
Vol.:(0123456789)1 3

KI - Künstliche Intelligenz (2018) 32:193–195
https://doi.org/10.1007/s13218-018-0537-9

SYSTEMS DESCRIPTION

Stream Reasoning with LARS

Harald Beck1 · Minh Dao‑Tran1 · Thomas Eiter1 · Christian Folie1

Published online: 17 May 2018
© The Author(s) 2018

Abstract
Stream reasoning is the task of continuously deriving conclusions on streaming data. Different research communities empha-
size different aspects such as throughput vs. expressiveness, yet a mathematical model to describe the declarative semantics
of such systems has been missing. This motivated the logic-based framework LARS for analytic reasoning over streams.
However, it is also attractive for applications by itself.

Keywords  Stream reasoning · Incremental reasoning

1 � Introduction: Stream Reasoning

Stream reasoning [7, 10] emerged from stream process-
ing [2] to add logic-oriented features on top of processing
continuously changing data. The approach of the influential
continuous query language (CQL) [1], which can be seen
as extension of SQL for streams, is to first obtain windows,
i.e., recent snapshots of streaming data, and then execute
queries as on a database. This principle has been adopted,
e.g., in the Semantic Web area to extend static queries for
streams [3, 12]. In Knowledge Representation and Reason-
ing (KR) some recent works (e.g. [9, 11]) have addressed
incremental reasoning. However, prior to our work, no lan-
guage extension of Answer Set Programming (ASP; see this
issue) for stream reasoning with windows was proposed.

2 � The LARS Framework

In contrast to temporal reasoning as in Linear Temporal
Logic (LTL), which deals with reasoning about infinite
sequences of states, LARS [5] places finite streams and win-
dows at the conceptual core. We model a stream S as a pair
(T , �) of a timeline T, which is a closed interval in the natural
numbers, and an evaluation function � that maps each t ∈ T
to a (possibly empty) set of atoms, i.e., expressions of form
p(c1,… , cn) where p is a predicate and c1,… , cn are con-
stants ( n ≥ 0 ). A window function w takes a stream S and a
time point t ∈ ℕ and returns a substream w(S, t) of S called
a window. For instance, consider a stream S = ([0, 500], �) ,
where �(485) = �(490) = {x} and �(t) = � for all other time
points t. A (sliding) time-based window of size 10, applied
on S at time 500 yields the window ([490, 500], �) , which is
also obtained by a tuple-based window of size 1.

LARS formulas extend propositional logic, in particu-
lar by window operators w , where w is a generic window
function. A formula � is evaluated on a stream S at a time
t, where w � means that the evaluation of � is restricted
to the window w(S, t). In contrast to a CQL-style snapshot
semantics that drops timestamps of selected data, LARS
offers some control: ◊� (resp. □� ) holds if � holds at some
(resp. every) time point, and @t� holds if � holds at time t
in the window.

LARS programs are sets of rules �0 ← �1,… ,�n , where
each �i is a formula; variables are viewed as schematic
placeholder for concrete (ground) values. The following pro-
gram P describes a simple cooling system that must keep the

 *	 Harald Beck
	 beck@kr.tuwien.ac.at

	 Minh Dao‑Tran
	 dao@kr.tuwien.ac.at

	 Thomas Eiter
	 eiter@kr.tuwien.ac.at

	 Christian Folie
	 christian.folie@outlook.com

1	 Institute of Logic and Computation, TU Wien,
Favoritenstraße 9‑11, 1040 Vienna, Austria

http://crossmark.crossref.org/dialog/?doi=10.1007/s13218-018-0537-9&domain=pdf

194	 KI - Künstliche Intelligenz (2018) 32:193–195

1 3

temperature below 7 degrees, where atom s(V) stands for a
temperature with value V.

Rule (1) abstracts away the specific value: for every second
T during the last 60, we associate atom high with T if there
is a temperature signal s(V) with V > 7 . Rule (2) then trig-
gers cooling if the temperature has always been high in that
interval. Finally, Rule (3) infers a warning if one of the last
5 signal values was above 12.

Semantically, LARS programs can be seen as extension
of ASP for streams, thus carrying over attractive features like
minimal model reasoning, nonmonotonicity and recursion.
The closed world assumption (as in databases) allows for
reasoning based on the absence of data; in general, the stable
model semantics then leads to multiple models. This makes
LARS applicable for scenarios which require the genera-
tion of alternative solutions like in planning, diagnosis or
configuration.

Satisfiability and model checking are in ground LARS
PSPACE-complete (for tractable window functions), but in
practical settings not harder than in ground ASP. In contrast
to LTL, ground LARS programs with time windows yield
the full class of regular languages; nonground programs can
express also intractable languages.

3 � Implementations and Incremental
Reasoning

Besides foundational aspects beyond the scope of this note,
we developed Ticker [6], a prototypical stream reasoning
engine that comes with two reasoning modes for LARS pro-
grams with the above sliding windows.1

The first mode repeatedly calls the ASP solver Clingo [8]
based on a translation. The second, more efficient mode is
incremental; it uses truth maintenance systems to adjust the
model of a dynamically updated ASP encoding. In Ticker
syntax, the above program P reads:

@T high :- @T s(V) [60 sec], V> 7.
cool :- always high [60 sec].
warn :- s(V) [5 #], V> 12.

The Laser engine [4] is geared for programs with unique
models to achieve high performance, by managing

@T high 60sec @T s(V), V > 7

cool 60sec high

warn #5 s(V), V > 12

incrementally substitution tables using temporal infor-
mation. Laser was shown to be significantly faster than
C-SPARQL, CQELS or Ticker/Clingo in comparable opera-
tions, using Python with PyPy 5.8.2

4 � Conclusion

In conclusion, LARS is a framework that extends ASP for
stream reasoning with an emphasis on generic windows.
Algorithmically, frequently changing data calls for incre-
mental reasoning, as exemplified in the prototype engines
Ticker and Laser. Further and future work includes the use
of LARS in applications like network management and
dynamic reconfiguration.

Funding  Funding was supported by FWF Grants P26471, P27730,
and W1255-N23. Open access funding provided by Austrian Science
Fund (FWF).

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

	 1.	 Arasu A, Babu S, Widom J (2006) The CQL continuous query
language: semantic foundations and query execution. VLDB J.
15(2):121–142

	 2.	 Babu S, Widom J (2001) Continuous queries over data streams.
SIGMOD Record 3(30):109–120

	 3.	 Barbieri D, Braga D, Ceri S, Della Valle E, Grossniklaus M (2010)
C-SPARQL: a continuous query language for RDF data streams.
Int J Semantic Comput 4(1):3–25

	 4.	 Bazoobandi HR, Beck H, Urbani J (2017) Expressive stream rea-
soning with Laser. In: Proceeding ISWC

	 5.	 Beck H, Dao-Tran M, Eiter T, Fink M (2015) LARS: A logic-
based framework for analyzing reasoning over streams. In: Pro-
ceeding AAAI, pp 1431–1438. AAAI Press

	 6.	 Beck H, Eiter T, Folie C (2017) Ticker: a system for incremental
ASP-based stream reasoning. TPLP 17(5–6):744–763

	 7.	 Della Valle E, Ceri S, van Harmelen F, Fensel D (2009) It’s a
streaming world! Reasoning upon rapidly changing information.
IEEE Intell Syst 24:83–89

	 8.	 Gebser M, Kaminski R, Kaufmann B, Schaub T (2014) Clingo
= ASP + control: Preliminary report. TPLP, online supplement;
also CoRR, abs/1405.3694

	 9.	 Gebser M, Kaminski R, Obermeier P, Schaub T (2015) Rico-
chet robots reloaded: A case-study in multi-shot ASP solving. In:
LNCS 9060, Springer , pp. 17–32

	10.	 Mileo A, Dao-Tran M, Eiter T, Fink M (2018) Stream reasoning.
In: Liu L, Özsu MT (eds) Encyclopedia of database systems, 2nd
(edn), Springer, New York (ISBN 978-1-4614-8266-6)

1  Ticker source: https​://githu​b.com/hbeck​/ticke​r. 2  Laser source: https​://githu​b.com/karma​resea​rch/laser​.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/hbeck/ticker
https://github.com/karmaresearch/laser

195KI - Künstliche Intelligenz (2018) 32:193–195	

1 3

	11.	 Motik B, Nenov Y, Piro R, Horrocks I (2015) Incremental update
of datalog materialisation: the backward/forward algorithm. In:
Proceeding AAAI, AAAI Press , pp 1560–1568

	12.	 Phuoc DL, Dao-Tran M, Parreira JX, Hauswirth M (2011) A
native and adaptive approach for unified processing of linked
streams and linked data. In: Proceeding ISWC

	Stream Reasoning with LARS
	Abstract
	1 Introduction: Stream Reasoning
	2 The LARS Framework
	3 Implementations and Incremental Reasoning
	4 Conclusion
	References

