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Abstract
An ontology-mediated query (OMQ) consists of a database query paired with an ontology. When evaluated on a database, 
an OMQ returns not only the answers that are already in the database, but also those answers that can be obtained via logical 
reasoning using rules from ontology. There are many open questions regarding the complexities of problems related to OMQs. 
Motivated by the use of ontologies in practice, new reasoning problems which have never been considered in the context 
of ontologies become relevant, since they can improve the usability of ontology enriched systems. This thesis deals with 
various reasoning problems that emerge from ontology-mediated querying and it investigates the computational complexity 
of these problems. We focus on ontologies formulated in Horn description logics, which are a popular choice for ontologies 
in practice. In particular, the thesis gives results regarding the data complexity of OMQ evaluation by completely classify-
ing complexity and rewritability questions for OMQs based on an EL ontology and a conjunctive query. Furthermore, the 
query-by-example problem, and the expressibility and verification problem in ontology-based data access are introduced 
and investigated.

Keywords  Ontology-mediated querying · Horn description logics · Fine-grained data complexity · Query-by-example · 
Ontology-based data access

1  Introduction

In recent times, one has to manage huge amounts of data that 
arise from multiple sources, scattered across many different 
databases, so data is often incomplete and of heterogene-
ous quality. A popular method for organizing and access-
ing such data is via the use of ontologies. Ontologies store 
background knowledge about certain domains by defining 
terminology and describing how different terms relate to 
each other. They are popular in the fields of biology and 
medicine, since these fields are home to large amounts of 
pure factual knowledge, but they are also used in data-
intensive applications by large enterprises. When accessing 
data from a traditional relational database via an ontology, 
this happens under the open world assumption. Under this 
assumption, the facts in the database are interpreted as true, 
but there might be more true facts that can be derived via 
logical reasoning using the knowledge from the ontology. 
For a more extensive discussion on the use of ontologies in 

data management, please see the dedicated survey included 
in this special issue [25].

An ontology is a set of logical sentences which represent 
knowledge about a specific domain. If queries are posed to 
a database in the presence of an ontology, one usually con-
siders the query and the ontology together as a compound 
query, a so-called ontology-mediated query (OMQ). When 
answering an OMQ, one does not simply speak of answers 
to the query, but of certain answers, which are all answers to 
the query that are logically entailed by the database and the 
ontology. This approach has been studied extensively, see 
for example [6, 11, 12]. As an example, consider the follow-
ing ontology about diseases, formulated in the description 
logic EL:

The first rule says that the Alzheimer’s disease is a demen-
tia disorder. The second rule says that every instance of 
���������������� is related to an instance of ��������� via 
the binary relation ������� . The third rule states the same 
about ���������������.

���������������� ⊑ ����������������

���������������� ⊑ ∃ �������.���������

�����
��������� ⊑ ∃ �������.���������
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A hospital’s database may include the following facts:

Assume a doctor needs a list of all patients who have a find-
ing located in the brain. Then the OMQ consisting of the 
ontology above and the query

returns both ��� and ��� as certain answers. Note that find-
ing the certain answers to an OMQ is a logical reasoning 
problem, which can in general be much harder than comput-
ing the answers to a traditional query (like an SQL query) in 
the absence of an ontology, which is merely a model check-
ing problem.

2 � Horn Description Logics

Description logics (DLs) are decidable fragments of first-
order logic (FO) that have become a popular choice for 
formulating ontologies [3, 4]. It is notable that DLs only 
use unary and binary predicates, where unary predicates are 
called concept names and binary predicates are called roles. 
In the example above, ���������������� , ���������������� , 
��������������� and ��������� are concept names, and 
���������� and ������� are roles. Depending on the specific 
DL, different sets of operators can be used to form concepts, 
which correspond to first-order formulas with one free vari-
able. In the example, ∃ �������.��������� is a concept that 
describes all objects which are related via the role ������� 
to an instance of the class ��������� . Formally, an ontology 
is a set of concept inclusions of the form C1 ⊑ C2 , meaning 
that every instance of the concept C1 is also an instance of 
C2 . Such concept inclusions can be seen as if-then-rules.

There is a large variety of DLs with different expressive 
power and complexity of reasoning. Very expressive DLs 
like for instance SHOIQ can express, among others, dis-
junctions of concepts (‘every cat is dead or alive’), transitiv-
ity of roles (‘if x is a part of y and y is a part of z, then x is 
a part of z), role hierarchies (‘if x is the mother of y, then x 
is a parent of y’), inverse roles (‘if x is the mother of y, then 
y is a child of x’), number restrictions (‘every hand has five 
fingers’) and can refer to concrete individuals (‘everyone 
knows Dave’).

Less expressive DLs like EL on the other hand only allow 
simple rules like concept name inclusion (‘every student 
is a person’), conjunction (if x is a person and x is female, 
then x is a woman’) and existential restrictions (‘if x has a 
mother that is a dog, then x is a dog’ or ‘every country has 
a capital city’).

����������(���, ����) ����
��
�
��
��
(����)

����������(���, ���	) ���������������(���	)

q(x) ← 𝗁𝖺𝗌𝖥𝗂𝗇𝖽𝗂𝗇𝗀(x, y) ∧ 𝗁𝖺𝗌𝖲𝗂𝗍𝖾(y, z) ∧ 𝖡𝗋𝖺𝗂𝗇𝖯𝖺𝗋𝗍(z)

The reason to consider a large variety of DLs is the trade-
off between expressive power and computational complex-
ity. The more expressive the logic, the harder the reasoning 
problems become. To give a rough idea: Many standard rea-
soning problems (like checking whether a given tuple is a 
certain answer to an OMQ) for expressive DLs like SHOIQ 
are EXPTIME-complete [26] or of even higher complexity, 
while for less expressive DLs like EL or the DL-Lite family, 
they are solvable in PTIME or CONP [2, 18]. It turns out that 
the complexity is crucially influenced by whether or not dis-
junctions are allowed. The explanation is simple: Sentences 
using disjunctions do not immediately allow for unique con-
clusions to be drawn. So while the other mentioned types of 
sentences can be applied in in a straightforward way, leading 
to a unique result, sentences with disjunction behave differ-
ently and it becomes harder to check whether a certain fact 
is logically implied by the ontology.

For this reason, DLs without disjunctions are investi-
gated. These DLs are called Horn DLs and they are a popu-
lar choice as ontology languages. Widely used ontologies 
like SNOMED CT (Systematized Nomenclature of Human 
and Veterinary Medicine – Clinical Terms) and GALEN 
(Generalised architecture for languages, encyclopedia and 
nomenclatures in medicine) are to a great extent formulated 
in a Horn DL. Horn DLs enjoy nice properties, most impor-
tant for answering OMQs is the universal model property: It 
is possible to apply the rules from the ontology in a straight-
forward way to obtain a (generally infinite) extension of the 
database (the so-called universal model) which contains all 
facts that are relevant for answering certain types of queries, 
so that OMQs can be answered by constructing (a finite rep-
resentation of) the universal model and evaluating the query 
as a standard (not ontology-mediated) query on the universal 
model. The thesis focuses on the Horn DLs Horn-ALC , the 
EL-family and the DL-Lite family.

3 � Reasoning Problems and Main Results

There are many open questions regarding OMQs with Horn 
DLs. The thesis [24] contributes to foundational research 
about Horn DLs. We are concerned with pinpointing the 
computational complexity of several decision problems 
involving OMQs. We focus on two areas: 

1.	 Get a deeper understanding of the complexities of 
answering Horn DL OMQs.

2.	 Introduce new relevant reasoning problems and analyse 
their complexities.

We give an overview of all reasoning problems that are stud-
ied in the thesis and summarize the main results.
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3.1 � Data Complexity and Rewritability of OMQs

Query answering in the presence of ontologies is a very nat-
ural problem. The input consists of an OMQ and a database 
and one is interested in the certain answers to the OMQ on 
the database. To change the question into a decision prob-
lem, one can additionally give a candidate tuple � of con-
stants from the database as an input and ask whether � is a 
certain answer to the OMQ.

Interestingly, query answering is EXPTIME-complete for 
many Horn DLs, which sounds like bad news for the usabil-
ity of these logics in real-life knowledge representation sce-
narios. However, this result is slightly misleading because 
the complexity is usually measured relative to the size of the 
input and the database usually accounts for the biggest part 
of the input, while the query and the ontology are relatively 
small and often static. So there is a different, more refined 
way to measure the complexity, called data complexity: For 
every fixed OMQ, one considers the OMQ answering prob-
lem, where the input is only the database and a candidate 
tuple. Data complexity has been studied for many DLs [6, 
11, 16, 18, 21, 23], and measured in data complexity, query 
answering for Horn DL OMQs is usually tractable.

With this refined view on the complexity of answering 
OMQs, more questions about the so-called non-uniform 
data complexity arise. One can fix an ontology language L 
and a query language Q and ask: What are all the possible 
complexities of OMQs formulated in L and Q ? How can 
OMQs that belong to the same complexity class be charac-
terized? And the so-called meta problem: How complex is 
it to decide what the complexity of a given OMQ is? See [6, 
19, 20, 28] for initial results on these questions. To classify 
OMQs into different complexity classes, one is interested 
in results of the form ‘every OMQ formulated in L and Q 
is either in complexity class X or hard for complexity class 
Y’, which shows that there are no OMQs with a complexity 
that lies ‘strictly between X and Y’. These so-called dichot-
omy results also play an important role in the complexity 
classification of constraint satisfaction problems (CSP), the 
recently proven PTIME/NP dichotomy (formerly known as 
the Feder-Vardi conjecture) being the most famous result 
from this area [10, 29]. In fact, there is a very strong connec-
tion between complexities of CSPs and the data complexity 
of OMQs [6].

It turns out that the data complexity of an OMQ is often 
related to rewritability of the OMQ into other query lan-
guages. Traditional database management systems (DBMS) 
based on SQL or Datalog1 are still popular, since these have 

been developed for a long time and are nowadays highly 
optimized. This raises the question whether traditional 
DBMS can be utilized for answering OMQs, even though 
they do not explicitly provide this functionality. One way to 
achieve this is by rewriting the OMQ Q into a FO query (as 
an abstraction of SQL) or a Datalog query q, which means 
to find a q such that the certain answers to Q are equal to the 
answers of q if executed on any database. It is not always 
possible to find such a rewriting q, since even for Horn 
DLs, rewritings into FO are not guaranteed to exist. But if 
a rewriting exists, one would certainly like to know this, to 
make use of the existing, very optimized DBMS. Thus, an 
interesting question is: Given an OMQ, is it rewritable into 
FO or into Datalog, or into some other relevant fragment of 
these? Rewritability into FO implies AC0 data complexity, 
as well as Datalog rewritability (as long as the ontology is 
formulated in a Horn DL). For more results on rewritability 
of OMQs, see [6, 7, 14, 15, 17]. In particular, we consider 
the fragment linear Datalog, where every rule can contain 
at most one atom with an IDB predicate.

The main result of the thesis regarding data complex-
ity and rewritability of OMQs is a complete characteriza-
tion of OMQs based on an EL-ontology and a conjunctive 
query (CQ) as the actual query: For every such OMQ, the 
query answering problem is either in AC0 or NL-complete 
or PTIME-complete. Also, rewritability into linear Datalog is 
possible if and only if the OMQ has data complexity in NL . 
Furthermore, we show that there is no constant upper bound 
on the arity of IDBs used in the rules of the linear Datalog 
rewritings and we show that the meta-problem for this class 
of OMQs is ExpTime-complete.

Additionally, we discuss the difficulties that arise when 
trying to generalize the results to ELI  , the extension of EL 
where inverse roles are allowed. It turns out that such a char-
acterization for ELI  would also give a complete characteri-
zation of the complexities of CSPs with tree duality, which 
is a challenging open problem in the area of CSPs.

3.2 � Query‑By‑Example

One of the new reasoning problems we study is called query-
by-example (QBE). Imagine a user exploring a knowledge 
base. The user would like to formulate a query but is unable 
to do so since (s)he is unfamiliar with the ontology language 
or query language. However, the user can provide positive 
and negative examples from the data, i.e., data that should 
and data that should not be returned. The QBE problem asks: 
Is it possible to generalize the given examples into a query 
that returns at least all of the positive examples, but none 
of the given negative examples? In the positive case, we 
also want to compute such a witness query. This problem 
is related to machine learning research: We want to learn 
a query from the given examples. QBE has been suggested 

1  Datalog is a rule-based query language that uses conjunctive que-
ries as rules to recursively define additional relations, so-called inten-
sional database predicates (IDB).
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in [30] and has been studied for traditional databases and 
different query languages [1, 5, 8, 9, 13, 27]. We initiate the 
research on QBE for OMQs.

We focus on knowledge bases with Horn-ALC and 
ELI  ontologies and show that the question of whether 
there exists a witness CQ is coNExpTime-complete for 
Horn-ALC and even undecidable for ELI  . Furthermore, 
we investigate the size of witness CQs in the Horn-ALC 
case and show that there are cases of knowledge bases 
that require witness CQs of double exponential size, and 
we show that double exponential size is always sufficient.

The undecidability result for ELI  is quite surprising, 
that even for this rather inexpressive Horn-DL, one can 
already encode undecidable problems in QBE. So one les-
son learnt from the results about QBE and also from the 
results about non-uniform data complexity is that allowing 
inverse rules may have a strong effect on the difficulty of 
a problem, regarding both the computational complexity 
as well as the technical challenges that arise.

3.3 � Expressiblility and Verification

In ontology-based data access (OBDA), data from mul-
tiple sources is unified using a new, global vocabulary. 
The relations of the new vocabulary are defined in terms 
of the old vocabulary using queries (called mappings) 
over the data sources. Additionally, the global vocabulary 
is enriched with an ontology [22], which means that the 
global vocabulary only consists of unary and binary rela-
tions in this case. Using OMQs over the global vocabulary 
becomes then the only intended point of data access. In 
the process of creating such an ontology, it might become 
unclear whether a certain query over the sources can be 
already expressed as a query over the global vocabulary, 
that is, whether there is an OMQ that when executed over 
the global vocabulary returns the same answers as the 
input query when executed over the data sources. If there 
is no such OMQ, introducing more mappings or changing 
the ontology might be necessary.

The expressibility problem asks, given an ontology, 
mappings, and a query q over the data sources, whether q 
can be expressed as an OMQ over the global vocabulary, 
i.e. whether there is a query qt over the global vocabu-
lary which, evaluated as an OMQ with the given ontol-
ogy, gives the same answers as q evaluated over the data 
sources. The verification problem asks, additionally given 
a candidate query qt over the global vocabulary, whether 
qt expresses q.

We study the expressibility and verification problem 
in the OBDA setting for several Horn DLs. We consider 
unions of conjunctive queries (UCQs) as source and target 
queries and global-as-view (GAV) mappings, which means 

the global vocabulary is defined in terms of UCQs over the 
data sources. We show that both problems are Πp

2
-complete 

in DL-Lite, coNExpTime-complete between EL and ELHI  
when source queries are rooted, and 2-ExpTime-complete for 
unrestricted source queries.
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