

n
δsi + 1

n
δsl

)

μn
g(dsi )μ

n
h(dsl)

]

(40)

We next take any ε > 0. At the beginning of the proof, we have shown that the function � is
continuous. As its domain (�(S × A))2 is compact, the continuity is uniform. Let ζ > 0 be
such that

(
ρS×A

(
τ, τ ′) < 2ζ and ρS×A

(
η, η′) < ζ

) �⇒ |�(τ, η) − �
(
τ ′, η′)| <

ε

3
. (41)

By Corollary 2.4 in [14], there exist positive constants C1 and C2 such that for any7 n and k,

P
τ nf

{
W1(τ

n
f , [τ nf ]k) ≥ ζ

}
≤ C1e

−C2k .

Letm0 be such thatC1e−C2nm0 < ε
3‖u‖∞ , ρS×A(τ

nm
g , τ ∗

g ) < ζ form ≥ m0, ρS×A(τ
nm
f , τ ∗

f ) <

ζ for m ≥ m0 and 4L
nm0

< ζ . Then for m ≥ m0, any w : S × A → R with ‖w‖BL ≤ 1 and

any fixed si , sl ∈ S, ai , al ∈ A:
∫

S×A
w(s, a)

(
nm − 2

nm

[
τ
nm
f

]nm−2 + 1

nm
δ(si ,ai )

+ 1

nm
δ(sl ,al ) −

[
τ
nm
f

]nm
)

(ds × da)

=
∫

S×A
w(s, a)

(
nm − 2

nm

[
τ
nm
f

]nm−2 + 1

nm
δ(si ,ai ) + 1

nm
δ(sl ,al )

− nm − 2

nm

[
τ
nm
f

]nm−2 − 2

nm

[
τ
nm
f

]2
)

(ds × da)

= 1

nm

∫

S×A
w(s, a)

(

δ(si ,ai ) + δ(sl ,al ) −
[
τ
nm
f

]2
)

(ds × da) ≤ 4

nm
,

whence

ρS×A

(
nm − 2

nm

[
τ
nm
f

]nm−2 + 1

nm
δ(si ,ai ) + 1

nm
δ(sl ,al ),

[
τ
nm
f

]nm
)

<
4

nm

7 See also Theorems A.6 and 2.3 in [14], defining the constants appearing in Corollary 2.4. The fact that the
constants C1 and C2 can be taken independently from n follows from compactness of S × A—then K in
Theorem 2.3 can be taken equal to S × A and a in Theorem A.6 may be arbitrary.
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with probability 1. This implies

ρS×A

(

�

(

gnm

(

·|·, nm − 2

nm

[(
τ
nm
f

]nm−2
)

S
+ 1

nm
δsi + 1

nm
δsl

)

, μnm
g

)

,

�
(
gnm

(
·|·,

[
τ
nm
f

]nm)
, μnm

g

))
≤ 4L

nm
(42)

with probability 1.
Then we can write as follows:

∣
∣
∣
∣E

[∫

S2

∫

A2
u

(

si , ai ,
nm − 2

nm

[
τ
nm
f

]nm−2 + 1

nm
δ(si ,ai ) + 1

nm
δ(sl ,al )

)

× gnm

(

dai |si , nm − 2

nm

([
τ
nm
f

]nm−2
)

S
+ 1

nm
δsi + 1

nm
δsl

)

× hnm

(

dal |sl , nm − 2

nm

([
τ
nm
f

]nm−2
)

S
+ 1

nm
δsi + 1

nm
δsl

)

× μnm
g (dsi )μ

nm
h (dsl)

]
−

∫

S

∫

A
u(si , ai , τ

∗
f )τ

∗
g (dsi × dai )

∣
∣
∣
∣

≤ P
τ
nm
f

{
W1(τ

nm
f , [τ nmf ]nm ) ≥ ζ

}

×
∣
∣
∣
∣E

[∫

S2

∫

A2
u

(

si , ai ,
nm − 2

nm

[
τ
nm
f

]nm−2 + 1

nm
δ(si ,ai ) + 1

nm
δ(sl ,al )

)

× gnm

(

dai |si , nm − 2

nm

([
τ
nm
f

]nm−2
)

S
+ 1

nm
δsi + 1

nm
δsl

)

× hnm

(

dal |sl , nm − 2

nm

([
τ
nm
f

]nm−2
)

S
+ 1

nm
δsi + 1

nm
δsl

)

× μnm
g (dsi )μ

nm
h (dsl)

∣
∣
∣W1(τ

nm
f , [τ nmf ]nm ) ≥ ζ

]

−
∫

S

∫

A
u(si , ai , τ

nm
f )gnm

(
dai |si ,

(
τ
nm
f

)

S

)
(τ nmg )S(dsi )

∣
∣
∣
∣

+P
τ
nm
f

{
W1(τ

nm
f , [τ nmf ]nm ) < ζ

}

×
∣
∣
∣
∣E

[∫

S2

∫

A2
u

(

si , ai ,
nm − 2

nm

[
τ
nm
f

]nm−2 + 1

nm
δ(si ,ai ) + 1

nm
δ(sl ,al )

)

× gnm

(

dai |si , nm − 2

nm

([
τ
nm
f

]nm−2
)

S
+ 1

nm
δsi + 1

nm
δsl

)

× hnm

(

dal |sl , nm − 2

nm

([
τ
nm
f

]nm−2
)

S
+ 1

nm
δsi + 1

nm
δsl

)

× μnm
g (dsi )μ

nm
h (dsl)

∣
∣
∣W1(τ

nm
f , [τ nmf ]nm ) < ζ

]

−
∫

S

∫

A
u(si , ai , τ

nm
f )gnm

(
dai |si ,

(
τ
nm
f

)

S

)
(τ nmg )S(dsi )

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

S

∫

A
u(si , ai , τ

nm
f )gnm

(
dai |si ,

(
τ
nm
f

)

S

)
(τ nmg )S(dsi )

−
∫

S

∫

A
u(si , ai , τ

∗
f )τ

∗
g (dsi × dai )

∣
∣
∣
∣ <

ε

3
+ ε

3
+ ε

3
= ε, (43)
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where the last inequality makes use of (41), (42) and the fact that W1 dominates ρ. As ε was
arbitrary, this ends the proof of part (a) of the lemma.

To prove part (b), first note that clearly τ
nm
g ⇒m→∞ τ ∗

g implies μ
nm
g = (τ

nm
g )S ⇒m→∞

(τ ∗
g )S . Then, note that if we replace the last term on the LHS of (43) with8

∣
∣
∣
∣

∫

S

∫

A
u(si , ai , τ

nm
f )g

(
dai |si ,

(
τ
nm
f

)

S

)
(τ nmg )S(dsi )

−
∫

S

∫

A
u(si , ai , τ

∗
f )g(dai |si ,

(
τ ∗
f

)

S
)(τ ∗

g )S(dsi )

∣
∣
∣
∣ (44)

and show that it is still smaller than ε
3 for m big enough, we obtain the thesis of part (b) of

the lemma. Note, however, that for any sequence of elements of S, sni →n→∞ si ,

∣
∣
∣
∣

∫

A
u
(
sni , ai , τ

nm
f

)
g
(
dai |sni ,

(
τ
nm
f

)

S

)
−

∫

A
u(si , ai , τ

∗
f )g

(
dai |si ,

(
τ ∗
f

)

S

)∣∣
∣
∣

goes to zero as n → ∞ by Theorem 3.3 in [46]. Then we can use the same theorem once
more to obtain (44). We can now take m1 ≥ m0 such that the quantity in (44) is smaller than
ε
3 for m ≥ m1 to obtain the thesis of part (b) of the lemma. ��

In the last lemma, we prove the convergence of the unique invariant measures of the
process of individual states of a player corresponding to given strategies of the player and his
opponents in n-person counterparts of the mean-field game to those in the mean-field game.

Lemma 8 Suppose that all the assumptions of Theorem 3 are satisfied. Then for any g ∈ Fc,

p(n)

g,[ f −i ,g] ⇒n→∞ μg f .

Proof To start the proof, first note that for any bounded continuous v : S → R,

∫

S
v(s)p(n)

g,[ f −i ,g](ds) =
∫

Sn
v(si )p

n
[ f −i ,g](ds1 × . . . × dsn)

=
∫

Sn

∫

An

∫

S
v(̂si )Q

(

d̂si |si , ai , 1
n

n∑

k=1

δ(sk ,ak )

)

g

(

dai |si , 1
n

n∑

k=1

δsk

)

×� j 
=i f

(

da j |s j , 1
n

n∑

k=1

δsk

)

pn[ f −i ,g](ds1 × . . . × dsn), (45)

where the first equality follows from part (b) of Lemma 1, while the second from (10).
Let now τ ng := �(g, p(n)

g,[ f −i ,g]) and τ nf := �( f , p(n)

f ,[ f −i ,g]). As �(S × A) is com-

pact metric, every sequence {(τ nmg , τ
nm
f )} must contain a convergent subsequence. Let

τ ∗
g = liml→∞ τ

nml
g and τ ∗

f = liml→∞ τ
nml
f .

8 We make use here of the assumption that gn = g for each n.
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We can now use Lemma 7 for sequences μ
nm
g = p(nm )

g,[ f −i ,g] and μ
nm
f = μ

nm
h = p(nm )

f ,[ f −i ,g]
(with τ nh = τ nf ) and the function u(si , ai , τ ) = ∫

S v(̂si )Q(d̂si |si , ai , τ ), obtaining

∫

Snml

∫

Anml

∫

S
v(̂si )Q

⎛

⎝d̂si |si , ai , 1

nml

nml∑

k=1

δ(sk ,ak )

⎞

⎠ g

⎛

⎝dai |si , 1

nml

nml∑

k=1

δsk

⎞

⎠

×� j 
=i f

⎛

⎝da j |s j , 1

nml

nml∑

k=1

δsk

⎞

⎠ p
(nml )

g,[ f −i ,g](dsi )� j 
=i p
(nml )

f ,[ f −i ,g](ds j )

→m→∞
∫

S

∫

A
u(si , ai , τ

∗
f )g(dai |si , (τ ∗

f )S)(τ
∗
g )S(dsi ),

which, in view of (45) and part (b) of Lemma 1 implies that

∫

S
v(s)(τ ∗

g )S(ds) =
∫

S

∫

A

∫

S
v(̂si )Q(d̂si |si , ai , τ ∗

f )g(dai |si ,
(
τ ∗
f

)

S
)(τ ∗

g )S(dsi )

=
∫

S

∫

S
v(̂si )Q(d̂si |si , g, τ ∗

f )(τ
∗
g )S(dsi )

and consequently
(
τ ∗
g

)
S =

∫

S
Q
( · |si , g, τ ∗

f

)(
τ ∗
g

)
S(dsi ). (46)

Using the same reasoning, but this time taking τ ng := τ nf , τ
n
h := τ ng ,μ

nm
g = μ

nm
f := p(nm )

f ,[ f −i ,g],

μ
nm
h := p(nm )

g,[ f −i ,g] in Lemma 7, we obtain

(
τ ∗
f

)
S =

∫

S
Q
( · |si , f , τ ∗

f

)(
τ ∗
f

)
S(dsi ).

By Lemma 6,μ f f is the only probability measure satisfying this equation; hence, τ ∗
f = μ f f .

Then, if we input τ ∗
f = μ f f into (46), we obtain

(
τ ∗
g

)
S =

∫

S
Q
( · |si , g, μ f f

)(
τ ∗
g

)
S(dsi ),

which, again by Lemma 6, implies that τ ∗
g = μg f .

So far we have shown that (τ
nm
g )S = p(nm )

g,[ f −i ,g] has a subsequence converging to μg f .

However, as the subsequence τ
nm
g was arbitrary, this proves that the entire sequence (τ ng )S =

p(n)

g,[ f −i ,g] converges to μg f . ��

Proof of Theorem 3 Take any g ∈ FL . We start by computing the rewards corresponding to
one player using strategy g against f used by everyone else in the mean-field game and in its
n-person counterpart. Note that by the definition of the mean-field equilibrium and Lemma
6, μ∗ = μ f f = pg,�( f ,μ f f ), hence by (9)

J
(
μ∗, g, f

) =
∫

S
r
(
s, a, ,�

(
f , μ f f

))
g
(
da|s, μ f f

)
μg f (ds). (47)
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Then by (11), for any s ∈ Sn

J in
(
s, [ f −i , g]

) =
∫

Sn

∫

An
r

⎛

⎝si , ai ,
1

n

n∑

j=1

δ(s j ,a j )

⎞

⎠

× g

⎛

⎝dai |si , 1
n

n∑

j=1

δs j

⎞

⎠�k 
=i f

⎛

⎝dak |sk, 1
n

n∑

j=1

δs j

⎞

⎠ pn[ f −i ,g](ds1 × . . . × dsn)

=
∫

Sn

∫

An
r

⎛

⎝si , ai ,
1

n

n∑

j=1

δ(s j ,a j )

⎞

⎠ g

⎛

⎝dai |si , 1
n

n∑

j=1

δs j

⎞

⎠

×�k 
=i f

⎛

⎝dak |sk, 1
n

n∑

j=1

δs j

⎞

⎠ p(n)

g,[ f −i ,g](dsi )� j 
=i p
(n)

f ,[ f −i ,g](ds j ). (48)

As r is continuous, by Lemma 7 the RHS of (48) converges to the RHS of (47) as n goes
no infinity. Thus, the mean-field equilibrium inequality (note that for μ = μ∗ f (·|s, μ) =
f ∗(·, s, μ) for any s ∈ S)

J
(
μ∗, f , f

) ≥ J
(
μ∗, g, f

)

implies that for any ε > 0 there exists an Ng ∈ N such that

J in
(
s, f

) ≥ J in
(
s,

[
f −i , g

]) − ε

for any s ∈ Sn and n ≥ Ng . Thus, to prove the thesis of the theorem we only need to show
that Ng does not depend on the choice of g.

Suppose the contrary, that is, for some ε > 0 there exist a sequence {gn} of elements of
FL and an increasing sequence of integers {Nn} satisfying Nn ≥ Ngn for n = 1, 2, . . . such
that

J iNn (s, f ) < J iNn

(
s, [ f −i , gn]

) − ε. (49)

Then, let us take μn
h = μn

f = p(n)

f ,[ f −i ,gn ], μ
n
g = p(n)

gn ,[ f −i ,gn ], τ
n
h = τ nf = �( f (·|·, μn

f ), μ
n
f )

and τ ng = �(g(·|·, μn
f ), μ

n
g). As�(S×A) is compact, the sequence {τ nf , τ ng } has a convergent

subsequence, say τ
nm
f →m→∞ τ ∗

f and τ
nm
g →m→∞ τ ∗

g . Then we can use part (a) of Lemma
7 to the RHS of

J iNn

(
s, [ f −i , gn]

) =
∫

SNn

∫

ANn
r

⎛

⎝si , ai ,
1

Nn

Nn
∑

j=1

δ(s j ,a j )

⎞

⎠ gn

⎛

⎝dai |si , 1

Nn

Nn
∑

j=1

δs j

⎞

⎠

× �k 
=i f

⎛

⎝dak |sk, 1

Nn

Nn
∑

j=1

δs j

⎞

⎠ p(Nn)

gn ,[ f −i ,gn ](dsi )� j 
=i p
(Nn)

f ,[ f −i ,gn ](ds j ),

obtaining

lim
m→∞ J iNnm

(
s, [ f −i , gnm ]) =

∫

S

∫

A
r
(
si , ai , τ

∗
f

)
τ ∗
g (dsi × dai ). (50)

If we disintegrate τ ∗
g , we obtain a g ∈ F((τ ∗

f )S) (note that for each m the measure τ
nm
g was

concentrated on the graph of A(·, (τ nmf )S); hence, by the continuity of A the limit measure
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τ ∗
g is concentrated on the graph of A(·, (τ ∗

f )S)) and the marginal of τ ∗
g on S satisfying for

any D ∈ B(S × A),

τ ∗
g (D) =

∫

D
g(da|s)(τ ∗

g

)
S(ds).

We can also show (using some straightforward computations) that τ ∗
f can be disintegrated

into f and (τ ∗
f )S . Now we can mimic the proof of Lemma 8 (we only need to replace g in

the definitions of τ ng , τ
n
f , μ

n
g and μn

f with gn there—the rest of the proof is identical) to show
that (τ ∗

f )S = μ f f and (τ ∗
g )S = μg f . Inputting this into (50), we obtain

lim
m→∞ J iNnm

(
s, [ f −i , gnm ])

=
∫

S

∫

A
r(si , ai ,�( f , μ f f ))g(dai |si )μg f (dsi ) = J

(
μ∗, g, f

)
.

Thus, we can pass to the limit in (49), getting

J (μ∗, f , f ) ≤ J (μ∗, g, f ) − ε,

which is a contradiction, as (μ∗, f )was a stationary mean-field equilibrium in the mean-field
game. ��
Remark 6 If in addition to all the assumptions of Theorem 3 we assume that the reward
function r is Lipschitz continuous, we may prove (only slightly complicating the proofs of
Lemmas 6 and 7) that the thesis of the theorem is true under weaker assumptions on stationary
strategy f of the form: There exists a stationary strategy f ∈ F such that f (·|s, μ) = f ∗(·|s)
for any s ∈ S and satisfying

W1( f (·|s, μ1), f (·|s, μ2)) ≤ β f ρS(μ1, μ2) for s ∈ S, μ1, μ2 ∈ �(S),

ρA( f (·|s1, μ), f (·|s2, μ)) ≤ β∗
f dS(s1, s2) for s1, s2 ∈ S, μ ∈ �(S).

Then the constants β f , β
∗
f , βQ need to satisfy βQ(1+2β f +β∗

f ) <
γ
2 . This kind of assump-

tion is still very strong but more likely to be satisfied for a stationary strategy in a mean-field
game when the correspondence A depends on the global state of the game.

6 Concluding Remarks

In the paper, we have presented a model of discrete-time mean-field game with compact
state and action spaces and average reward. Under some strong ergodicity assumption, we
have shown that it possesses a stationary mean-field equilibrium. Next, we have presented an
example showing that in case of average-reward criterion usual approximation of n-person
games with its mean-field counterpart may fail. Finally, we have identified some cases when
stationary equilibria of the mean-field game can approximate well the Nash equilibria of its
n-person stochastic game counterparts. As we have seen, some strong additional assumptions
were required to obtain this kind of results. A natural question arises whether there are other
conditions that can give a good approximation of n-person models by their counterpart with
a continuum of players. One of the directions that we can follow in answering this question
is limiting ourselves to games played on subsets of the real line. In that case, considering
some assumptions of ordinal type rather than general topological properties may give a good
result. Other natural questions are, whether the results from this article can be extended to
games played on general, non-compact state and action sets and whether consideringMarkov



Dynamic Games and Applications (2020) 10:222–256 253

strategies instead of stationary ones can result in a larger class of models where mean-field
limit approximates well its n-person counterparts when n is large. All these questions seem
both interesting and highly nontrivial.
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Appendix

The proof of Lemma 1 To prove part (a), we first show that for any fixed τ ∈ �(S × A) and
any f ∈ F

c := sup
B∈B(S)

sup
s,s′∈S

|Q(B|s, f , τ ) − Q(B|s′, f , τ )| ≤ 1 − γ

2
. (51)

Suppose this inequality is not true. Then there exist s, s′ ∈ S such that

|Q(B|s, f , τ ) − Q(B|s′, f , τ )| > 1 − γ

2
.

This implies that either Q(B|s, f , τ ) > 1 − γ
2 and Q(B|s′, f , τ ) <

γ
2 or Q(B|s′, f , τ ) >

1− γ
2 and Q(B|s, f , τ ) <

γ
2 . Without loss of generality, we may assume the former, which

implies that Q(BC |s, f , τ ) <
γ
2 and Q(B|s′, f , τ ) <

γ
2 . Hence, as by definition

Q(·|s, f , τ ) ≥ inf
a∈A

Q(·|s, a, τ ),

(A3) implies that P(BC ) < 1
2 and P(B) < 1

2 , which is impossible, as P is a probability
measure.

By Ueno’s inequality [47], (51) implies for any k

∥
∥Qk(·|s, f , τ ) − Qk(·|s′, f , τ )

∥
∥

v
≤ 2

(
1 − γ

2

)k
(52)

or equivalently

−
(
1 − γ

2

)k ≤ Qk(B|s, f , τ ) − Qk(B|s′, f , τ ) ≤
(
1 − γ

2

)k

for any B ∈ B(S). If we integrate it side by side with respect to the measure
Qm(ds′|s, μ, f , g), we obtain

−
(
1 − γ

2

)k ≤ Qm+k(B|s, f , τ ) − Qk(B|s, f , τ ) ≤
(
1 − γ

2

)k
, (53)

which means that Qk(·|s, f , τ ) is a Cauchy sequence, whence, as the space of probability
measures with total variation norm is complete, there exists a probability measure psf ,τ such

that ‖Qk(·|s, f , τ ) − psf ,τ‖v →k→∞ 0. The rate of convergence follows directly from (53)
when m goes to infinity. What remains is to show that psf ,τ does not depend on s. Suppose it

http://creativecommons.org/licenses/by/4.0/
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is not true, that is, there exist s, s′ ∈ S such that ‖psf ,τ − ps
′
f ,τ‖v > β > 0. But, clearly there

exists an m such that

∥
∥Qk(·|s, f , τ ) − psf ,τ

∥
∥

v
<

β

3
and

∥
∥Qk(·|s′, f , τ ) − ps

′
f ,τ

∥
∥

v
<

β

3

for k ≥ m and, by (52) there exists a k0 such that

∥
∥Qk(·|s, f , τ ) − Qk(·|s′, f , τ )

∥
∥

v
<

β

3

for k ≥ k0. Combining these inequalities for k = max{m, k0} we obtain
∥
∥psf ,τ − ps

′
f ,τ

∥
∥

v
< β,

which is a contradiction.
To prove part (b) first note that for any s ∈ Sn , μ ∈ �(S) and B ∈ B(Sn),

Qn(B|s, ( f1, . . . , fn)) ≥ γ n Pn(B), (54)

where Pn denotes the product measure on (Sn,B(Sn)) induced by measure P . The rest of
the proof looks exactly the same as the proof of the main part of (a).

To see that pn
f
is a product measure note that by definition for any k Qk

n(·|s, μ, f ) is a

product measure. The norm-limit of product measures must also be a product measure. To
see that pn

fi , f
= pn

f j , f
if fi = f j , note that the Markov chain of states of the game when

strategy profile f is applied is symmetric in the sense that the transitions of individual states
of i and j are the same if their initial individual states are the same, which results in the same
ergodic behaviour in this case. However, in view of the independence of pn

f
from the initial

state s, pn
fi , f

= pn
f j , f

for any initial state of the chain. ��
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48. Więcek P, Altman E (2015) Stationary anonymous sequential games with undiscounted rewards. J Optim
Theory Appl 166(2):686–710

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.


	Discrete-Time Ergodic Mean-Field Games with Average Reward on Compact Spaces
	Abstract
	1 Introduction
	2 The Model
	2.1 Discrete-Time Mean-Field Games
	2.2 n-Person Stochastic Games
	2.3 Notation

	3 Assumptions
	4 The Existence of a Stationary Mean-Field Equilibrium
	5 Approximate Equilibria of n-Person Stochastic Games
	6 Concluding Remarks
	Acknowledgements
	Appendix
	References




