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Abstract
Stream reasoning is the task of continuously deriving conclusions on streaming data. Different research communities empha-
size different aspects such as throughput vs. expressiveness, yet a mathematical model to describe the declarative semantics 
of such systems has been missing. This motivated the logic-based framework LARS for analytic reasoning over streams. 
However, it is also attractive for applications by itself.
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1 � Introduction: Stream Reasoning

Stream reasoning [7, 10] emerged from stream process-
ing [2] to add logic-oriented features on top of processing 
continuously changing data. The approach of the influential 
continuous query language (CQL) [1], which can be seen 
as extension of SQL for streams, is to first obtain windows, 
i.e., recent snapshots of streaming data, and then execute 
queries as on a database. This principle has been adopted, 
e.g., in the Semantic Web area to extend static queries for 
streams [3, 12]. In Knowledge Representation and Reason-
ing (KR) some recent works (e.g. [9, 11]) have addressed 
incremental reasoning. However, prior to our work, no lan-
guage extension of Answer Set Programming (ASP; see this 
issue) for stream reasoning with windows was proposed.

2 � The LARS Framework

In contrast to temporal reasoning as in Linear Temporal 
Logic (LTL), which deals with reasoning about infinite 
sequences of states, LARS [5] places finite streams and win-
dows at the conceptual core. We model a stream S as a pair 
(T , �) of a timeline T, which is a closed interval in the natural 
numbers, and an evaluation function  � that maps each t ∈ T  
to a (possibly empty) set of atoms, i.e., expressions of form 
p(c1,… , cn) where p is a predicate and c1,… , cn are con-
stants ( n ≥ 0 ). A window function w takes a stream S and a 
time point t ∈ ℕ and returns a substream w(S, t) of S called 
a window. For instance, consider a stream S = ([0, 500], �) , 
where �(485) = �(490) = {x} and �(t) = � for all other time 
points t. A (sliding) time-based window of size 10, applied 
on S at time 500 yields the window ([490, 500], �) , which is 
also obtained by a tuple-based window of size 1.

LARS formulas extend propositional logic, in particu-
lar by window operators w , where w is a generic window 
function. A formula � is evaluated on a stream S at a time 
t, where w � means that the evaluation of � is restricted 
to the window w(S, t). In contrast to a CQL-style snapshot 
semantics that drops timestamps of selected data, LARS 
offers some control: ◊� (resp. □� ) holds if � holds at some 
(resp. every) time point, and @t� holds if � holds at time t 
in the window.

LARS programs are sets of rules �0 ← �1,… ,�n , where 
each �i is a formula; variables are viewed as schematic 
placeholder for concrete (ground) values. The following pro-
gram P describes a simple cooling system that must keep the 
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temperature below 7 degrees, where atom s(V) stands for a 
temperature with value V.

Rule (1) abstracts away the specific value: for every second 
T during the last 60, we associate atom high with T if there 
is a temperature signal s(V) with V > 7 . Rule (2) then trig-
gers cooling if the temperature has always been high in that 
interval. Finally, Rule (3) infers a warning if one of the last 
5 signal values was above 12.

Semantically, LARS programs can be seen as extension 
of ASP for streams, thus carrying over attractive features like 
minimal model reasoning, nonmonotonicity and recursion. 
The closed world assumption (as in databases) allows for 
reasoning based on the absence of data; in general, the stable 
model semantics then leads to multiple models. This makes 
LARS applicable for scenarios which require the genera-
tion of alternative solutions like in planning, diagnosis or 
configuration.

Satisfiability and model checking are in ground LARS 
PSPACE-complete (for tractable window functions), but in 
practical settings not harder than in ground ASP. In contrast 
to LTL, ground LARS programs with time windows yield 
the full class of regular languages; nonground programs can 
express also intractable languages.

3 � Implementations and Incremental 
Reasoning

Besides foundational aspects beyond the scope of this note, 
we developed Ticker [6], a prototypical stream reasoning 
engine that comes with two reasoning modes for LARS pro-
grams with the above sliding windows.1

The first mode repeatedly calls the ASP solver Clingo [8] 
based on a translation. The second, more efficient mode is 
incremental; it uses truth maintenance systems to adjust the 
model of a dynamically updated ASP encoding. In Ticker 
syntax, the above program P reads:

@T high :- @T s(V) [60 sec], V> 7.
cool :- always high [60 sec].
warn :- s(V) [5 #], V> 12.

The Laser engine [4] is geared for programs with unique 
models to achieve high performance, by managing 

@T high 60sec @T s(V ), V > 7

cool 60sec high

warn #5 s(V ), V > 12

incrementally substitution tables using temporal infor-
mation. Laser was shown to be significantly faster than 
C-SPARQL, CQELS or Ticker/Clingo in comparable opera-
tions, using Python with PyPy 5.8.2

4 � Conclusion

In conclusion, LARS is a framework that extends ASP for 
stream reasoning with an emphasis on generic windows. 
Algorithmically, frequently changing data calls for incre-
mental reasoning, as exemplified in the prototype engines 
Ticker and Laser. Further and future work includes the use 
of LARS in applications like network management and 
dynamic reconfiguration.
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