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Abstract This paper presents a novel game theory approach for large-scale deployment of
price-responsive electrical appliances. In the proposed distributed control scheme, each appli-
ance independently schedules its power consumption on the basis of a broadcast demand/price
signal, aiming to complete its task at minimum cost. The conflicting interactions of the appli-
ances, competing for power consumption at the cheapest hours of the day, are modelled
through a differential game with a continuum of players, and efficient deployment of flex-
ible demand is characterized as a Nash equilibrium. A novel approach is adopted to derive
necessary and sufficient equilibrium conditions: intrinsic properties of the problem (price
monotonicity, unidirectionality of power transfers) are exploited to perform an equilibrium
study based on sublevel sets of the considered demand profiles. As a result, it is possible to
determine for which penetration levels of flexible demand, types of appliances and inflexible
demand profiles it is possible to achieve an equilibrium. Such stable configuration is achieved
through the broadcast of a single demand/price signal and does not require iterated exchange
of information between devices and coordinator. In addition, the global optimality of the
equilibrium is proved, necessary conditions for Pareto optimality are derived, and a prelimi-
nary analysis of devices with partial time availability is carried out. The performance of the
proposed control strategy is evaluated in simulation, considering realistic future scenarios of
the UK power system with large penetration of flexible demand.
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Nomenclature

P Rated power of single appliance (KW).

T Minimum time of task completion of single appliance (h).

E Energy required for task completion of single appliance (KWh).
K Initial availability time of single appliance (h).

T Set of distinct parameter values t in the appliances population.
& Set of distinct parameter values E in the appliances population.
H Set of distinct parameter values « in the appliances population.
m(t, E) Unnormalized parameters distribution within the flexible appliances.
f(r) Energy density associated with flexible appliances (GW).
tel[0,T] Time variable and time horizon (h).

D(t) Demand signal broadcast to the appliances (GW).

D; (1) Profile of inflexible demand (GW).

D; (9) Inflexible demand in the measure variable (GW).

Dy p(t) Flexible demand when signal D is broadcast (GW).

Df (9) Flexible demand in the measure variable (GW).

D, p(t) Aggregate demand when signal D is broadcast (GW).

D, (q) Aggregate demand in the measure variable (GW).

u(t) Power consumption of individual appliance (KW).

up,(t, 7, E)  Scheduled power consumption of individual appliance with parameters  and
E when the demand signal D is broadcast (KW).

u*(q, 7, E) Scheduled power consumption of individual appliance with parameters t and
E in the measure variable (KW).

(D) Electricity price function (£/KWh).

C Electricity cost associated with task completion of individual appliance (£).
J Global performance index (£).

Op(d) Cumulative distribution associated with demand profile D.

Ap(q) Negotiable valley capacity associated with demand profile D (GW/h).
Ar(q) Power density of task durations of flexible demand (GW/h).

vey Index and set of flexible appliances.

1 Introduction

The increasing number of flexible loads in the power system, such as “smart” appliances
and electric vehicles, will give customers the possibility to partially schedule their power
consumption and have an active role in the management of the network. The impact and
potential advantages of this development have been widely investigated [1,27,29], showing
how private customers could reduce the cost of their electricity bill with a minimum impact
on their comfort. At the same time, the power system would be able to achieve an improved
reliability, lower energy prices and a more efficient utilization of the existing infrastructure.

The study of flexible demand integration in the electricity market considers real-time pric-
ing tariffs, as described, for example, in [30]: a price signal is broadcast to the devices which
independently determine their power consumption and operate during the hours of the day
with lower electricity prices. Real-time pricing schemes are considered a promising solution
to crucial issues emerging in power systems, such as increased variability and uncertainty
from renewable generation and modified consumption patterns from electrification of trans-
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portation and heating. These elements have been discussed and brought to the attention of
regulators by a substantial number of papers and reports, such as [3,14, 15]. As a result, after
several experimental testbeds, real-time pricing is starting to be implemented in areas with
large penetration of renewables and electric vehicles [4] and further diffusion is expected in
the near future. In this context, the presented analysis establishes whether real-time pricing
can lead to stable market configurations or additional control actions are required to ensure
safe and reliable system operation.

In the implementation of real-time pricing tariffs, it is necessary to consider the global
effect of the appliances power scheduling on aggregate demand and electricity prices. For
example, if all devices operate when energy is expected to be cheaper, demand will increase
at those times, leading to higher prices and therefore suboptimality of their initial operation
strategies. Centralized approaches tackle this problem by considering a global optimization
which is solved by the market operator on the basis of the data provided by generators and
consumers, as proposed in [25,28]. Given the complexity of this problem for high number of
appliances, privacy concerns and the traditional tendency of customers to have full control of
their energy consumption, distributed mechanisms have also been analysed. The feasibility
of this kind of strategies is investigated in [31] which considers the interactions between
the system operator and the appliances as a closed-loop model and studies its stability. A
wide array of different approaches have been proposed for the distributed management of
flexible demand, including stochastic optimization [6] adaptive strategies [11] and Lagrangian
relaxation [23].

Game theory has also been extensively applied to the problem of flexible demand deploy-
ment, as it naturally captures the conflicting interactions between the single devices that
compete for power consumption at the cheapest hours of the day. For example, [19] char-
acterizes the power consumption of the flexible loads as their best response to certain loads
and tariffs. This concept is extended in [21], which proposes participation incentives, and
in [26], which considers a larger time horizon in order to guarantee fairness for the devices
and achieve better global results. Many iterative price-based schemes have been proposed for
distributed coordination of price-responsive devices, in particular for large fleets of electric
vehicles. For instance, [18] calculates, by taking into account the mean behaviour of the
population, a charge profile of the vehicles which corresponds to a Nash equilibrium and is
also globally optimal when the agents are identical. A similar approach is presented in [13],
where an iterative procedure converges to a stable solution by penalizing variations of the
vehicles’ strategies from the previous iterations.

This paper also adopts a game theory framework and extends the preliminary study in [8],
presenting more rigorous theoretical proofs and additional results on equilibrium optimality
and partial flexibility of the appliances. A fully distributed scheme is considered, modelling
the appliances as competing players of a differential game. Each appliance independently
schedules its power consumption in order to complete its assigned task at minimum cost, on
the basis of a demand/price signal broadcast by some central entity. Efficient integration of the
devices in the electricity market is characterized as a Nash equilibrium, with all appliances
having no unilateral interest in changing their operation strategy, formulated on the basis
of the broadcast signal, when the energy price of the resulting aggregate demand profile is
considered. To simplify the equilibrium analysis and the design of the broadcast signal, the
appliances population is described as a continuum, assuming that the impact of the single
device on total demand and electricity price is negligible and only the global behaviour
of the devices population needs to be considered in such sense. Similar approaches have
been previously applied in power systems contexts, studying large-scale market interactions
[16], frequency control provision by thermostatic loads [2], coordination of electric vehicles
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[7] and energy arbitrage with micro-storage devices [9]. The main novelty of the present
work is that the dynamic behaviour of the appliances is implicitly modelled by exploiting
intrinsic properties of the problem (monotonicity of electricity price and unidirectionality of
power exchanges). Consequently, the equilibrium analysis does not involve partial differential
equations and can be performed by focusing on the sublevel sets of the different demand
profiles. This allows to derive necessary and sufficient equilibrium conditions, determining in
which scenarios a fully distributed control strategy can successfully coordinate the appliances.
Such conditions take into account the types of flexible devices, their penetration in the system
and the impact of the other inflexible loads in the grid.

With respect to previous works on the subject [13, 18], the proposed coordination strategy
does not require additional quadratic terms in the cost function of the appliances. Moreover,
it achieves a stable configuration through the broadcast of a single demand/price signal,
avoiding iterated broadcasts by the system operator and repeated power updates by the flexible
loads.

To achieve these results, a power density of task durations is calculated from the distri-
bution of the devices parameter (task time and required energy), describing the valley-filling
capability of the population. Similarly, the inflexible demand profile is characterized by the
negotiable valley capacity, a function that is related to the measure of its different sublevel
sets and quantifies the amount of flexible demand that can be allocated while preserving
an equilibrium. By comparing these two functions, it is possible to verify whether an equi-
librium exists and show that, if this is the case, it can be achieved by simply broadcasting
the price of inflexible demand. The analysis not only determines the scenarios in which a
fully distributed control strategy can be successfully implemented, but it also provides the
theoretical tools required to design additional control actions in the other cases. For instance,
the presented theoretical study is extended in [10], showing that a stable solution can always
be obtained by introducing a time-varying constraint on the power rate of the devices. In the
second part of this paper, the properties of the Nash equilibrium are analysed, showing that
it is always socially efficient and deriving conditions for its Pareto optimality. A preliminary
analysis on devices with partial flexibility is also carried out, and the proposed distributed
scheme is evaluated in simulations, considering a future scenario of the UK power grid with
large penetration of flexible appliances.

The rest of the paper is structured as follows: Sect. 2 models the flexible appliances and the
electricity market, while Sect. 3 describes the coordination problem as a differential game,
introducing the distributed scheme proposed for appliances coordination. The theoretical
analysis on the sublevel sets of the demand profiles is performed in Sect. 4, calculating the
power scheduling of the devices as their best response to a broadcast demand/price signal.
The necessary and sufficient conditions for equilibrium are derived in Sect. 5, evaluating its
optimality properties in Sect. 6. After the qualitative discussions of Sect. 7 and a preliminary
analysis of devices with partial time availability in Sect. 8, simulative results are presented
in Sect. 9.

2 Modelling of Flexible Demand and Electricity Market

To describe the distributed control strategy proposed in the present work, we first analyse the
involved components of the power system, clarifying the main assumptions and modelling
choices required to incorporate them in a unified framework.
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2.1 Flexible Price-Responsive Appliances

We consider electrical appliances that complete an assigned task by scheduling their power
consumption over a certain time horizon [0, T'].

Assumption 1 All flexible devices fulfil the following properties:

— Total flexibility: they can operate and consume power at any time ¢ € [0, T].
— Interruptibility: they can arbitrarily stop and resume their power consumption.

Under Assumption 1, each device can be fully described by two quantities: the total
energy E required to complete its task and the minimum task time 7 (achieved operating at
rated power P = E/t). The appliances are assumed to be price-responsive and to behave
rationally. Each appliance, having received from the system operator a certain demand profile
D(-) (or the corresponding energy price IT1(D(-)), schedules its power consumption  in order
to complete its task at minimum cost:

T
min / I1(D(t)) - u(r)dt
u(-) 0

st. 0<u() < % (D

T
/ u(t)dt = E.
0

We denote by u(-) = u}, (-, T, E) the solution of (1) when the demand signal D is broadcast
and the parameters 7 and E are considered. Existence and uniqueness of u7, will be discussed
in subsequent sections.

For a global description of flexible demand, we preliminarily denote by .7 and &’ the sets of
distinct values within the appliances population for the time and energy parameters t and E,
respectively. The whole set of flexible appliances can be characterized by the unnormalized
distribution m(t, E), where f ;2 f Ifl > m(z, E) dE dt denotes the number of devices for which
E| < E < Ejand 11 < 1t < 13. The properties of the appliances population are abstracted
by the associated energy density f : 7 — R*:

f(1) = / E-m(t, E)dE 2)
&

where f(7) quantifies the total energy required by appliances with parameter t to complete
their tasks. This means that its support corresponds to the set .7 of distinct minimum task
times t of the appliances population. An additional hypothesis, related to the number of
devices and their parameters, is introduced:

Assumption 2 The energy density f is a well-defined and bounded function.

This means that in our study the number of flexible appliances is sufficiently high and their
time parameters 7 are adequately diversified to be described as a continuum. For example,
if all devices had equal T = 7, the density f would correspond to a Dirac delta centred in 7,
thus violating Assumption 2. To simplify our analysis, without loss of generality, we consider
the following expression for the support of f:

supp(f) = .7 = [gmin> gmax] S (0, T]. 3)

Itis now possible to calculate the total variation of power demand D y, p whichis introduced
by the appliances. In this context, we remind that u},(-, 7, E) represents the scheduled power
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consumption of a single device with parameters t and £ when D is broadcast. To calculate
Dy p, itis sufficient to take the weighted integral of u7, over the energy and time parameters:

Df,D(t)Z/q/gu’;)(t,r, E)m(z, E)dE dr. (4)

2.2 Electricity Market and Inflexible Loads

The electricity market has been abstracted by the monotonically increasing function IT :
[0, 400) — [0, +00) which associates, to a certain value of aggregate power demand D, (¢),
the corresponding energy price p(t) = I1(D,(t)). The aggregate demand D, p(¢) (resulting
from the broadcast of the signal D) is given by two different components. These are the
inflexible demand D;, caused by the other loads in the system, and the contribution D ¢, p of
the flexible appliances, defined in (4):

D, p(t) = D;i(t) + Dyp(t) = Di(t) +f / uy(t, , E)ym(z, E) dE dr. 5)
T JE

The inflexible demand D; (assumed to be known a priori) is considered price-inelastic,
i.e. the power consumption profile of each inflexible load is fixed and it is not impacted by
electricity prices.

3 Distributed Control and Nash Equilibria

The proposed scheme for the management and coordination of the appliances consists of four
distinct steps, associated in Fig. 1 with the corresponding interactions between the different
entities:

— Step 1 Ahead of the considered time interval, the system operator receives information on
the flexible devices population (energy density f) and on the inflexible loads (inflexible
demand D;).

— Step 2 Using the data collected at the previous step, the system operator broadcasts to
the appliances a demand signal D (or the equivalent price I1(D)).

System Operator

Ee

®D; QF
(r, F)
InﬂeXibAle‘ Loads @ Flexible Appliances
'Y Da,p, (Da,n)

N —
Electricity «” 2N e ; E]
Market || I | I Dip &

&)

Fig. 1 Distributed control scheme for coordination of flexible appliances
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— Step 3 On the basis of the received demand/price signal, the flexible appliances schedule
their power consumption by solving (1), aiming at completing their tasks at minimum
energy cost. Their resulting total power consumption is equal to Dy, p.

— Step 4 The actual electricity price paid by the flexible appliances, impacted by the flexible
demand Dy p, is equal to IT(Dy, p).

Note that the proposed control scheme is distributed, as the power consumption of the
appliances is not determined by a central entity, but it is instead independently chosen by
each device on the basis of a broadcast demand/price signal.

The problem of designing the broadcast signal D is approached in a game theory context,
considering a differential game with the following elements:

— Players The individual flexible appliances, whose state is described by the variable x (¢).
Such quantity corresponds to the total energy absorbed in the time interval [0, ¢]. If u(¢)
denotes the power consumed by a single device/player at time ¢, it holds:

x(0)=0 x(t)=u.

Since the total energy required for task completion by the individual device equals E,
the following terminal state constraint needs to be considered:

x(T)=E.

— Strategies Each appliance schedules a feasible power profile u : [0, T] — R which
allows completion of its assigned task. For an appliance with parameters E and 7, it must
hold:

T E
/ ut)dt = E Ofu(t)f? vt € [0, T].
0

The power scheduling is performed before the considered time interval [0, T'], and each
device determines u(-) by solving (1) on the basis of the broadcast profile D and its
parameters T and E, setting u(-) = u}")(~, 7, E).

— Objective function Minimization of the energy cost C sustained by the individual device
to complete its task:

T
c:/ T1(Dy.p()u(t) dr.
0

The cost C is the integral over time of the scheduled power u(¢) of the single device,
multiplied by the electricity price IT(D,, p(t)). The latter term depends, through D p
in (5), on the aggregate strategies of the flexible appliances.

In the chosen modelling framework, with large populations of small agents, it is assumed
that the impact of the single player on the global quantities of the system is negligible.
Therefore, the strategy u of the individual player does not significantly impact the aggregate
demand D, p and corresponding electricity price IT1(D, p), which are only affected by
the global behaviour of the players population (through the flexible demand D s, p). This is
similar to mean field games [17], where the interactions between infinitesimal players are
characterized by a unique global quantity, the so-called mean field.

Our main objective is to design the broadcast demand profile D in order to induce a Nash
equilibrium for the game presented above.

Definition 1 For a certain broadcast profile D, a Nash equilibrium is achieved if each appli-
ance has no unilateral interest in changing its scheduled power profile u(-) = u},(-, 7, E)
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when the resulting aggregate demand (and corresponding electricity price) is considered.
Equivalently, the following must hold forallt € 7 and E € &

T T
/ (D, p(t)up(t, T, E)dt = m(lgl / [(Da,p(1))u(t) dt
0 u(: 0

st. 0<u() < g (6)

T
/ u(t)dr = E.
0

As previously mentioned, the total demand D, p and corresponding price I1(D, p) are
only impacted by the global behaviour of the agents. Therefore, the Nash equilibrium can
be expressed as a fixed point: from (6), the power scheduling u7, of the whole population is
optimal for a certain profile of aggregate demand D, p and, at the same time, it induces that
very same profile of demand (through (5)).

The Nash equilibrium is chosen as a control objective as it corresponds to an efficient
operation of the power system. In fact, it ensures low energy costs for the appliances, avoids
“rebound peaks” (described, for example, in [20]) and achieves consistent valley-filling,
with lower generation costs and reduced stress on the grid infrastructure. These properties
are formalized in Sect. 6, where it is shown that the presented notion of Nash equilibrium is
always socially efficient.

4 Analysis on Sublevel Sets of Demand Profiles

In order to determine Nash equilibria conditions for the population of flexible appliances
(provided in the next section), a compact representation of the power scheduling performed
by the individual devices and by the whole population is preliminarily derived. Such analysis
is conducted on the sublevel sets of the different demand profiles, considering the following
quantity Qp:

Definition 2 For a demand signal D : [0, T] — R™, the corresponding cumulative distri-
bution Qp : [dmin, dmax] — [0, T] is defined as:

Op(d) :=pn({r €[0,T]: D(r) <d}) )

where p denotes the Lebesgue measure.

The function Q p(d) returns, for a certain demand value d, the amount of time “spent” by
the signal D at lower values of demand (equivalently price). In the context of our study, the
following hypothesis is introduced:

Assumption 3 The broadcast demand profile is a continuous function D : [0,T] —
[0, +00) with no level sets of positive measure. For any d € Im(D) = [dmin, dmax], it
must hold:

u{tel0,T]: D) =d}) =0. 3

Such assumption is not very restrictive and typically holds for real profiles of inflexible
demand which will be considered in the next section to derive the equilibrium conditions.
Having established in Assumption 3 that the considered broadcast profile D has no level
sets of positive measure, we can infer from (7) that Qp is continuous, strictly monotone
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Fig. 2 Examples of broadcast profiles D(z) (Color figure online)
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Fig. 3 Cumulative distributions Q p (D(z)) for the broadcast demand profiles shown in Fig. 2 (Color figure
online)

increasing, has image equal to [0, T'] and takes the following values at the endpoints of its
domain:

QD(dmin) =0 QD(dmax) =T. (9)

For a better understanding of the relationship between the time variable ¢ and the corre-
sponding measure Q p(D(t)), some comparisons are performed next. Examples of broadcast
demand profiles are shown in Fig. 2, while Fig. 3 contains the corresponding O p(D(#)). The
blue curve D in Fig. 2 is a typical 24h UK demand profile as recorded by [22], and the
corresponding function Qp, in Fig. 3 shows the same monotonicity trends with values in
the interval [0, 24]. The red curve D5 is an example of monotonically increasing profile to
which, by definition, corresponds a linear function Qp,(D2(t)) = t. The last considered
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curve D3 violates Assumption 3 and is constant over an interval of positive measure. This
introduces discontinuities in the measure function Q p,, as shown in Fig. 3.

4.1 Power Scheduling in the Measure Variable

To describe the behaviour of the flexible appliances in response to the broadcast demand
signal D, it is useful to replace the time variable ¢ with the measure ¢ = Qp(D(z)). We
denote the quantities in the new variable with a bar accent.

Definition 3 For a broadcast profile D fulfilling Assumption 3, the corresponding D :
[0, TT — [0, 400) is defined as: B
D(g) = 0p' @) (10)

Note that D(g) represents the demand value which determines a sublevel set of D with
measure g or, alternatively, such that Q p(D(q)) = ¢. The correspondence with the equivalent
function in time is straightforward to derive:

D(Qp(D(1))) = D(t).

Given the definition of Qp provided in (7), D(q) can alternatively be interpreted as the
unnormalized quantile function of the broadcast signal. It is straightforward to extend the
same notation to a specific class of functions p.

Definition 4 Consider a signal D fulfilling Assumption 3 and a function p : [0, T] — R
verifying the following condition:

p(n) = p(2) Vi, 1 €[0,T]: D(11) = D(12). 1D
Define as p : [0, T] — R the unique function which fulfils the following:

p(Qp(D(t)) = p(t) Vrel[0,T].

The function p(q) corresponds to p(¢) evaluated at any time ¢ for which Q p(D(¢)) = ¢ and
is always well defined from (11). As in the previous case, to better understand the proposed
change of variable, we provide a graphical representation of the considered quantities as
functions of the measure g. For each demand profile over time, shown in Fig. 2, the corre-
sponding profile as a function of the measure ¢ is presented in Fig. 4. For example, if one
considers Dj (t), the resulting demand profile in the g variable is given by D;(q) = QB} Q).
Analogous relationships hold between D (¢) and Ds (g) and between D3(¢) and D3 (¢)- Note
that Di(q) corresponds to an increasing “reordering” of the values of Dj(¢), while D(q)
is equal to D;(t) since the latter is increasing in time. For the profile D3, which violates
Assumption 3, there exists a subset of [0, 7] on which Ds (g) is not defined. We now demon-
strate a crucial relationship between functions in the time variable ¢ and the corresponding
quantities in the measure variable ¢ = Qp(D(?)).

Lemma 1 Under Assumption 3, for any integrable function p : [0, T] — R fulfilling (11)
and the corresponding p introduced in Definition 4, the following equalities hold:

T T T
/o p(q)dgq =/0 p(Qp(D@))) dt :/o p(r)dr. (12)
Proof See “Appendix A”. O
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Fig. 4 Representation of the broadcast signals as functions of the measure ¢ (Color figure online)

Applying Lemma 1 with p(¢) = TT(D(¢))u(t), the cost minimization (1) solved by each
device to schedule its power consumption can alternatively be considered in the variable g:

T
min f (D)) - ilg) dg
u(-) 0

st 0<ii(g) < % (13)
T
/0 i(q)dg = E.

Proposition 1 For a broadcast profile D that fulfils Assumption 3, the unique solution
i*(q, t, E) of the cost minimization problem (13), for a device with parameters T and E,
has the following expression:

E
ﬁ*(q,r,E)=[r yast (14)
0 if g>r1

Proof Ttis straightforward to verify the feasibility of u™ for problem (13) as it fulfils both the
integral and inequality constraints. To show that it is also the unique optimizer of (13) (up to
congruence in the £ norm), consider that the integral of a feasible u is fixed and equal to E.
Since i* is a bang—bang control and the price function IT is strictly monotone increasing, it
is sufficient to note that, as a result of the monotonicity of Q p from Assumption 3, it holds:

D(q1) < D(g2) VYq1.92€10.T1: q1 < ¢o. (15)

m}

Notation-wise, it is not necessary to express with the subscript D the dependency of i*
from the broadcast profile as such relationship is implicit through the change of variable

g = Qp(DQ)).
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4.2 Characterization of Flexible and Aggregate Demand
Having calculated the scheduled power it*, it is possible to derive the total demand variation

Df introduced by the appliances population (as a function of the measure ¢) when D is
broadcast. Taking the weighted integral of u™ over the parameters T € .7 and E € & yields:

T
[)f(q)zf /ﬂ*(q,r, E)m(z, E)dEdt:/ /%m(t, E)dE dr
7 Je q J&

T T
=/ 1/ Em(z, E)dE dt =/ /@ dr. (16)
g TJe g T

The equivalent expressions of the scheduled power profile u7, and resulting flexible demand
Dy p in the original time variable can be derived from Definition 4:

up(t, v, E) = u"(Qp(D(1), 7, E) (17a)
Dy p(1) = Dy (Qp(D(1))). (17b)
Given (14), the scheduled power consumption u7, can alternatively be expressed as:
E » 7
Wi, 7. E):{r it 1€ (18)
0 if r¢ . p(r)

where the sublevel set .%p (7) is defined as:
Ip(r):={te€l0,T]: Op(D(@)) < t}. (19)

Note that, as a result of Proposition 1 and Lemma 1, the power profile 7, is optimal for the
energy cost minimization problem (1) in the original time variable.

The corresponding aggregate demand profile D, p as a function of time ¢ can also be
calculated:

Dy, p(t) = Di(t) + Dy.p(t) = Di(t) + Dy (Qp(D())). (20)

In the particular case in which D = D; (viz. inflexible demand is broadcast), the aggregate
demand depends exclusively on the current broadcast value of demand d = D;(¢). Introduc-
ing the function K (d) and reminding that supp(f) = 7 = [¢min> ¢max] from (3), we have:

d . if Op; (d) > qmax
a+ [T a it 0n@ < i
Da.p, = K(d) = dmin T @1)
Gmax
d—i—/ I 4 it 0p,() € supp(f)
op @) T

5 Necessary and Sufficient Conditions for Equilibrium

Having characterized the power demand of the single appliances and of the whole population
in response to a broadcast profile D, we can now design such signal in order to achieve a Nash
equilibrium in the electricity market, as specified in Definition 1. The equilibrium analysis
will compare two different functions in the measure variable ¢ = Qp(D(¢)) which are
related to the chosen broadcast profile D and the energy density f of the flexible appliances
population. The first function, named negotiable valley capacity, quantifies the amount of
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flexible demand that can be greedily allocated by the appliances while preserving the existence
of a Nash equilibrium and is defined as follows:

Definition 5 For a continuous demand profile D : [0, T] — [0, +-o0) fulfilling Assump-
tion 3, the negotiable valley capacity is defined as the function Ap : [0, T] — [0, +00)
presented below:

d _
Ap(q):q — @QDl(q).

This definition is independent of the price of energy IT, and it will serve in the subsequent
analysis as an indicator of flexible power density allowed in the valleys of the inflexible
demand as a function of the measure g.

The second considered function is named power density of task durations and describes
how a certain population of appliances will allocate their power consumption, based on the
distribution m of their parameters t and E:

Definition 6 Forapopulation of flexible appliances with parameter distribution m and energy
density f, we define the power density of task durations as the function A ¢ : [gmin, gmax] =
[0, +00) given below:

Apiqo L@ _ Jo Em@. B)AE

q
Note that As(q) = % is a density function quantifying the total rated power of the
appliances with parameter T = ¢. Therefore, given g1, g2 € supp(f) = 7, the integral
qulz A y(t)dt is equal to the total rated power of the appliances with 7 € [g1, g2]. It will
be argued in the rest of this section that the existence of an equilibrium can be verified by
comparing the values of A y and A p, on the interval supp(f) = -7 = [gmin, gmax]-

Theorem 1 Consider a continuous profile of inflexible demand D; fulfilling Assumption 3.
A Nash equilibrium is achieved in the system for D = D; (as specified in Definition 1) if and
only if:

Af(q) < Ap(q) VYq¢€ T = [qmin» Gmax]- (22)

Proof See “Appendix B”. O

Theorem 1 states that, if the power density A r is lesser or equal than the negotiable valley
capacity A p, on the set .7, a Nash equilibrium can be achieved through a single demand/price
broadcast, communicating the signal D = D; (or equivalently the associated price IT1(D;)) to
the flexible loads. Each device will schedule its power consumption at constant maximum rate
within the sublevel set of D; of appropriate measure, viz. corresponding to its own minimum
time parameter T.

We want to understand next if alternative profiles D, different from D;, could be broadcast
and induce an equilibrium when condition (22) is violated. To this end, let us regard two
broadcast profiles as equivalent if they induce (for almost all times) the same scheduling of
flexible demand. The equivalence class Z; of the signal D; can be characterized as in the
definition below.

Definition 7 Let ; denote the set of broadcast signals Dy, : [0, T] — R™ for which the
following conditions are satisfied for almost all r € [0, T']:
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Op,(Dp(1)) < gmin if Op,; (Di(1)) < gmin (23a)
Op,(Dp(1)) = gmax if Op,; (D (1)) = gmax (23b)
Op,(Dp(1)) = Qp,;(Di (1)) if gmin = Qp; (Di (1)) = gmax (23¢)

From expression (16) of the flexible demand D r» reminding that ¢ = Qp(D(¢)) and
supp(f) = [¢min, gmax], condition (23a) is equivalent to impose that time intervals for which
the flexible demand equals its maximum value f dmax f(©) (r) dt when Dy, and D; are broadcast
coincide up to sets of zero measure. Similarly, condltlon (23b) ensures that the intervals for
which flexible demand is equal to zero when Dp, and D; are broadcast differ for sets of zero
measure. Finally, condition (23c) imposes equality of the flexible demand at all other time
instants. It is now possible to verify that an equilibrium can be achieved only with broadcast
signals D that belong to Z;.

Theorem 2 The Nash equilibrium condition (6) is satisfied for a broadcast profile D = Dy,
fulfilling Assumption 3 if and only if Dy, € 2; and inequality (22) holds.

Proof See “Appendix C”. O

Theorems 1 and 2 provide (respectively) sufficient and necessary conditions for the exis-
tence of a Nash equilibrium as specified in Definition 1. Any broadcast profile in the set Z;
will induce an equilibrium for the resulting aggregate demand if and only if the inequality
(22) between negotiable valley capacity A p, and power density of task durations A y holds.
If this is not the case, a Nash equilibrium cannot be achieved with a broadcast profile D
which fulfils Assumption 3.

6 Optimality Properties of Nash Equilibrium

This section derives fundamental properties of the Nash equilibrium, analytically proving
its social efficiency and providing sufficient conditions for its Pareto optimality. To this end,
it is necessary to adopt a different notation so as to accommodate the more general case
in which the power u(-) is not scheduled by each device as the best response u7,(-, 7, E)
to a broadcast signal D. The power profile # cannot be defined as a function of t and E
since, in general, appliances with equal parameters could have different power profiles. For
an alternative notation, the set of devices is denoted by ¥/, while v € ¥ represents the single
device with minimum task time 7 (v) and total energy E (v). Denoting by u (-, v) the scheduled
power of the device v, the set % of feasible power profiles can be defined as follows:

E(Wv) VteT
1;(])) Yv ey }

(24)
Under the current notation, the power scheduling u* (¢, v), obtained when D; is broadcast to
the devices and corresponding to a Nash equilibrium when (22) holds, is straightforward to
derive from (18):

T
%:[u:[O,T]X”V—)R"':/ u(t,v)ydr = E(v), 0 < u(t,v) <
0

u*(t,v) = ”B (t, T(v), E(v)). (25)

The flexible demand profiles obtained with the application of an arbitrary u € % and of
the Nash equilibrium inducing u* are denoted by D and D%, respectively, and have the
following expression:

Dy(1) :f u(t,v)dv ’;(t) :/ u*(t,v)dv. (26)
Ve ’ v
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To evaluate the optimality properties of the Nash equilibrium, the following functional J is
considered:

T
J(d) 12/0 g(Dj(1),d(1))dt 27)

where g(D;, d) is strictly convex with respect to d. In order to perform the subsequent analysis
in the measure variable ¢, the following hypothesis is introduced:

Assumption 4 Consider the following subset % C % of feasible power schedules:

U = {u €U :Dy(t1) — Dy(t2) =/ u(ty,v) —u(t,v)dv =0 V(t1,1) : Di(t;) = Di(lz)}
v

(28)
For any functional J as c_leﬁned in (27) and uy € % \?2 (with associated flexible demand
Dy 1), there exists u» € % (and flexible demand D) such that:

J(Dy2) < J(Dyg1).

In other words, if the functional J is evaluated over the feasible profiles of flexible demand,
its minimizer d = D is a function that fulfils (11) for p = Dy and D = D; and therefore
is well defined in the variable g = Qp, (D;(¢)). This assumption can be easily verified with
standard optimal control techniques if one relaxes the constraints and directly minimizes J
in (27) over the positive functions d with a given total integral. The following optimality
result can now be provided:

Theorem 3 Consider an arbitrary power scheduling u € % and u* as defined in (25). Let
Dy and D}’? in (26) denote the corresponding profiles of flexible demand and consider the
Sollowing functional Jc:

T
Je(d) =/0 gc(Di(t) +d(1)) dt. (29)

with gc strictly convex. If (6) is fulfilled for D = D; and u™ corresponds to a Nash equilibrium,
it holds:
Je(D}) < Je(Dy). (30)

Proof See “Appendix D”. O

It follows from Theorem 3 that, if a Nash equilibrium exists, this is also optimal for a
convex functional of aggregate demand. Note that this formulation is adopted in similar works
to represent social welfare (a discrete-time version is presented in [13]) and can quantify, for
example, the total generation costs or the flattening of the demand profile introduced by the
flexible loads. We can therefore conclude that the proposed notion of Nash equilibrium is
always socially efficient.

The Pareto optimality of the Nash equilibrium has also been analysed. In particular, we
are interested in determining if there exists a feasible power schedule u € % \{u*} which
allows to reduce the cost sustained by at least one device, without increasing the costs of
other appliances. The energy costs C (v) and C*(v) sustained by the individual device v when
u and u™ are applied are straightforward to derive:

T T
Cl) = / I(D; (1) + Dp)u(t,v)dr  C*(v) = / I(D;(t) + D}(t))u*(t, v) dt.
0 0

€2V

In this context, the following result is provided:
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Theorem 4 Assume that u* in (25) corresponds to a Nash equilibrium, denoting by D the
equivalent in the variable q of D;- in (26). If the price function T1 is strictly convex and the

following inequality is fulfilled for D} = D; + D;‘,:
Dy (@) [ (D;(@) D}@) + ' (D) | + ' (Dy@) D @) =0 (32)

then u* is Pareto optimal and there exists no feasible u € % such that the following holds
for the energy costs C in (31):

Cv)y <C*(v) WYvev? (33a)
We?:CH) < CHD). (33b)
Proof See “Appendix E”. O

The application of Theorem 4 is particularly interesting when an affine price function
I1(d) = a + b - d is considered. In this case, condition (32) corresponds to the following
inequality between the negotiable valley capacity A p, and the power density of task durations
Ay:

Ap (@) Di(q)

- Dj(g) = Aj(q) = —% . (34)

7 Discussion

In this section we qualitatively discuss the equilibrium properties and the implementation
of the proposed control strategy, highlighting its main novel elements and discussing its
limitations and future developments.

7.1 Nash Equilibrium Properties

Necessary and sufficient conditions for equilibrium have been derived in Theorems 1 and 2,
analytically characterizing the penetration levels of flexible demand and the devices param-
eters for which a Nash equilibrium can be obtained. Given the quantities Ap, and Ay,
describing, respectively, the inflexible and flexible demand, an equilibrium can be induced
if and only if the inequality (22) is fulfilled. Note that such condition can alternatively be
expressed as monotonicity of the aggregate demand profile in the measure variable ¢g. In fact,
by comparing Definition 6 and (16), it can be seen that A y in (22) is the derivative of the flexi-
ble demand in the variable g with changed sign. For D = D;, we have that D; (q9) = Qz)[_l (9)
from (10) and the term A p,, as specified in Definition 5, represents the derivative of the
inflexible demand with respect to g. The equilibrium condition (22) can then be rewritten as:

B{(Q) + D/f(Q) >0 Vq € [¢gmin, gmax]- (35)

As discussed in detail later, this formulation constitutes a key insight for the development
of an extended analysis that relaxes some of the initial assumptions and provides more general
results.

Following the derivation of the necessary and sufficient conditions for the existence of
a Nash equilibrium, it has been shown in Sect. 6 that such equilibrium is always socially
efficient, determining in Theorem 4 the conditions that also ensure Pareto optimality. In this
context, it is worth mentioning that the Nash equilibrium, when it exists, is also unique. Its
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uniqueness under Assumption 3 follows from Theorem 2, since an equilibrium can only be
achieved by broadcasting a demand profile D, € Z; and all profiles in the signal class Z;
induce by definition the same power scheduling and flexible demand.

7.2 Distributed Implementation

Having discussed the properties of the Nash equilibrium, it is worth emphasizing some key
aspects of the distributed control scheme that induces it:

— Privacy The system operator, when choosing the broadcast signal D, only requires a
general description of the flexible devices population through the function f in (2). The
tasks of the individual agents can remain hidden, collecting the aggregate information
through an intermediate entity or estimating it through market analysis.

— Incentive compatibility The single appliance has no interest in providing untruthful infor-
mation in order to reduce its energy cost. In fact, as we are considering large populations
of flexible loads, the impact of the parameter values T and £ communicated by the sin-
gle device on the energy density f is comparable to the effect of the power scheduling
u(-) = u}, (-, 7, E) of the individual load on the resulting flexible demand Dy p in (4).
As for the latter case, the parameters value t and E of the individual load have negligible
impact on the energy density f. Therefore, the individual appliances have no interest in
providing false parameters values, as they would not be able to modify the energy density
f, which is used by the system operator to determine the broadcast demand profile D.
This property does not hold in general if a nonnegligible fraction of the total devices
create a coalition, agreeing to purposefully collaborate in providing false information
and distorting the density f for their own advantage.

— One-step resolution There is no iterative exchange of information between the appliances
and the system operator: a single demand profile D (or equivalent price IT1(D)) is broad-
cast to the appliances, which independently perform their power scheduling. We wish
to emphasize that such choice does not restrict the equilibrium results. As established in
Theorem 2, if the inequality (22) is not fulfilled there exists no broadcast power profile Dy,
associated with a Nash equilibrium. Therefore, also alternative methods that consider an
iterative power scheduling of the devices, on the basis of updated demand/price signals,
would not ensure better results, as there is simply no stable configuration to which they
could converge.

7.3 Theoretical Assumptions: Restrictions and Possible Solutions

Finally, we wish to discuss in more detail the assumptions adopted in our study, evalu-
ating their impact and proposing possible approaches for a more comprehensive analysis.
From Assumption 1, only noninterruptible appliances with complete time availability can be
controlled. Such hypothesis, albeit restrictive, can nevertheless accommodate realistic sce-
narios (e.g. charge of electric vehicles during night-time) and has been considered in other
works on the subject, such as [18,24]. It is also worth mentioning that the power profile
u(-) = u}, (-, v, E), scheduled by each device in response to the received demand signal D,
is bang-bang. As a result, the proposed coordination strategy not only applies to devices that
can continuously modulate their power consumption but it can also be extended to ON-OFF
appliances. The possibility of considering devices with partial flexibility is preliminarily
explored in Sect. 8, designing a distributed coordination of the flexible loads which parame-
terizes the broadcast signal as a “single valley”. The proposed technique could be extended, in
future works, to consider a more general structure of the broadcast signals (for example com-
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posed by multiple valleys), ensuring appliances coordination and equilibrium under more
general conditions. The inclusion of noninterruptible appliances in the current modelling
framework is also being evaluated, through a two-step power scheduling. For example, one
could first coordinate these additional loads (whose power consumption is more difficult to
characterize in a compact manner) and then consider the resulting aggregate demand profile
as D; in a second power scheduling of the interruptible appliances, using the techniques
presented in this work.

Regarding Assumption 2, it is assumed that the energy density f is a well-defined and
bounded function. For this to be the case, the number of considered flexible appliances needs
to be infinite. In practical contexts, a finite number of flexible loads can be described with
an acceptable degree of approximation through a bounded function f if the considered pop-
ulation is extremely large. In this respect, we wish to emphasize that the proposed control
strategy has been designed for future large-scale applications on national power systems,
expecting millions of flexible loads. For a faithful description of flexible demand through a
bounded function f, it is also necessary that the time parameter t is sufficiently diversified
across the considered loads. Such property is generally verified by populations of hetero-
geneous loads or by homogeneous devices that need to perform different tasks. Note that
Assumption 2 simplifies the analysis, allowing to introduce A 7 in Definition 6 and derive the
equilibrium condition (22). A more complex study should be able to obtain similar results
without Assumption 2, using the differential equilibrium condition (35) as a starting point
and demonstrating that, in the present case, an equilibrium can only be achieved if the profile
of aggregate demand D, (discontinuous and nondifferentiable) is nondecreasing.

Finally, the results presented so far assume that the broadcast demand signal D fulfils
Assumption 3 and does not have any level set of positive measure. If such assumption is
removed, the best response of each appliance is, in general, not unique. For example, if the
broadcast demand is constant with D(¢) = d Vt € [0, T], then all feasible power schedules
are also optimal. Moreover, the definitions of #* and [_)f provided in the previous section
are no longer valid and the presented equilibrium conditions do not apply. An ongoing
work suggests that existence and shape of a Nash equilibrium can still be determined under
this relaxed conditions. In order to achieve this result, though, it is necessary to centrally
coordinate some appliances on time intervals characterized by constant broadcast signal D.
Alternatively, we show in [10] that a Nash equilibrium can be obtained by introducing a
proportional constraint on the power rate of the appliances, limiting the flexible demand at
critical time instants.

8 Appliances with Partial Flexibility

As established in Assumption 1, so far we have considered appliances that can schedule their
power consumption at any time instant within the considered interval [0, T']. Such formulation
can be expanded to account for devices with stricter time constraints. In particular, we will
consider the case of appliances that must perform their tasks at# > « where « is the availability
parameter of the individual device. This corresponds to an additional constraint on the power
scheduling u:

u(t) =0 Vvt <«k. (36)

Remark 1 The analysis in this section can be extended to appliances that also specify a final

availability time, obtaining similar results. For a more compact presentation, in this paper
the simpler case with only the initial availability time « is presented.
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An additional variable must now be considered in the unnormalized distribution m of the

appliances parameters: | :12 s fl >m(t, x, E) dE di dt denotes the number of devices for

which E1 < E < Ej, 11 <t <t and also k1 < k < k3. Similarly, the function f(z, )
in this case quantifies the total amount of energy required by devices with time parameter ©
and availability parameter «:

f(z,K) ::/ E -m(zt,k, E)dE. (37)
&

Assumption 5 The energy density f has compact support:
supp(f) = [gmins gmax] X [Kmin, Kmax]-

Assumption 6 The availability time-window of each appliance allows task completion. In
other words, all appliances are able to complete their task by operating at rated power in their
availability window [«, T]:

T4+ <T V(r,k) € supp(f).

After a preliminary equilibrium analysis in Sect. 8.1, we describe the considered class of
broadcast signals, providing expressions for the corresponding scheduled power consumption
and flexible demand, in Sect. 8.2. The conditions for a Nash equilibrium are derived in
Sect. 8.3, while Sect. 8.4 contains a design method for the broadcast profile.

8.1 Preliminary Equilibrium Analysis

The appliances schedule their power consumption in order to complete their task at mini-
mum energy cost, on the basis of a broadcast demand profile D that fulfils Assumption 3.
The additional availability constraint (36) is now included in the power scheduling problem
through the indicator function, denoted by 1 .. The optimization problem solved by the single
device with parameters 7, k and E becomes:

T
min / [I(D(t)) - u(r)dt
0

u(-)

E
st 0<u@) < =Ly (38)
T

T
/ u(t)dt = E.
0

In order to calculate the solution u7,, it is useful to provide a preliminary result:

Proposition 2 Given the sublevel set #p defined in (19), for any (v, «) € supp(f) there
exists A € [0, T], that we denote by A(z, k), such that the following holds:

A= il;f {yel0.T]: u(lk, TINIp(y)) =1}. (39
Proof Under Assumption 3 for the broadcast D, the term u ([«, T]N #p(y)) in (39) is
continuous and nondecreasing with respect to y. Furthermore, we have:

w(le, TINSp(T)) = n(x, TIN[0, T) =T —«
w([x, T1NZp(0)) = 0. (40)

Since T < T —« for all (z, k) € supp(f) from Assumption 6, we can conclude that A(z, «)
exists as specified in the claim. O
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Note that .p (A (t, k)) returns the set of time instants ¢ with the lowest values of broadcast
demand D(¢) (and lowest price IT(D(¢))) whose intersection with [k, 7] has measure 7.
Hence, the solution to (38) for adevice with parameters (7, «, E) has the following expression:

E .
Lt*D(l‘, T, K, E) — ? if e ([K» T]myD(A(T, K))) (4])
0 if r¢ ([« TINSp(A(z,k)))
The resulting profile of aggregate demand is straightforward to derive:
Dg p(1) = Di(l)-i-/ / f uh(t, T, k, Eym(z, k, E) dE dk dr. (42)
T I JE

where .7, # and & denote, respectively, the set of distinct parameters 7, ¥ and E in the
appliances population. As in the previous analysis, a Nash equilibrium is achieved if the
following holds for all (z, k) € supp(f) and E € &:

T T
/ Dy, p()upy(t, Tk, E)dt = m(i1)1 / [T(Dy,p(t))u(t) dt
0 ul- 0

st. 0 <u(r) < g]l[,(j](t) (43)
T
/ u(t)ydr = E.
0

In the case of appliances with partial flexibility, the concepts of negotiable valley capacity
and power density of task durations are no longer applicable. In fact, given the additional
constraints on the initial time of power consumption, condition (11) does not hold in general
for p = Dy and p = D, p. This means that flexible and aggregate demand cannot be
expressed as functions of the measure ¢g. On the other hand, it is possible to provide the
following result:

Proposition 3 Given a broadcast profile D, the induced aggregate demand D, p defined in
(42) fulfils the Nash equilibrium condition (43) if the following holds:

Op(D()) = Qp, p(Da,p(1)) YVt €[0,T]. (44)
Proof When (44) is fulfilled, the sublevel sets of D and D, p coincide:
Sp(y)={t: Qp(D®) <y} ={t: Qp, ,(Da,p(t)) <y} =D, ,(y). (45
This in turn implies that there exists A(z, ) such that:
1 (e, TIN S (AT, 6))) = T = (I, TIN S, (AT, ))) -
By the latter equality and Eq. (41), we see that:
up(t, 7,6, E) = u*Da,L)(t’ 7,k, E).

Hence:

T
/ (D, p()up(t, T, k, E) dt
0

T T
:/ (Da,pO)up, (¢, Tk, E)dt = m(lgl/ H(Da,p (t))u(r) dr
0 ’ ut) Jo

E
st 0 <u() < —1y.m@)
T
T
/ u(t)ydt = E.
0
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which proves condition (43) and concludes the proof. O

8.2 Description of Broadcast Signal and Power Scheduling

We restrict our study to a specific class &, of broadcast signals D : [0, T] — [0, T] that
can be characterized as “single valleys”. This allows to provide compact expressions for the
scheduled power consumption of the devices and ultimately derive sufficient conditions for
a Nash equilibrium.

Remark 2 The choice of signals with codomain [0, 7] considerably simplifies the subse-
quent analysis. In practical applications, the calculated D can always be rescaled so as to
be dimensionally consistent with power demand or price. Since, in the chosen framework,
the power scheduling of the devices only depends on the sublevel set .¥p (unaffected by
multiplication by a constant term), all the presented results still hold.

To define Z,,, we consider the functions 6y : [0, T] — [0, Tp] and O : [0, T] — [Tp, T']
which fulfil the following for all ¢ € [0, T']:

Or(q) —0(q) =q 0L(q) <0 6r(g) > 0. (46)
Furthermore, for some Tp € [0, T], at ¢ = 0 and ¢ = T we have:
0L(0) =0r(0) =Ty O.(T)=0 Or(T)=T. 7

Definition 8 Any demand signal D which belongs to the class 7, has the following expres-
sion:

0, () if 1el0,Tp
0 (1) if te[Ty,T]

for some functions 6;, and 6 that fulfil (46) and (47).

D(t) = { (48)

The profiles D € %, can be visualized as valleys, with one decreasing profile QL_] in
the interval [0, To] and an increasing one (9;1) on [Ty, T]. Note that D € %, is properly
defined by (48) since the functions 6;, and 0 are invertible and the union of their images is
equal to [0, 7. Moreover, it holds Im(6) N Im(fg) = Ty with 6, ' (Tp) = 65" (Tp) = 0.
Given (48), the following relationship holds for the broadcast profile D € 7, evaluated at
01(q) € [0, Tp] and Or(q) € [Ty, T]:

D(©L(9)) = 0. (0L(q)) = g = 0% (Or(q)) = D(OR(9))- (49)

The power scheduling of the flexible appliances can now be characterized by the following
result:

Proposition 4 Given D € 9, and the corresponding functions 61, and 0, the power con-
sumption of the single device with parameters (t, «, E) is scheduled (at maximum feasible
rate E /t) during a compact interval Sp(t, k):

[0(T),0r(D)] if &k =6L(7)

[,k + 7] if k>0(7) (50)

,YZD(t, K) = {

Proof For the first case in (50), it holds [67 (t), Or(t)] C [«, T]. Furthermore, considering
(46) and (48), the following properties are satisfied:

w(frL(r), 0r(x)) =1
D(t1) < D(tz) VYVt € [01(7),0r(7)], 12 & [0L(T), O (T)]. (51)
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For the second case in (50), since D is monotonic increasing for # > Ty, it is sufficient to
show the following:

k+1t>TH
D) < D(k+71) Vtelkk+rt] (52)

Since k > 01 (7), we have k + © > 61.(t) + 7 = Og(t) > Tp. For the second inequality in
(52) two different cases have to be analysed: if # > Ty then D(¢) = 01;1 (1) < GEI (k+1)=

D(x + 7) from the monotonicity properties of 91;1. Ift € [k, Tp], from k > 67 (t) and (49),
it follows:

D(t) < D(k) < D(BL(1)) = D(Or(T)) < 0 (c + 1) = D(k + 1) (53)
which proves (52) and concludes the proof. O

From Proposition 4, the power profile i}, scheduled by appliances with parameters
(t, k, E) can be written as:

E . ~
it E)y=17 T 1€/@0) (54)

0 if r¢.Ip(r,k)

The resulting flexible demand D s, p(¢) is straightforward to derive:

Df,D(t)=/ / /m(r,/c, E)u}(t, T, k, E)dE dk dt

S, x)
= /y // o L) 0@ dedr. (55)
Proposition 5 The following expressions of D s, p as a function of 61, and g hold:
0@ rT f(1, k)
Dy pOr(q)) = / / f dr dk (56a)
0 q T
Dy p(Or(q)) = Dyp(0L(q)) + / dt dk. (56b)
Or(q) JOr(@)—K T

Proof To prove (56a), consider definition (50) of .p and note that no appliance completes
its task for ¢ < Tp. This means that at time 07, (¢) < Ty the flexible demand can be determined
by taking into account only the starting time of power consumption. For any appliance with
initial availability k < 67 (q), two cases must be considered: if the task duration at rated power
TE (QL_] (x), T] C g, T], then it holds x > 0y (t) and from (50) the starting time is equal
to k < 0r(q). If instead t € [0, 9[1 ()], the starting time of power consumption is equal
to 67 (r) and only devices with task time T > g must be accounted for in the computation
of flexible demand. This proves expression (56a). To verify that also (56b) holds, note that
the considered values of the parameter x are lesser or equal than Og(q) and, from (50),
the same holds for the starting time. The integration bounds in T when k < 6 (g) can be
determined similarly to the previous case, considering the final time of power consumption.
If 61.(q) < k < 6r(q), the only possible case to analyse in (50) is x > 67 (t), when the
interval of power consumption scheduled by the devices equals [«, k 4+ t]. To account for
the appliances operating at t = g (q), it is sufficient to impose k + v > 6r(g) and therefore
T > 0r(q) — k. o
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Having calculated D p, the resulting aggregate demand D, p can be easily derived:

Da,p(0L(q)) = Di(0L(q)) + Dr(0L(q)) (57a)
Da,p(Or(q)) = Di(0r(q)) + Dy(Or(q)). (57b)

8.3 Sufficient Conditions for Nash Equilibrium
The main equilibrium result for appliances with partial flexibility is now presented:

Theorem S A Nash equilibrium is induced in the system and condition (43) is satisfied for
D € 9, if, for the corresponding functions 01, Or and profile of aggregate demand D, p, it
holds: d

—D, p(O >0

iy Dan(®L@)) > 0 Vo e [0.7]. .

& Da.p(OL(9) = 4 Da.p(OR(9)

Proof See “Appendix F”. m}

Proposition 3 and Theorem 5 determine whether an equilibrium exists by verifying that the
optimal power profile of the devices, defined in (41), is identical when the broadcast D or the
resulting aggregate demand D, p are considered. Such conditions are only sufficient since
the optimal power profile is unique and equal to (41) only if the broadcast signal D satisfies
Assumption 3. If the same holds for the resulting aggregate demand D, p, the equilibrium
conditions become also necessary.

8.4 Synthesis Technique

Following the results of Theorem 5, it is possible to provide a constructive technique which
verifies, for a given D; and f, if there exists a profile D € &, which satisfies (58) and allows
to calculate it numerically. To do so, it is useful to derive expressions for the derivatives with
respect to the variable ¢ of the different demand components:

e i) 61.() (59a)
dg o= dr t=0r(q) L
iD»(@ @) = 4D:@) 0r(q) (59b)
T T HPR
d T 0 ) 62(q) ,
@Df,D<0L<q))=/ Mdf.edq)_/o f(‘il ) e
q
= G1(q) - 0L(q) — Ga(q) (59¢)
d d T ,0 .
4o DrpOr(@) = @Df,p(euqm/o Mdrﬁ,g(q)
T
f(Ta QL(Q)) s
- ———dt - 0.(g)
/ék(q)*9L(q) T L
Or(q) _
_/ 1 Mdk-é;e(q)
0.(q) Or(q) —

G1(q) - 0L(q) — G2(q) + G3(q) - Or(q)
~G4(q) - 01(q) — Gs(q) - Or(q). (59d)
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By replacing (59) in the equality of (58), it is possible to calculate 67 (¢) and 6r(g) as the
solution of the following dynamical system:

dD; (1)
dr

(@) + G3(g) — Gs(q)

_ dbi(n) -G 4G 1 G
o) O g O3 T Ga@ +Gs(9)

Or(q) = 1+600(g) 6L0) =Ty 6r(0)=To (60)
If the solution of (60) fulfils the inequalities in (46) and (58) for some Ty € [0, T'], the

corresponding D € %, defined according to (48) induces an equilibrium. To determine 7y,
it is useful to consider the equality in (58), evaluated at 0y (¢) = Or(q) = To:

T
o f<>} “o. e
t=To 0 T

0L(q) =

dD; (1)
dt

dD; (1)
dr

Da.p(To) — Da.p(Tp) = [

9 Simulation Results

The equilibrium conditions presented in the previous section are now tested in simulations.
A typical 24 h UK demand profile, as recorded by [22], is considered for D; (blue trace
in Fig. 2), with a time discretization step At = 0.01 h. If one denotes by Df the value of
inflexible demand at ¢ = k - At, the function Q p;, (le) is approximated as |Yk| - At where
7% is defined as follows: )

=i 0] =D} (62)

In the first case study we consider a population of flexible appliances for which the equilibrium
condition (22) in Theorem 1 is satisfied for the given D;. The total energy required by the
devices amounts to 55 GWh and the corresponding f is a truncated Gaussian with mean
equal to 8.2 h. This choice can represent heterogeneous devices that have different power
ratings, but it can also model scenarios with only one type of device (with equal P = E /1)
where each appliance needs to perform tasks that require different amounts of energy to be
completed. The distribution m introduced at the beginning of Sect. 2, in the latter case, would
have the following expression:

m(t, E) =m(E)S(E — P - 1)

where § denotes the Dirac delta and 7 is the unnormalized distribution of the parameter E
(total required energy). We can derive from (2) the relationship between f and m:

f(‘l,’):/ E-m(EYS(E—P-t1)dE=(P-1)-m(P-1).
&

The values of Af(g) and Ap,(g) in the considered scenario are shown in Fig. 5. From
Theorem 1, since the power density of task durations Ay (red) is always lesser or equal
than the negotiable valley capacity A p, (blue), an equilibrium is achieved by broadcasting
to the appliances the profile of inflexible demand D;. The resulting demand components as
functions of the measure ¢ are shown in Fig. 6: given that D; (q9) = QBil (¢) when D = D;,
we expect the inflexible demand to be monotone increasing in the variable g. Conversely,
the flexible demand D 7(q), defined in (16), is always decreasing since it is equal to the
integral of a positive function over the interval [¢, T']. As discussed in Sect. 7.1, since (22)
is satisfied, the sum D,(qg) of the two demand components will be nondecreasing. The
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Power density (GW/h)

Measure, q (h)

Fig. 5 Graphical representation of the equilibrium condition (22). In this first case study, the power density
of task durations A ¢(g) is always lesser or equal than the negotiable valley capacity A p, (¢) (Color figure
online)

same quantities as functions of time are displayed in Fig. 7. The intervals of scheduled
power consumption for appliances with t = 5h, 7h, 9 h are represented by the shaded
areas and correspond by definition to the lowest values of broadcast demand D = D;.
Since such intervals are also characterized by the lowest values of aggregate demand D, p,,
the considered devices have no interest in changing their scheduled power consumption,
implying that a Nash equilibrium is achieved. A different case study is now simulated,
considering a population of flexible devices whose task duration profile A y does not satisfy
the equilibrium condition presented in Theorem 1. In particular, the function f is defined
as the sum of two truncated Gaussians with mean equal to 4 h and 8 h. This choice could
model, for example, two distinct types of appliances (with different rated power P = E /1),
considering that all devices have similar values of the parameter E. The total energy required
by the appliances, as in the previous scenario, amounts to 55 GWh. A graphical representation
of the equilibrium condition in Theorem 1 is provided in Fig. 8: it is straightforward to verify
that an equilibrium cannot be achieved in the present case since A y(q) > Ap,(g) in the
interval which goes approximatively from ¢ = 2 h to ¢ = 5 h. This can also be seen from
the demand profiles shown in Fig. 9, obtained when D = D; is broadcast to the devices. In
this case the shaded areas, which represent the scheduled interval of power consumption of
devices with 7 equal to 2 h, 4 h and 8 h, do not correspond to the lowest values of aggregate
demand. For example, the appliances with T = 2 h could reduce their total cost by shifting
part of their power consumption to the small valley of aggregate demand which appears
around ¢ = 6 h. Therefore, the operation strategy formulated by the devices on the basis
of the broadcast signal D = D; is not optimal for the resulting price signal induced by the
aggregate demand and an equilibrium is not achieved.

9.1 Appliances with Partial Flexibility

Coordination of flexible appliances with partial time availability has also been simulated,
applying the technique presented in Sect. 8.4. The proposed example considers a parabolic
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Fig. 6 Profiles of inflexible, flexible and aggregate demand as functions of the measure ¢ = Q D; (D (1))
(Color figure online)
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Fig.7 Profiles of inflexible, flexible and aggregate demand as functions of time. The shaded areas correspond
to the scheduled intervals of power consumption of appliances with  equal to 5, 7 and 9 h (Color figure online)

profile for the inflexible demand (with 7 = 12 h) and an appliances population that requires
10 GWh of total energy. The distribution of the parameter « has been modelled with a trun-
cated Gaussian with mean equal to 5 h, while the values of minimum task time t are in the
range [2 h, 5 h]. The resulting function f (z, k) is shown in Fig. 10. The initial condition Ty
for 07 and Og has been calculated using (61) and is equal to 4.21 h. The equations in (60)
have been integrated, and the broadcast profile D has been obtained with (48). The corre-
sponding cumulative distribution Q p is compared in Fig. 11 with the ones of the inflexible
and aggregate demand. The comparison of the demand profiles is presented in Fig. 12. As
expected, the measure Qp, ,, of the aggregate demand is equal to the function D (and to the
corresponding Q p), and therefore, an equilibrium is achieved according to Proposition 3.
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Ap,(q)
a5k — N

Power density (GW/h)

0 L n .
5 10 15 20

Measure, g (h)

Fig. 8 Graphical representation of the equilibrium condition (22) for the second case study (Color figure
online)

Demand (GW)
w
)

20 b

10 15 20
Time, t (h)

Fig.9 Profiles of inflexible, flexible and aggregate demand as functions of time for A ¢ shown in Fig. 8. The
shaded areas correspond to the intervals of power consumptions for appliances with 7 equal to 2, 4 and 8 h
(Color figure online)

Note also that D has a minimum at time 7y = 4.21 h, while the minimum in D; is achieved
att = 6 h. This is due to the time constraint «: the earlier power scheduling of devices with
lower values of x (during a time interval which is not characterized by the lowest values of
inflexible demand) is balanced by the other appliances which are constrained to operate at
later times.
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Fig. 10 Energy density f of the considered appliances population as a function of the minimum task time t
and availability starting time « (Color figure online)

12

101 1

Cumulative distribution (h)
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2+ —— Qp(D(t)) = D(t)
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Time, t (h)

Fig. 11 Comparison of the cumulative distribution Q for the inflexible demand D;, broadcast signal D and
resulting aggregate demand D, p (Color figure online)

10 Conclusions

This paper proposes a novel fully distributed control scheme for coordination of flexible
appliances and their efficient integration in the electricity market. The appliances population
is approximated as a continuum, modelling the conflicting interactions between the individual
devices through a differential game. An efficient deployment of flexible demand, which
avoids rebound effects and loss of diversity, is characterized as a Nash equilibrium. Through
the analysis of the sublevel sets of the different demand profiles, necessary and sufficient
equilibrium conditions are derived, determining the penetration levels and types of price-
responsive appliances for which a suitable coordination can be induced. The optimality
properties of the Nash equilibrium are also studied, analytically proving its social efficiency

Ay . .
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Di(t)
——— Dup(1)

Demand (GW)

Time, t (h)

Fig.12 Values of inflexible demand D; and aggregate profile D, p obtained when the function D is broadcast
(Color figure online)

and deriving sufficient conditions for its Pareto optimality. A preliminary analysis of devices
with partial flexibility has also been conducted, providing equilibrium conditions and a design
technique for the broadcast demand when an additional constraint is introduced on the initial
time of power consumption. Finally, the performance of the proposed control scheme has
been evaluated in simulations.
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Appendix A: Proof of Lemma 1

The second equality in (12) follows from Definition 4. Introducing the function QD(t) =
QOp(D(t)) and recalling that ; denotes the Lebesgue measure, the first equality in (12) is

equivalent to:
| pau=[ podpau (©3)
[0,7] [0,7]

s

Applying standard properties of the Lebesgue integral [12], the right-hand side in (63) can
be written as:

| pedndu=[ i (@pu) (64)
[0,7] [0,T]
where Q’z, / denotes the pushforward measure of i induced by Op and it is such that, for

any measurable set X, it holds QEM(X) =u (QBI (X)). From (63) and (64), the lemma is
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verified if the measures Q*b w and p are equal and the following holds for any measurable
set X:

(05" X)) = nx). (65)

Such conditio_n is initially verified for a closed interval X = [0, xg] with xg < T. In this
case, the set QBI (X) has the following expression:

05110, xx]) = {r: Op(1) < xp} = {t : Qp(D()) < x&}. (66)

Since o p(d) is a strictl_y monotone increasing function with image equal to [0, T'], there
exists D such that O p(D) = xg and we have:

05, ([0, xr]) = {1 : Qp(D(®)) < Op(D)} = {1 : D) < D}.
For the corresponding measure, taking into account that Q p(D) = u({t : D@t) < D)) is
equal to xg by definition, we have that (65) is fulfilled when X = [0, xgr]:
1 (0510, xrD) = x& = (10, xe). (67)

With similar steps, it is possible to verify that (65) is satisfied and /,L(QBl (X)) =xp—xL =
1 (X) for any arbitrary closed interval X = [x1, xg] € [0, T] since it holds:

w(Op . xg) = ({t: Op(®) <xp}) —n({t: Op(®) <x.}).

The equivalence of the measures can be extended to any measurable set X by applying the
Vitali covering theorem [5], which guarantees that for any set X there exists an at most
countable set of disjoint closed intervals /; such that 1 (X\ U; /) = 0. This means that (65)
always holds and the lemma statement is verified.

Appendix B: Proof of Theorem 1

We remind that u7, in (18) is optimal for (1) since the following inequality holds (as a result
of (19) and monotonicity of Qp) forall T € 7

D(t)) < D(tn) VYt € Sp(t), Vr €0, T]\yD(‘L'). (68)

To see this, consider that the feasible controls for (1) have fixed integral and u7, is bang—bang
(equal to rated power on ). This means that, when u7, is applied, each device cannot shift
part of its power consumption to time instants characterized by lower demand/price. For the
same reasons, 7, is the solution of the minimization problem in (6) (when the aggregate
profile D, p is considered) if and only if a similar inequality holds for all T € 7:

D, p(t1) < Dy,p(t2) VYVt € Sp(t), VY € [0, TN\Sp(7) (69)

(the “only if” direction being a consequence of continuity of the aggregate demand if Assump-
tion 3 is fulfilled). Given expression (19) of the set .p(r) for D = D;, the optimality
condition (69) on D, p, (equivalent to (6)) can alternatively be written, for all T € .7, as:

K(di) = K(d2) Vdi,dy: Qp;(d) =T, Op;(d2) > 7. (70)

The function K, defined in (21), returns the aggregate demand when the inflexible profile
D; is broadcast. A more general expression which accounts for all values of t can also be
provided:

K(d) = K(d2) V(di,d2) € Dc = dy < dy. (71)
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In order to define the set ¢, consider that the comparisons in (69) and (70) are performed
between the demand values at some instant ¢, included in the set .%p, (7), and some other f,
not included in it. Since the inequality must hold forall T € 7 = [gmin, gmax], if one denotes
by dmin and dpax the minimum and maximum values of inflexible demand, it is possible to
provide the following definition:

Zc¢ = ([dmin, dmax] X [dmin> dmax]) \(Zmin U Zmax) (72)

The sets Zmin (and Zmax) correspond to pairs of demand values at which all devices are
consuming power (respectively, not consuming). From expression (14) of the scheduled
power in the variable g, considering that all values of the parameter 7 are in the interval
[¢mins gmax] from (3), in the present case with D = D; we have:

Dmin = {(d1, d2) : Qp,(d1) < Gmin, Op; (d2) < Gmin}
Dmax = {(d1, d2) : Op,(d1) > Gmax. O, (d2) > Gmax } (73)

Note that the function K(d) in (21) is monotonically increasing in the intervals
[dmin, Ql_),-l (gmin)] and [QB,-I (¢max)> dmax], Which represent the sets of demand values
d for which Op,(d) < ¢min and QOp,(d) > ¢gmax, respectively. Therefore condition
(71), equivalent to (69), corresponds to K being monotonically increasing on Zp, =

[ 05, @min). 05, (@ma)x |

_ f(Qp,@))

K'(d) =1
@ Op;(d)

Q,(d) >0 Vd € Ip,. (74)

Dividing both terms of the inequality by Q/D,- (d) and letting g denote Qp,(d) yields a
condition equivalent to (22), concluding the theorem proof:

d _
Apl@) == < @QDj (@) = Ap;(@) Vg € [qmin, Gmax]- (75)

Appendix C: Proof of Theorem 2

The sufficient part of the theorem follows from Theorem 1 since, if D; € Z;, the scheduled
power ”*D,, and the resulting aggregate demand D, p, (obtained when D, is broadcast) are
equal almost everywhere to the corresponding quantities obtained when the inflexible demand
D; is broadcast. Conversely, it can be shown that, if any of the conditions in (23) is violated
on a set of positive measure and D, ¢ Z;, the power scheduling calculated according to D),
is not optimal for the resulting aggregate demand and (6) is violated for D = Dy. In this
respect, it is useful to define the following sets associated with an arbitrary profile D fulfilling
Assumption 3:

zgminp ={t: Op(D()) < gmin} <?max1) ={t: Op(D()) > gmax} (76)

and calculate the corresponding measures:
/J«(yminp) = {min M(ymaxl)) =T — gmax- 77
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The class of signals Z; introduced in Definition 7 can alternatively be characterized as the
set of broadcast profiles D;, which satisfy the following conditions:

w (yminub \yminpi) =0 (78a)
w (ymaxDb \gmaxDl) =0 (78b)
Op,(Dp(1)) = Qp;(Di(1)) V1 €[0, TIN(Jnaxp, Y Jinp, ) (78¢)

Assume now that (78a) does not hold. Since it (Fnin Di) = w(Imin Db) = @min, it is possible
to define #; and t, such that:

1 e yminpb\yminpi e yminpi\yminph~ (79)
This means that, for all T € [gmin, Qp, (Dp(#2))), it holds:
1 € Ip,(t) 12 ¢ Ip, (7). (30)

It follows from (79) that D;(t2) < D;(t1). Moreover, if one considers the expressions of
flexible demand in (16) and (17), since in the present case Qp,(Dy(t1)) < Qp,(Dp(t2)),
it holds Dy(t2) < Dy(t1). The following inequality is therefore verified for the aggregate
demand:

Di(t1) + Dy(t1) > Di(t2) + Dy (12). (81)

Hence, if (78a) does not hold, the Nash equilibrium condition (69), equivalent to (6), is
violated for D = Dy, and T € [gmin, Op,(Ds(12))).
A similar approach is followed when (78b) is not verified, defining #; and , such that:

1 € ymaxDi\ymaxDb ne ymaxub\ymaxl)i . (82)
Thus, for all T € [Qp, (Dy(t1)), gmax], it holds:
1€ Sp,(t) ¢ Ip,(1). (83)

Considering that D;(t1) > D;(t>) from (82) and Qp,(Dy(t1)) < Qp,(Dp(12)), it also holds
Dy(t) > Dy(t2). For the aggregate demand at the two time instants we have:

Di(t1) + Ds(t1) > Di(t2) + Dg(t2). (84)

It follows that the equilibrium condition (69) is not verified for D = Dj, when v €
[Qp,(Dp(t1)), gmax]. We finally analyse the case when (78a) and (78b) hold but (78c) is
violated. This means that the sets Jin,, and Jax,, coincide up to sets of measure 0O for the
profiles D; and Dj. Moreover, it is possible to define the following:

yM = [0, T]\(ymaxDi u vgminDl.) = [07 T]\(ymath ) ymil’th)' (85)
It is assumed that there exists r, € .7); such that it holds:
Op;(Di(t2)) < Qp,(Dp(12)). (86)

The proof can be easily extended to the case when the opposite inequality is verified. The
following sets are now introduced:

Fi_ = {t: Qp,(Di(t)) < Qp,(Di(1)), t € Ty}
Ty_ = {t: Qp,(Dp(1)) < Qp,(Dp(12)), t € Tir}. (87)

Birkhauser



Dyn Games Appl (2018) 8:761-798 793

For the corresponding measures, we have:
m(Zi_) = Qp;(Di(t2)) — gmin < Op,(Dp(2)) — gmin = 1 (Tp_). (83)

From inequality (88) we can conclude that the intersection .7;,_\.7;_ is nonempty with positive
measure and, since the considered Dy, fulfils Assumption 3, there exists | € .7;_\.7;_ such
that:

Qp, (Dy(t1)) < Op,(Dp(12))  Qp;(Di(t1)) > Op; (D;(12)) (89)

or equivalently:
Dy(t1) < Dp(2)  Dj(t1) > Di(12). (90)

Notice now that, if the profile D), is broadcast, for all T € [Qp, (t1), Op,(t2)) we have:
n € Ip,(v) ¢ Ip,(7) oD

This implies that Dy (#1) > Dy(t;) and therefore the following holds for the aggregate
demand:
Di(t1) + Dy(t1) > Di(t2) + Dy(22). 92)

We can conclude that also in this case the equilibrium condition (69) with D = Dy, is violated
fort € [Qp, (1), Op,(2)).

Appendix D: Proof of Theorem 3

Since Assumption 4 applies to the present case with J = Jc, the theorem statement needs
only to be verified for all u € %2 C % . One can then apply Lemma 1 for p = gc(D; + Dy)
and consider the inequality (30) in the measure variable ¢ = QO p, (D; (¢)):

T T
Jc (DY) :/o gc(Di(g) + D}(g)) dg 5/0 gc(Di(g) + Dy(g))dg = Jc(Dy) (93)

where the demand profiles D;, D rand Dj‘f are derived according to Definition 4. To verify that
(93) holds, we consider the power schedules & and i* in the ¢ variable that correspond to u and
u™*, respectively. With a slight abuse of notation, #*(g, v) corresponds to i*(q, t(v), E(v))
in (14). From Proposition 1 it can be verified that, when i* is applied, the devices operate at
maximum power at the lowest value of ¢ and therefore it holds:

/‘ i*(q, v)dg > / ii(q,v)dg Vs €0, T]. (94)
0 0

Taking the integral over 7" on both sides yields:

[ wa=[ [ #anwuz [ [danwu=[ bwwu o)
0 0 J7 o Jv 0

Therefore, if the flexible demand D r associated with the power schedule u € U is expressed
as Dy = D} + 1, the variation [ : [0, T] — R belongs to the following set .#:

N T
f::{l:[O,T]—HR:/ I(g)dg <0 Vs e [0, T], / l(q)dq:O}. (96)
0 0

The first integral condition for / follows from (95), while the total integral of / must be zero as
u and u* are both feasible profiles, implying that their associated total power consumptions
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(i.e. total integral of flexible demand) must be equal. Two subsets .7, 7 of the interval
[0, T'] are now defined:

—{qel0,T1:l(g) <0}  Ti:=1{qel0,T]:l(g)>0}. 97)
If one denotes by S_ and S, the following sets:

Sy =1g.x): l(g) =0, x€[0,l(@))} S-=1{(g.x):l(g) =0, xe€ll(g),0]}
it holds:

1(q) l(q) T
—/ dx dq+/ dxdg = f / dx dq—l—/ / dxdg = / l(g)dg = 0. (98)
s_ Sy 7_Jo 74+ J0 0

Considering that fos [(g) dg < 0 and assuming for the sake of simplicity that the number of
connected components of S_ is finite and equal to #, it is possible to partition Sy and S_ in
n subsets (S1,...,S7)and (SL,...,S"):

n n
syp=Jst so=Js" (99)
i=1 i=1
such that, for all i € {1, ..., n}, it holds:
/ dxdg = / dx dg (100a)
i A
g1 <q Y, x1) €S, Vg, x)eS. (100b)
x1<0<x Y(gi,x) €S, Vig,x)eS,. (100c)

Such partition can be performed by choosing S’ as the connected components of S_. We
denote now as q_1~_ < qi <...< qi < q_"Jl = T the (minimal) values in [0, 7'] such that:

L(s)
/. dxdg =/ / dxdg.
L [q q1+l]ﬂ,7+ 0

The corresponding Si is defined as ([q L, qfl] X R) N S+. Introducing the function

Ve(g, x) = ge(Di(q) + D (q) + x) and recalling that Df D;‘c + [, the functional
jc(l-)f) in (93) can be rewrltten as:

o l(q)av
Jc(Df>=/0 Ve(q. l(q))dq—fo Velq. 0>dq+/ / g ndxdg

1) o Ua) g
= Jc(Df)—i-/ / —(q x)dxdq—i—/ f —(q x)dx dg

= dcdp - [ D@+ [ G0
S_ X

St
n
- Vi aV,
=Jc(DH+Y - f T (g.x)dxdg + / Cg.x)dxdg. (101
izl N 0x S; ox
where the third and fourth equality follow from (98) and the set partition in (99), respectively.

Note that the quantity 8% Ve(g, x) = 3‘% gc(Di(g)+ Dj} (g)+x) is monotone increasing with
respect to x (convexity of g¢) and with respect to g, since from (35) the aggregate demand
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D; + D} is monotone increasing at equilibrium. Given (100b)—(100c) and the mentioned

monotonicity properties of %, the following inequality holds foralli =1, ..., n:

Y(g1,x1) € SL

; 102
S PR

Ve Ve Ve Ve
—(q1,x1) = —(q1,0) < —(92.0) < —(q2, x2)
0x 0x 0x 0x
From (100a) and monotonicity of the integral, it follows:
aV, aV,
/ —C(q x)dxdq</ —C(q,x)dxdq. i=1,...,n.
st si 0x

As a result, each element of the sum in the last term of (101) is nonnegative, implying that
(93) holds and therefore concluding the proof.

Appendix E: Proof of Theorem 4

To verify the theorem statement, it is sufficient to show that the total energy costs sustained
by the devices population are minimized when u™* is applied:

T
/C*(v)dv:// H(Di(t)+D}(t))u*(t,v)dtdv
¥ 7 Jo

T
sf/ H(D,-(t)+Df(t))u(t,v)dtdv=/ C(v)ydv  (103)
v JO v

By recalling (26), such inequality can be expressed through a functional Jp of flexible
demand:

T T
Jp(D}) :fo TI(D; (t) + D} (1)) Dy (1) dt S/O H(Di(t) + Dy (1)) Dy(r)dt = Jp(Dy).

(104)
Note that, as we are assuming convexity of I1, Assumption 4 applies to the present case with
J = Jp. It follows that the analysis can be restricted to the power schedules u € % C %
and associated demand profiles D . One can then apply Lemma 1 for p = I[1(D; + Dy)Dy
and consider the inequality (104) in the measure variable ¢ = Q p, (D;(1)):

T T
Jp(D}) = /0 (D (9)+D%(q)) D} (q)dg < fo N(D;(q)+Ds(q)Dy(q)dg = Jp(Dy).
(105)
Introducing the function Vp (g, x) = (D (q) + D* (q) + x) (D; (q9) + x) and the varia-

tionterm/ = Dy — D?, the total energy cost Jp(D ) can be rewritten as:

o 1@ vp
i = [ veqoag+ [ [0 g avag =g

l(q)
/ / ! 8L(q x)dxdgq. (106)

where the partial derivative of Vp has the following expression:

aV _ _ _ _ _
=L@, x) = WD) + Dy(@) +) [ D} @) + x| + Di@) + D} (@) + ). (107)
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Note that %(g, x) is monotone increasing with respect to x and with respect to ¢ when

x = 0. Monotonicity with respect to x is always verified since the price function IT is
convex and monotone increasing. For the monotonicity of da% (g, 0) in the variable g, explicit

. C. 2 L
calculations show that the left-hand side in (32) corresponds to gq‘gﬁ (¢, 0) which is therefore
always positive. The inequality (105) and the theorem statement can now be verified as in

the proof of Theorem 3, replacing Jc and V¢ with Jp and Vp.

Appendix F: Proof of Theorem 5

By the first equality in (47), we have D, p(61(0)) = D, p(0r(0)) = D, p(Tp). Therefore,
the second condition in (58) is equivalent to:

Dy,p(0L(q)) = Da,p(0r(q)) Vq €[0,T]. (108)

Moreover, (58) and monotonicity of the functions 8;, and 6z imply the following inequalities
forallg € [0, T]:

Dy,p(t) < Dy,p(0L(q)) = Dy,p(Br(q)) if 6r(q) <t <6r(q)
Dy,p(t) > Da,p(0L(q)) = Da,p(Or(q)) otherwise

To see this, consider ¢ such that 6, (¢q) <t < Ty: by monotonicity and continuity of 67 there
exists g < ¢ such that 67 (¢g) = ¢ and therefore, from the inequality in (58):

(109)

Da,p(t) = Da,p(0L(9)) < Da,p(0L(q))- (110)

Similarly, when ¢ < 61(g), there exists ¢ > ¢ such that ,.(q) = t and D, p(t) =
D, p(0L(q)) > D4 p(6(q)). The inequalities in (109) can be verified for t > T in a
similar manner, considering in this case the increasing function g. It is now possible to
provide the following expression for the cumulative distribution Q of the aggregate demand:

QDaQD(Da,D(GR(q))) = QDa,D(Da,D(QL(q))) =M ({S : Da,D(S) =< Da,D(eL(q))})
=0r(q) —0.(q) =q. (111)

If one evaluates (111) at ¢ = D(t) with t < Ty, recalling that 7 (D(¢)) = t from (48), it
holds:

Op,p(Da,p (1) = Qp, ,(Da,p(OL(D(1)))) = Or(D()) —OL(D(1)) = D). (112)

The same result is obtained by considering ¢ = D(#) whent > Tp and therefore O (D(t)) =
t. It follows:

Op,p(Da,p() =D) t€[0,T]

Considering the equivalent equilibrium condition (44), to conclude the proof it is sufficient to
show that D(t) = Qp(D(t)) when D € %,,. From Definition 8, the cumulative distribution
QO p can be written as follows:

0p(DW) £ ({5 €10.701: 67" ) = D0}) + 1 ([s € (0. 71265 = D))

2 1 (10.(D()). To) + 12 ([To. O (D(0))])
< 0r(D(1) — 6L(D(1)) £ D(1). (113)
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Equality a holds by definition of D € Z,, while b and c are a result of the monotonicity
properties of the functions 6, and 6 (and consequentially of the inverse 9[1 and 91;1). The
last equality d corresponds to the equation in (46) evaluated at ¢ = D(¢).
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