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Abstract
The productivity of shale gas well is often with high uncertainty because of the uncertainties in the characterization of 
formation properties, fracture properties, gas adsorption, and flow mechanisms. This paper provides an efficient method to 
probabilistically forecast shale gas production by combining the Markov chain Monte Carlo method (MCMC) and a semi-
analytical model. A trilinear flow model is used to predict shale gas production with the consideration of gas desorption and 
multiple flow mechanisms. The parameters in the model are sampled with the MCMC. A workflow is proposed to predict 
the gas production and characterize the uncertainties. To make the study results helpful for the field use, a field case from 
a shale gas field in Southwestern China is applied in the analysis. In this case, we chose ten uncertain parameters to study 
their effects on eventual ultimate recoveries. Shale gas production is shown to be closely related to the properties of forma-
tion, fracture, and flow mechanisms. The fracture half-length and BHP have strong effects on gas production, particularly 
the production within 5 years. BHP also influences the production after 5 years because of the gas PVT properties and gas 
adsorption. The results also show that enough iteration number is needed to get a reasonable uncertainty quantification. The 
sensitivity analysis shows that at least 2000 iterations are required for this case. After that, the probable production could be 
predicted with a range rather than only one value, and P10, P50, and P90 can be obtained. For the case studied in this paper, 
there is 90% probability that the EUR for a well is ranging from 0.62 × 108 to 1.48 × 108 m3.
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Introduction

Shale gas resource has been commercially exploited in 
North America and China as the development of the mul-
tiple fractured horizontal well technology (Shar et  al. 
2017). The productivity of each horizontal well behaves 

differently depending on the formation properties, the 
stimulation results and controlling BHP. At present, many 
models, including empirical, analytical, semi-analytical, 
and numerical models, have been proposed to predict the 
eventual ultimate recovery (EUR) for each shale gas well. 
However, reservoir characterization for shale gas reservoirs 

 *	 Yonghui Wu 
	 wuyonghuijr@gmail.com

	 Bingxiang Xu 
	 xubx2@cnooc.com.cn

	 Linsong Cheng 
	 lscheng@cup.edu.cn

	 Shijun Huang 
	 fengyun7407@163.com

	 Yuhu Bai 
	 baiyh2@cnooc.com.cn

	 Ling Chen 
	 chenling10@cnooc.com.cn

	 Yuyang Liu 
	 634954733@qq.com

	 Yanwei Yang 
	 1635078864@qq.com

	 Lijie Yang 
	 648807207@qq.com

1	 CNOOC Research Institute Co. Ltd., Beijing 100028, China
2	 China University of Petroleum, Beijing 102249, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s13202-018-0598-1&domain=pdf


1964	 Journal of Petroleum Exploration and Production Technology (2019) 9:1963–1970

1 3

often involves various uncertainties that should be carefully 
incorporated. The native permeability of a shale gas reser-
voir covers a wide range (US EIA 2013; Zou et al. 2015). 
Shale formations are rich of much organic matter, which 
provides an efficient place for gas adsorptions in the shale 
matrix (Ogiesoba and Hammes 2014). By far, several meth-
ods, like molecular simulation, analytical modeling, and 
associated experimental tests (Huang et al. 2018a, b, c; Li 
et al. 2018; Xianggang et al. 2018), have shown that the des-
orption mechanisms are rather complex in the formation for 
the supercritical condition. Moreover, the flow complexity 
through nanoscale pore throats makes an accurate measure-
ment of permeability challenging (Javadpour 2009; Swami 
and Settari 2012; Sakhaee-Pour and Bryant 2012). Many 
other researchers also presented several models to evaluate 
flow in both macro- and nano-porous media in different con-
ditions (Wu et al. 2015; Mozaffari et al. 2015, 2017; Darjani 
et al. 2017; Sun et al. 2017; Huang et al. 2018a). In addition, 
the formation properties are heterogeneous such as porosity, 
gas content, thickness and pressure, etc. On the other hand, 
fracture properties are with high uncertainty such as frac-
ture length and fracture conductivity, which are difficult to 
measure. Many comprehensive models have been proposed 
to model the flow behavior in the complex fracture networks 
(Guo et al. 2015; Jia et al. 2016, 2018; Cheng et al. 2017; 
Zhang et al. 2017a, b; Wu et al. 2018), but the fracture het-
erogeneity characterization and assisted uncertainty quan-
tification have been the major problem (Tang et al. 2017).

Quantifying the uncertainty in EUR prediction is of high 
significance. In addition, two methods have been proposed 
to probabilistically forecast the EUR of shale gas wells. The 
first method is using empirical models (Gong et al. 2014), 
and the parameters such as initial decline rate, decline 
exponent, and initial gas rate are sampled with MCMC. 
The second method is using numerical simulators in history 
matching (Panja and Deo 2016; Wantawin et al. 2017; Chai 
et al. 2018). However, there are some drawbacks in present 
uncertainty quantification methods. The prior distributions 
of the parameters in empirical models are difficult to obtain, 
because the present production history of shale gas wells 
which are relatively short and many wells is under constant 

rate control mode in the first several years. In addition, 
numerical simulations are time-consuming and too many 
parameters are required in simulation runs. Moreover, proxy 
models do not always converge and the predictions are often 
with much error. Alternative to the time-consuming numeri-
cal models, many semi-analytical and analytical models have 
been proposed, and they are very practical and efficient in 
transient analysis and production prediction (Brown et al. 
2009; Bahrami et al. 2016; Wu et al. 2016; Zhang et al. 
2017a, b; Huang et al. 2018b; Xue et al. 2018). However, 
there are few works done to probabilistically predict the 
EUR by combining analytical and semi-analytical models 
with MCMC.

In our previous research, we proposed a semi-analytical 
trilinear flow model for production prediction from shale 
gas reservoirs (Wu et al. 2016). Gas desorption from shale 
matrix and nonlinear flow mechanisms of shale gas is con-
sidered in the model. Therefore, we mainly analyzed the 
uncertainty and distribution of parameters in the model at 
first. Then, we introduced the MCMC methodology and 
proposed a workflow for uncertainty quantification in pro-
duction forecasts. At last, a field example is used to show 
its utility.

Methodology

Physical model

For multiple stages fractured shale gas reservoirs, a stimu-
lated reservoir volume (SRV) is formed around the horizon-
tal well, which is comprised of many induced fractures and 
hydraulic fractures. However, fracture parameters such as 
the orientation, length, position, and conductivity of each 
induced fracture could not be measured or interpreted from 
microseismic data. Therefore, the trilinear flow model is 
often used to characterize and model fracture tight and shale 
reservoirs. As shown in Fig. 1, the reservoir is comprised of 
three zones including the SRV, hydraulic fractures, and the 
reservoir beyond the hydraulic fractures (outer reservoir). 
The hydraulic fracture at each stage is assumed as biwing 

Fig. 1   Schematic of the trilinear 
model for a hydraulically frac-
tured shale oil well
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transverse fracture, and it is assumed to be with finite con-
ductivity. The assumptions of the model are as follows:

(1)	 The hydraulic fractures are assumed to be with the 
same length and perpendicular to the horizontal well-
bore.

(2)	 The length of the SRV is assumed to be equal to the 
half-length of hydraulic fractures.

(3)	 The horizontal wellbore is assumed to be with infinite 
conductivity.

(4)	 Gravity effect is neglected, and gas flow in each zone is 
assumed to be linear. Gas in the outer reservoir linearly 
flows into the inner zone, gas in the inner reservoir is 
assumed to linearly flow into the hydraulic fracture, and 
then linearly flow into the wellbore.

(5)	 The reservoir is assumed to be with a constant thick-
ness, and the temperature is assumed to be constant in 
the reservoir. If the temperature variation is addressed, 
there should be much more uncertainty in the produc-
tion, because the gas PVT properties, the adsorption 
volume, and the flow mechanisms are all temperature 
dependent.

Mathematical model

In addition to the fracture networks created by multiple 
stage fracturing, shale reservoirs are normally regarded as 
self-sourcing reservoirs and the shale matrix is typically 
observed with very low permeability and rich of organic 
matter with much gas adsorption (Xu et al. 2013). The diam-
eter of most pores of shale matrix is believed to range from 1 
to 200 nm (Loucks et al. 2009; Honarpour et al. 2012). Gas 
flow in these nanopores is very complex, and it has been a 
hotpot previously. Many apparent permeability models have 
been proposed to characterize fluid transport in shale matrix 
(Javadpour 2009; Swami and Settari 2012; Wu et al. 2015). 
Therefore, production prediction models should consider 
gas desorption from the shale matrix and the complex flow 
mechanisms. In our previous work, we presented a trilinear 
flow model for production prediction for shale gas wells (Wu 
et al. 2016), gas desorption and flow mechanisms are consid-
ered in the model, and the model is solved semi-analytically 
to capture the nonlinearity of the equations. Therefore, the 
solution of the model is directly given in this paper.

The solution of the dimensionless rate in Laplace domain 
at constant BHP is given by

where f (s) is defined as

(1)qD =
1

2�s

√
sf (s) tanh

�√
sf (s) ⋅ yFD

�
,

(2)f (s) = � +
�IF

3

√
ff(s)∕s tanh

�√
sff(s)

�

where qD is the dimensionless production rate, yFD is the 
dimensionless fracture length, yeD is the dimensionless outer 
zone region, �IF is the interporosity flow coefficient between 
the inner zone and the fracture, �Io is the interporosity flow 
coefficient between the inner zone and outer zone, �D is the 
diffusivity ratio, � is the storativity ratio, and s is the Laplace 
const. All the parameters are dimensionless, and the defini-
tions are the same as our previous work (Wu et al. 2016).

Although the adsorption mechanisms are rather complex, 
the Langmuir isotherm is still widely used in practical (Yan 
et al. 2016; Hao et al. 2018). This is because the equation 
form is quite simple and it is rather efficient in matching 
experiment data. In this paper, this model is also used. If 
other isotherms are applied, we just need to change a form 
to calculate the adsorption volume instead of Eq. (4):

where V  is the adsorbed gas volume, m3; VL is the Lang-
muir volume, m3; pL is the Langmuir pressure, MPa; and pm 
is the pressure in the matrix, MPa.

In this paper, we adopt the model proposed by Javadpour 
(2009) and Swami and Settari (2012) to model shale gas 
transport in the shale matrix:

where kapp is the apparent permeability, mD; Cg is the gas 
compressibility, MPa−1; D is the diffusion coefficient, 10− 15 
m2/s; � is gas viscosity, mPa.s; kD is Darcy permeability, 
mD; R is gas constant, R = 8.314 J/mol/K; T  is formation 
temperature, K; M is gas molar mass, kg/kmol; pavg is the 
average pressure, MPa; and � is a tangential momentum 
accommodation coefficient, dimensionless. rn is the average 
hydraulic radius of the flow pipe, and it is defined as

Uncertainty analysis of model parameters

The semi-analytical model is used to predict shale gas pro-
duction. However, many parameters cannot be determined 
for the reservoir; for example, we could obtain the properties 
of formation from core data and well logging, but this infor-
mation just stands for a certain point rather than the whole 
reservoir. On the other hand, the SRV properties such as the 
fracture length, fracture conductivity and SRV permeability 
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are often unknown. Therefore, many parameters are with 
uncertainty, which causes the uncertainty in the prediction 
of shale gas production and EUR. In this section, the model 
parameters are analyzed, including fracture parameters, for-
mation parameters, and parameters about gas desorption and 
flow mechanisms.

Fracture parameters

In the model, the fractures are assumed to be vertical and 
are uniformly placed along the horizontal well. The fracture 
height is the same as the reservoir height. The width of the 
SRV is altered depending on the fracture spacing, which is 
calculated with the length of the horizontal well and num-
bers of fracture stages. Fracture width, fracture orientation, 
and fracture porosity remain constant. Fracture permeability 
and length are altered in the runs. The induced fractures 
and natural fractures are modeled with the enhancement of 
matrix permeability. Therefore, the width, length, and per-
meability of the SRV are altered in this study.

Formation parameters

The reservoir properties, namely, matrix permeability, ini-
tial reservoir pressure, and formation thickness, are varied. 
The reservoir temperature is given a constant value. In this 
study, the data are obtained from the published paper by 
Zou et al. (2015), which is gathered from several shale gas 
field in southwestern China. Because the permeability of 
the shale matrix from different shale gas fields is tested with 
different apparatus, some cores are even affected by micro-
fractures, and many test results are not reliable. In this paper, 
we used the results of Changning field and Weiyuan field 
as suggested by Zou et al. (2015). The matrix permeability 
altered from 4 × 10−5 to 3 × 10−4 mD. For other shale gas 
reservoirs with different organic matter contents and pore 
size distributions, the desorption and flow mechanisms may 
not be the same, but this method could also be used to pre-
dict the production and associated uncertainty by changing 
formulations to calculate adsorption gas content and appar-
ent permeability.

Parameters about gas adsorption and flow mechanisms

From the results presented by Zou et al. (2015), the initial 
adsorbed gas content varies from well to well, and the gas 
content would increase with the depth in the shale formation. 
On the other hand, the total organic content in the formation 
also varies a lot, so the adsorption isotherm varies from well 
to well. Moreover, the average pore diameter is different 
in a different formation, so parameters associated with gas 
flow mechanisms are different in different positions of the 

reservoir. Therefore, in this paper, we altered the parameters 
of gas adsorption and flow mechanisms.

Uncertainty quantification using MCMC

MCMC methods are a class of algorithms for sampling 
from probability distributions by constructing a Markov 
chain that has the desired posterior distribution. The stabi-
lized state of the chain after a large number of steps is then 
used as an approximation of the desired distribution. The 
detail of this method is presented by Gong et al. (2014); 
here, we briefly introduced this method.

The Metropolis algorithm is often used for MCMC 
sampling for the cases that the posterior distribution is 
unknown. The overall workflow for MCMC by use the 
metropolis algorithm is as follows.

Step 1: Choose an initial value for each parameter; in 
this study, the median values are used.

Step 2: Generate a sample proposal from the proposal 
distribution for each parameter.

Step 3: Calculate acceptance ratio by use of Eq. (8).
Step 4: Generate a random number between zero and 

unity, if the random number is less than the acceptance 
ratio, accept the proposal. Otherwise, use the previous 
sample.

Step 5: If the maximum iteration is not reached, go to 
Step 2:

in which �p represents a proposed parameter vector; �s−1 
represents the previously accepted parameter vector; y rep-
resents the historical production data; � is the likelihood 
function; p is the probability that a proposal is accepted; and 
q is the proposal density function of parameters.

The MCMC methodology is applied to the unknown 
parameters in the semi-analytical model. The performance 
of each sample is forecasted with the semi-analytical model. 
And then, we analyzed the posterior distribution of the ulti-
mate shale gas recovery. We now illustrate the detailed 
workflow, as shown in Fig. 2. First, we assumed that the 
prior distribution of the parameters of fractures, formation, 
fluid desorption, and flow mechanism is independent. In this 
paper, the range and distribution of some parameters are 
shown in Tables 1 and 2. Second, MCMC is used for sam-
pling from each prior distribution of the uncertain parame-
ters, and the acceptance ratio is calculated for each proposed 
sample. Third, the semi-analytical model is used to simu-
late the production performance, and the ultimate shale gas 
reserve is obtained for each sample. Finally, when the preset 
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maximum iteration is reached, the posterior distribution of 
the EUR can be obtained, and P90, P50, and P10 production 
forecasts can be calculated.

Results and discussion

Forecast and sensitivity analysis of production 
outputs

In this paper, the semi-analytical model is used for produc-
tion performance forecast and ultimate recovery. It can be 
used efficiently as forecast and sensitivity analysis tools. 
Because there are several uncertain parameters in the model, 
as shown in Table 2, to show the effect of a certain parameter 
on the forecast, we just analyzed the fracture half-length and 
BHP on production performance. For the input parameters 
shown in Table 2, the forecast and the sensitivity analy-
sis of the shale gas recovery are illustrated in Fig. 3. We 

…….

MCMC Sampling

Forecasts using 
Semianalytical Model

Statistical Analysis

No

Yes

maximum iteration
reached?

Fig. 2   Workflow of the methodology to quantify the uncertainty in 
production

Table 1   Range of some parameters from shale gas fields in Southwestern China

Shale gas field (unit) Formation 
thickness (m)

TOC (%) Porosity (%) Gas content (m3/t) Formation pressure 
coefficient (MPa)

Fracture development (–)

Weiyuan 18–30 1.1–8.4 3.3–7.0 1.9–4.8 1.10–1.50 Partly developed
Huangjinba 30–40 2.1–6 3.4–7.4 2.4–4.5 1.05–1.96
Changning 32–44 1.9–8.4 3.4–8.4 2.4–5.5 1.25–2.10
Fuling 38–60 2.1–6.3 3.7–7.8 4.7–7.2 1.35–1.55 Developed

Table 2   List of input parameters 
selected for study and the 
distributions

Order Variable Minimum Medium Maximum Distribution 

1 Matrix permeability, mD 4×10-5 1.2×10-4 2×10-4 
 

2 Matrix porosity, % 3.2 5.8 8.4 
 

3 Langmuir volume, m3/t 2.5 3.5 4.5 
 

4 Formation pressure, MPa 38 45 52 
 

5 Formation thickness, m 30 39 48 
 

6 Half-length of fracture, m 30 50 70 
 

7 
The permeability of SRV divided by 

matrix permeability 
2 4 6 

 

8 Conductivity of fracture, D.cm 0.1 0.3 0.5 
 

9 Diffusion coefficient, 10-6m2/s 0.1 0.3 0.5 
 

10 BHP, MPa 2 5 8 
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could find that the fracture half-length has a strong effect 
on gas production. The cumulative production in 20 years 
seems to linearly increase with the increase of fracture half-
length. This is because the fracture half-length determines 
the whole volume of SRV, which dominates the control 
volume of the wellbore when the permeability of the outer 
unstimulated reservoir is very low. In addition, we could 
also find that BHP also has a significant influence on pro-
duction. We could also find that the cumulative production 
discrepancy among different fracture half-lengths is almost 
the same when the production time is larger than 5 years, 
while the discrepancy among different BHPs would be larger 
and larger with the increase of time. This is because the gas 
compressibility change at low pressures is larger than high 
pressures. Besides, the gas adsorption content declines faster 
at low pressures.

Sensitivity analysis of the number of iterations

As shown before, the Markov chain would converge to pos-
terior distribution, and several iterations are used. Before 
uncertainty quantification for synthetic and field cases, we 
have to make sure how many iterations should be needed. If 
too many iterations are used, it would be time-consuming, 
and it would not converge if few iterations are used.

To find out how many iterations are required to generate 
small errors, seven simulations were run with MCMC itera-
tion numbers ranging from 100 to 20,000 for a shale gas 
well with 20 year production. We calculated the cumulative 
distribution function (CDF) of the cumulative gas produc-
tion for the well. As shown in Fig. 4a, the CDF is not sta-
ble and smooth if the iteration number is not small, but the 
distributions will converge to a single line, as the number 
of iterations is increased. Besides, we could also find this 
from the relative error curve in Fig. 4b, in which the result 
obtained from 100,000 iterations is assumed to be the actual 
value to calculate the relative error. The relative error would 
decline shapely as the increase of iteration number when the 
iterations are below 2000 times, and the curve flats when 
the iterations are above 2000 times. Therefore, 2000 itera-
tions are enough for this case if the relative error is set to 
5%, as shown in Fig. 4b. It should be noted that the CDF 
and relative error curves may not be the same with the same 
iterations, because the MCMC algorithm is applied, but the 
trend of the results would not change.

Uncertainty quantification

We further used this method to quantify the uncertainty of 
gas production. Uncertainties in EUR for the shale gas well 

Fig. 3   Gas production for differ-
ent half-lengths of fracture (a) 
and flowing BHP (b)

(a) (b)

Fig. 4   CDF for different num-
bers of MCMC iteration (a); 
the relative error for different 
numbers of MCMC iteration (b)

(a) (b)
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after 20 years of production are shown in Fig. 5. The most 
probable EUR for a single shale gas well is approximately 
0.88 × 108 m3 after 20 years of production, and the EUR is 
quite close to the result obtained by rate transient analysis 
in our previous work (Wu et al. 2016), which shows that 
0.89 × 108 m3 shale gas could be produced from a well after 
15 years. After 20 year production, the EUR of the analyzed 
well is supposed to be around 1.0 × 108 m3. Therefore, the 
EUR spreads over a reasonable range in the probability dis-
tribution function (PDF) plot. This is because the studied 
parameters in the model, as shown in Table 2, are given 
rational ranges. It should be noted that reasonable param-
eter ranges are significantly important to obtain a reasonable 
EUR estimation and uncertainty quantification. The results 
obtained with invalid parameters is useless in practice. The 
range of 5–95% in the PDF covers 0.62–1.48 × 108 m3 gas 
production. This means that there is 90% probability the 
production is within this region. P90, P50, and P10 could 
be calculated, and they are 0.70, 0.97 and 1.31 × 108 m3, 
respectively. It is interesting to find that the most probable 
EUR is quite different from the P50, and this is because the 
distribution of EUR is not symmetrical using the asymmetri-
cal distributions, as shown in Table 2. This also shows the 
importance of reasonable distributions of model parameters 
on the final results.

Conclusions

Shale gas production is closely related to the properties 
of formation, fracture, and flow mechanisms. The fracture 
half-length and BHP have strong effects on gas production, 
particularly the production within 5 years. BHP also influ-
ences the production after 5 years because of the gas PVT 
properties and gas adsorption. Uncertainty quantification in 
production forecasts is of significance because of the uncer-
tainty in these properties.

It is an efficient method to combine analytical and semi-
analytical methods with MCMC to probabilistically predict 
the production and EUR of shale gas wells. The number of 
iterations in MCMC sampling is quite important in uncer-
tainty quantification, and there is a compromise between 
relative error and computation time. The minimum numbers 
of iterations needed for MCMC uncertainty quantification 
could be predicted by analyzing the relative error with dif-
ferent iterations. The relative error would decline shapely as 
the increase of iteration number and then flats. For the case 
studied in this paper, 2000 iterations are enough.

In addition, reasonable range and distribution of the 
parameters in the model are required to guarantee a rational 
posterior distribution of EUR. The most probable produc-
tion, P10, P50, and P90, can be obtained after the poste-
rior distribution is calculated. For the case studied in this 
paper, there is 90% probability that the EUR range is 
0.62–1.48 × 108 m3. The P90, P50, and P10 are 0.70, 0.97, 
and 1.31 × 108 m3, respectively.
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