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Abstract
The results of theoretical studies of the hydrodynamic laws of fluid flow and changes in the characteristics of the wall layer 
of the flow in tubular mixing devices, used in technological processes of reagent-based wastewater treatment, are presented. 
A mathematical relation, which allows determining the critical value of the Reynolds number Re, at which the regime of 
fluid movement in a tubular mixing device passes into the region of the quadratic resistance law of rough channels with the 
maximum degree of turbulence of flows, is obtained. It is shown that the main technical characteristics of tubular mixing 
devices are: the magnitude of the pulsation component of the local velocity ∆υl (m/s) and the value of the turbulent diffu-
sion coefficient DT  (m2/s) in the wall region of the turbulent fluid flow. Mathematical relations, which allow calculating the 
magnitude of the pulsation component of the local velocity and the turbulent diffusion coefficient in the wall region of the 
fluid flow in the pressure channels of circular cross section, are obtained. Using the proposed calculation technique will 
allow to optimize the operation regime of tubular mixing devices.

Keywords Tubular mixing devices · Reagent treatment · Wastewater · Turbulent mixing · Energy dissipation · Turbulent 
diffusion · Wall sublayer · Reynolds number

Introduction

Currently, reagent treatment of the fluid flow is widely 
used in the wastewater treatment technology, in particular, 
using reagent coagulation of colloidal and fine impurities 
(Adelshin and Potekhin 1997).

In the process of reagent coagulation, a quick and uniform 
distribution of coagulant reagents in the treated volume of 
wastewater is required to ensure the contact of the maxi-
mum amount of dispersed pollution particles with interme-
diate products of coagulant hydrolysis. Since the processes 
of the coagulant hydrolysis in the treated wastewaters are 
quite intensive, and intermediate hydrolysis products with 
increased activity exist for a short time, it becomes necessary 

to create such hydrodynamic conditions for mixing the 
wastewater volume, in which the coagulant reagent could 
interact with the maximum number of particles of impurities 
before the coagulant hydrolysis reaction will be completed. 
For mixing the volume of wastewater with reagents added to 
it, mechanical or hydraulic mixing devices are used. In these 
devices, there are an intensive equalization of concentrations 
contained in the treated fluid of the chemical ingredients, 
dispersion of emulsion droplets and solid particles of the 
suspension, and fragmentation of gas bubbles as a result of 
forced movement of the microvolumes of the mixing fluid.

Mechanical mixing devices are container structures (stor-
age tanks). Mixing the volume of fluid in mechanical mixing 
devices is performed by mechanical agitators. Usually, there 
are bladed, turbine or propeller agitators mounted on a verti-
cal shaft in mechanical mixing devices, which are driven by 
an electric motor (Adelshin and Potekhin 1997).

Hydraulic mixers, unlike mechanical ones, do not require 
the use of additional energy supplied to an electromechanical 
mixing device; they are distinguished by structural simplic-
ity and operational reliability. In the hydraulic-type mixing 
devices, there is a principle of utilization of the own energy 
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of the fluid flow due to its turbulization, which is created 
by local resistances or occurs as a result of an increase in 
the velocity of water motion (Adelshin and Potekhin 1997).

In technological processes of wastewater treatment, tubu-
lar hydrodynamic mixing devices (tubular mixers) are most 
widely used among hydraulic mixers, allowing to provide 
highly efficient mixing of treated water with reagents at the 
micro level (Adelshin and Potekhin 1997).

Tubular mixers have a developed contact surface of the 
fixed walls of the channel with a moving flow of treated 
wastewater, resulting in intensifying the process of micro-
scale mixing that occurs in a thin wall layer of the flow. 
Mixing devices of this type are characterized by high pro-
ductivity and intensity of mixing the treated volume of fluid, 
which leads to the possibility of their use in constraint envi-
ronment. Tubular mixers are made in the form of structures 
assembled from pipes of the effective length and diameter.

This article considers theoretical aspects of fluid move-
ment in a tubular mixer, which is a pressure channel of cir-
cular cross section. An analysis of hydrodynamic charac-
teristics of the wall region of the flow was carried out, and 
mathematical relations, allowing us to optimize the opera-
tion regime of the tubular mixer, were obtained.

Experimental section

Theoretical background for calculating 
hydrodynamic characteristics of tubular mixing 
devices

According to the physical mechanism, there are two main 
types of mixing the volume of the treated fluid (Braginskiy 
et al. 1984):

1. Macroscale mixing is the process of averaging the 
characteristics of the treated fluid in local volumes, the 
dimension of which significantly exceeds the diameter 
of the droplets of emulsions and the particles of suspen-
sions contained in the fluid.

2. Microscale mixing is the process of emerging shear 
forces in small elements of the treated fluid volume, 
comparable in dimension to the particles of the dis-
persed phase of the impurities contained in it.

Microscale mixing allows intensifying the processes in 
which equalization of concentrations of reacting substances 
at the macrolevel is not enough for normal chemical reac-
tions, and a significant role is played by the advance or 
removal velocity of substances at the microlevel, up to the 
distances at which intermolecular forces interaction is mani-
fested. Despite the fact that the transfer rate of substances in 
the volume elements of such a small scale is determined by 

molecular diffusion processes that depend on the tempera-
ture and physical properties of the medium and diffusing 
substances, the microscale structure of the flow can signifi-
cantly influence it.

When conducting macroscale mixing in the treated vol-
ume of fluid, there is a uniform distribution not of the mol-
ecules of the reacting substances, but of the microvolumes of 
the fluid of different compositions. The dimension of these 
microvolumes can be negligible compared to the dimension 
of the total volume, in which the mixing process is carried 
out, but significantly exceeds the dimension of the mol-
ecules. Under such conditions, conventional measurement 
methods will fix the equality of local concentrations at all 
points of volume mixing. In reality, in this case there will 
be an extremely uneven distribution of the concentration of 
the reacting substances at the molecular level, which will 
significantly affect the course of chemical reactions.

The processes occurring in the mixing device can be 
divided into two groups:

1. Hydrodynamic transfer processes of dissolved sub-
stances and dispersed particles occurring under the 
influence of turbulent pulsations of the rates of fluid 
flow in the volume of the mixing device. In this case, 
the scale of the hydrodynamic pulsations of the fluid in 
the volume of the apparatus plays a significant role.

2. Hydrodynamic processes occurring at the phase bound-
ary of fluid flow and a solid surface of the apparatus, or 
a surface of a mechanical agitator. At the same time, the 
characteristics of the thin boundary layer, which depend 
on the conditions of the flow of the mixed fluid in the 
immediate vicinity of surface of phase, have a major 
influence on the transfer rate of substances and the level 
of scale of this process.

Prandtl made the assumption that along with the laminar 
and turbulent regimes of fluid flow, there is another flow 
regime that has its own characteristic features. He wrote that 
“the movement of a fluid, in which the Reynolds number 
is less than unit, is called a creeping flow” (Prandtl 1942).

Analyzing the features of fluid movement in pressure 
channels, Landau concluded that a thin interlayer of fluid 
moving along it is adjacent to the channel wall, in which 
the magnitude of local Reynolds criterion is less than unity 
(Landau and Lifshitz 1987):

where y is the distance from the channel wall to the flow 
point under consideration (m), ūav is the average value of the 
local flow velocity at the point under consideration (m/s) and 
γ is the kinematic viscosity coefficient  m2/s.

(1)Re =
ūav y

𝛾
< 1
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The magnitude of the local velocity ūav in this interlayer 
varies from zero on the wall itself to the value of magnitude 
of the dynamic velocity υ* (m/s) according to the linear law. 
Landau wrote that “this interlayer is called a viscous sub-
layer” (Landau and Lifshitz 1987).

Thus, in the wall region of both laminar and turbulent 
flow, there is a thin interlayer of fluid moving along the 
walls, a “viscous sublayer,” in which a “creeping flow” 
regime is observed. At the same time, viscous friction forces 
acting on the stream filament exceed the inertial forces 
 (Reδ< 1), the magnitude of the velocity gradient within the 
wall  (viscous) sublayer has a constant value 
( G∗ =

du

dy
= const ), and the value of the local velocity varies 

depending on the distance from the wall according to the 
linear law:

At a distance of the wall layer thickness from the wall 
(y = δ*), the magnitude of the local flow velocity is equal to 
the magnitude of dynamic flow velocity (the velocity of the 
shear stress of the friction force)

where τ* is the magnitude of the shear stress of the friction 
force (N/m2); ρ is the density of the fluid (kg/m3); i is the 
hydraulic gradient; R is the hydraulic radius (m); g is the 
gravitational acceleration m/s2); υ is the average flow rate 
(m/s); and λ is the pipe friction factor (Darcy factor).

The symbol * indicates hereinafter that this characteristic 
belongs to the considered wall sublayer.

The velocity gradient G* will have the maximum value in 
the wall sublayer having a thickness of δ*.

In a pipe of circular cross section with a radius of r0 (m), 
the magnitude of the velocity gradient in the kernel of the 
fluid flow decreases according to the linear law with chang-
ing the distance from the flow axis r = r0–y:

Under the laminar regime of fluid movement in a pipe of 
circular cross section, there is a parabolic law of changing 
the magnitude of local flow velocity ur along the current 
radius r, named after George Gabriel Stokes

Differentiation of the Stokes Eq. (5) with regard to r = 2R 
(where R is the magnitude of the hydraulic radius) gives the 
formula:

(2)uy = G∗y (m/s).

(3)u∗ = �∗ = �

�
�∗

�
=
√
iRg = �

�
�

8
(m/s),

(4)Gr = G∗

r0 − y

r0
= G∗

r

r0
(s−1).

(5)ur = 2�

[
1 −

r2

r2
0

]
(m/s).

whence taking (4) into account

From formula (2), if y = δ* and υav = υ* taking into 
account formulas (6) and (3), the thickness magnitude of 
the wall sublayer can be determined

Formula (5) allows to obtain the value of the local 
velocity uδ*, the magnitude of which is different from the 
dynamic velocity value υ* (uδ* ≠ υ*), at a distance y = δ* 
from the flow wall. The intersection of the diagram of the 
real distribution of magnitudes of local velocities of lami-
nar flow and the velocities diagram, constructed according 
to formula (5), is carried out at the boundary of the transi-
tion sublayer with the flow kernel.

The transition sublayer has a thickness δ**, equal to the 
thickness of the wall sublayer δ*.

The wall and transition sublayers together form a vis-
cous layer having a thickness

In the case of a laminar regime of fluid movement, the 
magnitude of the pipe friction factor λ does not depend on 
the magnitude of the relative roughness of the flow chan-
nel Δ̄ =

Δ

d
 , defined as the ratio of the equivalent roughness 

Δ (m) (the average height of the projections of the flow 
channel) to the pipe diameter d (m), and is determined 
only by the value of the Reynolds criterion Re = �d

�

In accordance with formula (5), the magnitude of the 
local velocity on the flow axis at r = 0 reaches the maxi-
mum value

The occurrence of turbulence in a fluid flow moving in a 
circular cross-section pipe leads to an increase in hydrau-
lic resistance (the magnitude of the pipe friction factor λ) 
and a decrease in the magnitude of local average veloc-
ity on the flow axis (at r = 0) ūmaxT, which can be taken 
into account by introducing correction factors α and β in 
Eqs. (9) and (10), respectively

(5.1)Gr = −
dur

dr
=

4�

r0

r

r0
=

2�

R

r

r0
(m/s)

(6)G∗ =
2�

R

(
s−1

)
.

(7)�∗ =
�∗

G∗

= R
�∗

2�
= R

�

√
�

8

2�
= R

√
�

32
(m).

(8)� = �∗ + �∗∗ = 2�∗(m).

(9)� =
64

Re
.

(10)umax L = 2� (m/s).
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Transforming formula (11), we get

from which, taking into account formula (3), we have

Comparing formulas (14) and (6), we see that in the case 
of turbulent regime of fluid movement, the magnitude of the 
velocity gradient in the wall sublayer G* can be defined as

Analyzing formulas (11) and (15), it can be concluded 
that the coefficient α shows not only how many times the 
value of the pipe friction coefficient λ increases during the 
transition to the turbulent regime of fluid movement, but also 
how many times the value of the coefficient of kinematic 
viscosity ν in the wall sublayer increases.

Calculation of the Reynolds number at the critical 
transition point of the turbulent fluid flow 
to the region of the quadratic resistance law 
for rough channels with the maximum degree 
of turbulence in the tubular mixing device

At present, it is customary to consider the process of tur-
bulence as a state of eddy flow of a viscous fluid, in which 
the main characteristics of the flow change their magnitude 
irregularly and randomly. Turbulence is a dissipative process 
that develops only in an open system, provided that energy 
is supplied from an external source supporting the dynam-
ics of this process. Turbulent fluid flow exists in the state of 
thermodynamic equilibrium, in which the kinetic energy of 
local flow perturbations, which is transferred due to viscous 
stresses into the internal energy of the medium (its heating), 
is constantly compensated by energy coming from outside.

The main characteristics of the turbulent flow are irregu-
lar pulsations of magnitudes of local instantaneous veloci-
ties in the flow field resulting in a forced movement of local 
fluid volumes, accompanied by intensive equalization of the 
concentrations of chemical ingredients contained therein, 
dispersion of emulsion droplets, solid particles of suspen-
sions, and fragmentation of gas bubbles.

There is a maximum turbulence of the fluid, accom-
panied by the most energetic mixing of its volume with 

(11)� =
64

Re
�,

(12)ūmax T = 2𝜐𝛽 (m/s).

(13)� =
64

Re
� = 64

��

�d
= 16

��

�R

�

�
,

(14)2�

R
=

�

8

�2

��
=

�2
∗

��
.

(15)G∗ =
2�

R
=

�2
∗

��
=

�2
∗

�∗

(
s−1

)
.

a developed turbulent regime of flow movement in the 
region of the quadratic resistance law for rough channels.

In the region of developed turbulence, described by the 
quadratic resistance law for rough channels, also called 
the region of the self-similar fluid flow regime (since 
λQ= const), the magnitude of the pipe friction factor λQ 
depends only on the value of the relative roughness Δ̄ and 
does not depend on the Reynolds number Re.

In this region, the magnitude of the pipe friction fac-
tor is usually determined by the Prandtl equation (Prandtl 
1942):

Figure 1 shows the dependences of the pipe friction factor 
λ on the value of the Reynolds number Re for circular cross-
section pipes with different magnitudes of relative rough-
ness Δ̄ =

Δ

d
 , obtained experimentally by Konstantinov et al. 

(1987).
Murin’s graphs are analogous to the charts obtained by 

Colebrook (1939).
There is a less intense turbulization of the fluid flow in the 

transition zone of the flow than in the region of the devel-
oped turbulence. The pipe friction factor λ is influenced by 
both the Reynolds number Re value and the relative rough-
ness magnitude Δ̄.

The magnitudes of the pipe friction factor λ in the transi-
tion zone are usually determined by the equation (Sterenlikht 
1984; Konstantinov et al. 1987):

A particular case of turbulent fluid flow in a transition 
sublayer is a flow in hydraulic smooth pipes, under which 
the condition is met:

In this case, formula (16) becomes the Blasius equation 
(curve 1 in Fig. 1):

Since in transition of the turbulent regime of fluid flow 
to the quadratic resistance law region, the magnitude of the 
pipe friction factor λ at the transition point will depend on 
the value of the equivalent roughness of the flow channel Δ 
(m) and will not depend on the pipe diameter magnitude d 
(m), then a modified Reynolds number can be used, in which 
the magnitude of equivalent roughness is taken as the linear 
dimension Δ (m):

(16)
�Q =

0.25
(
lg 3.7

d

Δ

)2
.

(17)� = 0.11
(
Δ

d
+

68

Re

)0.25

.

(18)
Δ

d
⟨⟨ 68
Re

.

(19)� =
0.316

Re0.25
.
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where υCT is the average velocity at the critical transition 
point of a turbulent fluid flow into the region of the quadratic 
resistance law (m/s) and ν is the kinematic coefficient of the 
fluid viscosity  (m2/s).

By analogy with formula (9), which is valid in the case 
of a laminar regime of fluid movement, we assume that 
using this Reynolds number, the magnitude of the pipe 
friction factor λCT at the critical point of a turbulent fluid 
flow transition into the region of the quadratic resistance 
law can be determined by the following formula:

where

(20)ReΔCT =
�CTΔ

�

(21)�CT =

(
64

ReΔCT

)2

=

(
64

ReCT
⋅

d

Δ

)2

,

In this case, taking into account formula (11), there will 
be an expression

Curve 4 in Fig. 1, which characterizes the locations of the 
transition points of the turbulent regime of fluid movement 
in the region of the quadratic resistance law of rough chan-
nels (critical points of the turbulent regime), was constructed 
by formula (22).

The magnitude of the pipe friction factor in the devel-
oped turbulence regime (quadratic resistance law) is the 
constant (λ = λCT = const) and can be determined using the 

(22)ReCT =
64√
�CT

⋅

d

Δ
.

(23)�CT =

(
64

ReΔCT

)2

=

(
64

ReCT
⋅

d

Δ

)2

=
64

ReCT
�CT.

Fig. 1  Murin’s graphs: 1 is a 
curve of hydraulically smooth 
pipes, constructed according 
to the Blasius equation; 2 is 
a region of quadratic law of 
hydraulic resistance; 3 is a 
transition region; 4 is a curve 
separating the transition region 
and the quadratic law region; 
and 5 is a laminar regime line
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Prandtl Eq. (16). Substituting expression (16) into formula 
(22), we get

A mathematical relation for critical points of the turbu-
lent regime was proposed by Nikuradse (1932)

where υ*CT is the dynamic velocity magnitude at the critical 
point of the turbulent regime (m/s) and N is the Nikuradse 
number. According to experimental data, N = 10.9…11.5 
(Konstantinov et al. 1987).

Taking into account the expression for dynamic velocity 
(3), formula (25) can be represented as:

where

Taking into account formulas (21) and (27), we get:

where N = 64∕
√
32 = 11.314.

Nikuradse made the assumption that the thickness of 
the viscous sublayer δ*CT is two times less than the mag-
nitude of equivalent roughness Δ (Fig. 2) at the considered 
critical points of the turbulent fluid flow, and the condition 
is met:

(24)ReCT =
64√
0.25

⋅

d

Δ
lg
�
3.7

d

Δ

�
= 128

d

Δ
lg
�
3.7

d

Δ

�
.

(25)Δ =
2N�

�∗CT
(m),

(26)�∗CT =
2N�

Δ
= �CT

√
�CT

8
(m/s),

(27)�CT = 8

(
2N�

Δ ⋅ �CT

)2

= 32

(
N

ReΔCT

)2

,

(28)�CT =

(
64

ReΔCT

)2

= 32

(
N

ReΔCT

)2

,

(29)�∗ =
1

2
Δ =

N�

�∗CT
(m).

The velocity gradient in the wall viscous sublayer can be 
determined by the following formula:

where u* is the local velocity (m/s) at the boundary of the 
viscous sublayer at a distance from the wall y = δ* (m).

From formula (30), we have:

When analyzing formula (31), one of the following two 
assumptions can be made.

The first assumption is based on the ideas of Nikuradse, 
according to which the magnitude of the kinematic viscosity 
coefficient in the wall sublayer ν* is equal to the magnitude 
of the kinematic viscosity coefficient of the fluid ν in the 
flow kernel. The velocity at the boundary of the viscous sub-
layer at a distance of y = δ* from the pipe wall u* is not equal 
to the dynamic velocity magnitude (u* ≠ υ*). The ratio of the 
local velocity at the boundary of the wall sublayer u* to the 
dynamic velocity υ* is the Nikuradse number (N = u*/υ*), 
while the thickness of the wall sublayer δ* is equal to half of 
the equivalent roughness (δ* = Δ/2) and can be determined 
by formula (29).

The second assumption suggests that the magnitude of 
the velocity at the boundary of the viscous sublayer u* is 
equal to the magnitude of the dynamic velocity υ* (u* = υ*, 
u*/υ* = 1).

The magnitude of kinematic viscosity coefficient in the 
wall sublayer ν* is α times higher than the magnitude of the 
kinematic viscosity coefficient of a fluid in the flow kernel 
ν (ν* = αν). In this case,

Formula (32) is valid in any regime of fluid movement.
The magnitude of the coefficient αCT can be defined from 

formula (11) by substituting expression (22) as follows:

(30)G∗ =
�2
∗

�∗
=

u∗

�∗

(
s−1

)
,

(31)�∗ =
u∗

�∗

�∗

�∗
(m).

(32)�∗ =
u∗

�∗

��

�∗
=

��

�∗
(m).

Fig. 2  Scheme for a viscous wall sublayer in hydraulically smooth pipes (a), and rough pipes at υ = υCT (m/s) and δ* = Δ/2 according to 
Nikuradse (b)
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Taking into account the value of δ* from formula (7) and 
using formula (33), we have

if δ* = Δ/2, �CT = 4
√
32∕2 = 11.314.

Comparing the obtained values of the Nikuradse num-
ber N with the magnitude αCT, it can be concluded that the 
Nikuradse number N shows how many times the value of 
the kinematic viscosity coefficient ν* = αν increases at the 
critical point of the turbulent regime in a certain hypothetical 
viscous wall sublayer having a thickness of δ* = Δ/2.

It should be noted that in reality the thickness of the vis-
cous sublayer δ*CT will be equal to the magnitude deter-
mined by formula (7), and the magnitude of the coefficient 
αCT will be equal to

Both the first and the second assumptions describe the 
real situation taking place in the wall layer of the turbulent 
flow, but observed in different periods of time.

The second assumption describes the moment of time 
when there are both a wall sublayer and a transition sublayer, 
and they together form a wall layer.

The first assumption describes the moment of time when 
the formation of turbulent eddies in the transition sublayer 
occurred, which leads to its destruction (decrease in the 
thickness of the wall layer) and an increase in the local 
velocity at the boundary of the wall sublayer.

In the transition sublayer of turbulent fluid flow, there is 
an abrupt decrease in the magnitude of the shear stress of 
longitudinal internal friction forces. It leads to the transfor-
mation of elastic potential energy, accumulated in the wall 
sublayer, into the energy of elementary turbulent eddies 
formatting in the transition sublayer, and an increase in the 
kinetic energy of fluid movement at the boundary of transi-
tion sublayer and flow kernel.

The process of the formation of turbulent eddies in the 
transition sublayer leads to its destruction, as a result of 
which there is a decrease in the thickness of the wall layer 
δ and an increase in the velocity at the boundary of the wall 
sublayer up to the value of ū* = Nυ*.

Fluctuations in the thickness of the wall layer δ, and the 
magnitude of the local velocity ūδ* at the boundary of the 
wall and transition sublayer, were detected during the study 
of the characteristics of turbulent flow near the pipe wall. It 
was found that the Nikuradse number is a pulsating quantity, 

(33)�CT =
�CTReCT

64
=

�CT

64
⋅

64√
�CT

⋅

d

Δ
=

d

Δ

√
�CT.

(34)�CT =
d

Δ

√
�CT =

4R

Δ

√
�CT

√
32

√
32

= 4
√
32

�∗

Δ
,

(35)�CT =
�∗�∗

�
=

�CTR

�

�CT

16
.

changing its value in time from N = 2.3 to N = 18 (Sterenlikht 
1984). The Nikuradse number averaged over a sufficiently long 
time interval has a constant value.

Calculation of hydrodynamic characteristics 
of the wall region of the fluid flow in a turbulent 
hydrodynamic mixing device

A great contribution to the development of ideas on the tur-
bulent flow was made by Richardson (1920), who expressed 
the fruitful hypothesis of the diminution of atmospheric tur-
bulence. He suggested that when large air masses move, the 
moving flow becomes unstable due to the roughness of the 
surface, which results in formation of large eddies, causing 
velocity pulsations stipulating atmospheric turbulence. The 
resulting eddies take their energy from the total energy of the 
entire moving air stream.

Nascent eddies have a linear scale L (m) (outer scale of 
turbulence), comparable to the scale of the whole stream. 
Large-scale turbulent eddies become unstable and break up 
into eddies of a smaller scale l (m), and they, in turn, break 
up into even smaller ones. This process of “grinding down” 
the scales of turbulent eddies continues farther away, while 
the energy of large eddies taken from the energy of a moving 
stream is transferred to smaller eddies, down to the smallest 
ones with an outer scale l0, where viscosity plays a significant 
role, and the energy of these eddies is transformed into heat.

The Richardson hypothesis was developed by Kolmogo-
rov (1941) and Obukhov (1941) for liquids. In these works, 
the developed turbulence is considered as an isotropic pro-
cess of changing the spatial scales of turbulent eddies l (m), 
occurring in the inertial interval, in which the dynamics of 
turbulent velocity pulsations depend only on the character-
istic scale of perturbation and the magnitude of the energy 
dissipation εT [J/(kg s)].

In the inertial region of the pulsation scale (L ≥ l>l0), 
viscosity does not play a significant role; the energy simply 
flows from turbulent pulsations of a larger scale to smaller 
ones, and the value of the specific energy dissipation per unit 
mass of fluid per unit time εT [J/(kg s)] is a certain function 
of changing the velocity of turbulent disturbances Δυl (m/s) 
at a distance (scale) l (m):

Considering dimensions Δυl (m/s) and l (m), one can 
make only one combination that has the dimension [J/(kg s); 
 m2/s3]

Since the mass specific energy dissipation has a con-
stant value (εT= const) in the considered inertial spectral 

(36)�T = f (Δ�l, l)
[
J/(kg s); m2∕s3

]
.

(37)�T =
Δ�3

l

l

(
m2∕s3

)
.



 Applied Water Science (2020) 10:77

1 3

77 Page 8 of 12

interval of the eddies, starting with the outer scale L and 
ending with the inner scale l0, then for a given flow, you 
can write

The scale of turbulent pulsations l, having a turbulent 
composition of velocity pulsations Δυl, is related to the 
value of the local Reynolds number  Rel by the ratio

When reducing the scale of turbulent velocity pulsa-
tions to a certain value l0 (inner scale of turbulence), the 
value of local Reynolds criterion  Rel becomes of order 
unity, and the viscosity of the flow will play the decisive 
role. In this case, the magnitude of the inner scale of tur-
bulence can be defined from (39), taking (38) into account

where

From (38) and (40), we have

Since the velocity gradient of turbulent pulsations of a 
zero scale Gl0  (s−1) is defined as the ratio of the velocity of 
turbulent pulsations of a zero scale Δυl0 (m/s) to the scale 
of turbulent pulsations l0 (m), then, taking into account 
(40) and (41), we obtain

Thus, turbulent pulsations of the zero-scale (inner 
scale) flow rate will have the following characteristics:

1. Scale of turbulent pulsations (zero scale) l0 (m).
2. Zero-scale turbulent pulsation velocity Δυl0 (m/s).
3. Zero-scale turbulent pulsation velocity gradient Gl0 

 (s−1).

Their value can be described by the system of equations

(38)Δ�l = (�T l)
1∕3(m/s).

(39)Rel =
lΔ�l

�

(39.1)Rel =
l0
(
�T l0

)1∕3

�
= 1,

(40)l0 =
4

√
�3

�T
(m).

(41)Δ�l0 =
�
�T l0

�1∕3
=

�
�T

�3∕4

�
1∕4

T

�1∕3

= 4
√
�T� (m/s).

(42)Gl0 =
Δ�l0

l0
= 4
√
�T�

1

4

�
�3

�T

=

�
�T

�

�
s−1

�
.

The value of the specific second energy dissipation can 
be defined as the ratio of the energy loss during steady-
state uniform flow of fluid A (J), over the length of the flow 
section L (m), to the product of this flow mass m (kg) by 
the duration of the dissipation process T (s)

Since A = LωΔP = LωρgiL; m = Lωρ; T = L/υ, where 
ΔP = ρgiL is the pressure loss (Pa) at the flow length L 
(m) and ω is the area of the flow cross section  (m2), then

Considering i = �

d

�2

2g
 ; �2

∗
= igR ; and G∗ =

2�

R
 , formula 

(45) can be represented as

Considering �T =
1

2
�2
∗
G∗ ; G∗ =

�2
∗

��
 ; and �∗

G∗

= �∗ , the sys-
tem of Eq. (43) can be transformed as follows:

(43)

l0 =
4

�
�3

�T
(m)

Δ�l0 =
4
√
�T� (m/s)

Gl0 =

�
�T

�
(s−1)

(44)�T =
A

mT
,
[
J/(kg s); m2∕s3

]
.

(45)�T =
L��giL

L��

�

L
= gi�

(
m2∕s3

)
.

(46)�T = gi�
�L

�L
=

ΔP

�

�

L

(
m2∕s3

)
,

(47)�T = gi� = g�
�

d

�2

2g
=

1

2

�

d
�3

(
m2∕s3

)
,

(48)�T = gi�
R

R
= �2

∗

�

R
=

1

2
�2
∗
G∗

(
m2∕s3

)
.

(49)

l
0
= 4

�
�3

�
T

= 4

�
�3

1

2
�2
∗
G∗

= 4

���� 2�3

�2
∗

�2
∗

��

=
�

�∗

�∗

�∗

�

�

4
√
2�

=
�∗

G∗

4

�
2

�3
= �∗

4

�
2

�3
(m)

(50)

Δ�l0 =
4
√
�T� =

4

�
1

2
�2
∗
G∗� =

4

�
1

2
�2
∗

�2
∗

��
� = �∗

4

�
1

2�
(m/s)

(51)Gl0 =

√
�T

�
=

√
1

2
�2
∗
G∗

1

�

�

�
= G∗

√
�

2
(s−1)
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Thus, we have a system of equations describing turbu-
lent pulsations of zero-scale velocity:

Along with vortex turbulence developing in the volume 
of a liquid, there is also wave turbulence observed on the 
surface of the liquid. The processes of energy dissipation 
for the wave turbulence are studied more fully than for the 
vortex one. The wave arising on the surface of a liquid has a 
smooth surface, the wavelength L (m) and a certain oscilla-
tion frequency νL, which determines the level of its energy.

After some time, ripples appear on the wave surface of 
the wave, that is, oscillations having a higher frequency νl 
(and, therefore, energy) and a smaller wavelength l (Fig. 3). 
These oscillations are usually called low-scale turbulence. 
The processes of energy transfer from the current wave 
(large-scale turbulence) to low-scale turbulence are called 
a direct cascade of energy.

During the direct cascade, the oscillation frequency and, 
consequently, the energy of low-scale turbulence increase, 
and the ripple wavelength l (low-scale turbulence) decreases. 
When a certain critical value of the wavelength l0 is reached, 
the inertia forces causing it are equal in magnitude to the 
friction forces. As a result, the energy contained in it will 
dissipate into the environment and turn into heat.

As a result of the reverse energy cascade, the frequency 
of the carrier wave and its energy decrease, and the scale 
(wavelength L) increases.

We assumed that the mechanism of energy dissipation 
for vortex turbulence is based on the same principles as for 
wave turbulence (Andreyev 2005).

Elementary turbulent eddies with a scale lδ, arising in 
the transition sublayer, have a certain moment of rota-
tional motion Ml= lδυ*Δm, which was not observed in 
the flow before their appearance. According to the law 
of conservation of angular momentum, the elementary 
eddies formed should move around a certain center in 

(52)

l0 = �∗
4

√
2

�3
(m)

Δ�l0 = �∗
4

√
1

2�
(m/s)

Gl0 = G∗

√
�

2
(s−1)

the direction opposite to the direction of their rotation, 
resulting in a turbulent mole having a scale L (m), orbital 
velocity uL (m/s), and angular momentum ML= LuLΔm 
(Fig. 4). The formation of a turbulent mole makes it pos-
sible to compensate the arising rotational motion momen-
tum Ml= lδυ*Δm, while

The orbital diameter of turbulent eddy rotation will deter-
mine the size of large-scale turbulence (turbulent mole) L.

The magnitude of a single turbulent eddy will deter-
mine the size of low-scale turbulence lδ.

In accordance with the planetary hypothesis of the 
mechanism of vortex turbulence, the resulting turbulent 
moles will interact with the carrying fluid flow and expe-
rience the Magnus effect, leading to a drift of turbulent 
moles to the flow axis.

Under the influence of a direct energy cascade, the size 
of an elementary turbulent vortex l (low-scale turbulence) 
will decrease, and the amount of energy enclosed therein 
will increase. When reducing the size of the elementary 

(53)

Ml = −ML

l��∗Δm = −LuLΔm

l��∗ = −LuL

Fig. 3  Scheme of wave motion 
while reducing wave energy 
during the process of ripple 
formation on its surface

Fig. 4  Scheme for the formation of a turbulent mole (planetary mech-
anism of vortex turbulence)
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turbulent vortex to a critical value l0, there will be a dis-
sipation of contained energy into the environment.

Reverse energy cascade provides an increase in the 
diameter of the turbulent mole orbital L (size of large-scale 
turbulence) and reduction in the frequency of planetary 
rotation and, consequently, the energy of the large-scale 
turbulence.

Turbulent eddies originating in the transition sublayer 
cause the appearance of the low-scale velocity pulsation 
component in the wall regions of the flow. They have the 
value of the coefficient of kinematic viscosity ν* = αν. 
Their characteristics can be described by a system of 
equations

taking into account �T =
1

2
�2
∗
G∗ ; G∗ =

�2
∗

��
 ; and �∗

G∗

= �∗.
The system of Eq. (54) can be transformed as follows:

Thus, we obtain the system of equations:

The existing empirical evidence suggests that the most 
intense mixing in turbulent flows occurs in the wall region 
(Adelshin and Potekhin 1997). The efficiency of mixing 
the liquid is characterized by the turbulent diffusion coef-
ficient DT  (m2/s).

Turbulent velocity pulsations ΔυL, having a scale of 
l ≤ L, are responsible for the relative displacement of two 

(54)

l� =
4

�
�3
∗

�T
= 4

�
�3�3

�T
(m)

Δ�l =
4
√
�T�∗ =

4
√
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Gl =

�
�T

�∗
=

�
�T

��
(s−1)

(55)
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�2
∗
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∗
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∗

��

=
��
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�∗

�∗

�

�

4
√
2

=
�∗
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4
√
2 = �∗

4
√
2 (m)

(56)

Δ�l =
4
√
�T�∗ =
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�
1

2
�2
∗
G∗�� =

4

�
1

2
�2
∗

�2
∗

��
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�
1
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(m/s)

(57)Gl =

√
�T

�∗
=

√
1

2
�2
∗
G∗

1

��
= G∗

√
1

2
(s−1)

(58)

l� = �∗
4
√
2 (m)

Δ�l = �∗
4

�
1

2
(m/s)

Gl = G∗

�
1

2
(s−1)

liquid microvolumes at a distance L (m) from each other 
during mixing in a turbulent flow, since both liquid micro-
volumes will move as a whole at l ≥ L. In this regard, the 
magnitude of the turbulent diffusion coefficient in the wall 
region of the tubular mixer can be defined as:

Taking (55) and (56) into account, we can write:

In the axial flow region in the spectrum of turbulent 
velocity pulsations, zero-scale turbulent pulsations will 
prevail. In this case:

Investigations of turbulent flows in a circular cross-sec-
tion tubes have allowed us to obtain an empirical formula 
for determining the magnitude of the pulsations of the flow 
velocity component in the wall region (Levich 1958):

In the work Adelshin and Potekhin (1997), formula was 
given that allows to determine the coefficient of turbulent 
diffusion in the wall region of the fluid flow moving in a 
circular cross-section pipe:

Results and discussion

Theoretical studies of hydrodynamic regularities of fluid 
flow in pressure channels of circular cross section made it 
possible to conclude that the maximum turbulence of fluid 
flow, accompanied by the most vigorous mixing of its vol-
ume, is observed with a developed turbulent flow motion in 
the region of the quadratic resistance law for rough channels. 
The transition of the fluid flow regime to the region of the 
quadratic resistance law for rough channels is observed at 
the critical points of the turbulent flow, characterized by 
the critical Reynolds number  ReCT. The value of the critical 
Reynolds number  ReCT at critical points of turbulent flow is 
proportional to the value of the coefficient of hydraulic fric-
tion λCT at these points to − 0.5 power and the relative rough-
ness of the flow channels Δ =

Δ

d
 to − 1 power. At the critical 

(59)DTl = 2l�Δ�l (m
2∕s).

(60)DTl = 2l�Δ�l = 2 4

�
�3�3

�T

4
√
�T�� = 2�� (m2∕s).

(61)DTl0 = 2l0�l0 = 2 4

�
�3

�T

4
√
�T� = 2� (m2∕s).

(62)Δ�a
l
=

0.2�

Re0.125
(m/s).

(63)Da
T
=

0.0033d�

Re0.125

(
m2∕s

)
.
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point of the turbulent flow, the Nikuradse number, represent-
ing the ratio of the magnitude of the local velocity u* on the 
border of a hypothetical wall sublayer having a thickness δ*, 
equal to half the equivalent roughness Δ, to the magnitude 
of the dynamic velocity υ*, is N = 11.314. The thickness of 
the viscous wall sublayer has a value determined by formula 
(7) at the critical point of the turbulent flow. The value of 
the coefficient of kinematic viscosity (ν* = αν) in the viscous 
wall sublayer of the turbulent flow increases α times, so does 
the value of the coefficient of hydraulic friction λ.

The main hydrodynamic characteristics of the wall region 
of a turbulent fluid flow are the pulsating component of the 
flow velocity Δυl (m/s) and turbulent diffusion coefficient 
DT  (m2/s). In these areas, elementary turbulent eddies are 
generated, causing the appearance of a low-scale component 
of the turbulent flow velocity pulsations. Elementary turbu-
lent eddies form turbulent moles by a planetary mechanism, 
causing the appearance of a large-scale component of the 
turbulent pulsation of the flow velocity. Turbulent moles 
interact with the carrying fluid flows and drift toward their 
axis. Under the influence of the direct energy cascade, the 
linear dimensions of elementary turbulent eddies decrease 
and reach a critical value l0 (internal scale of turbulence), 
resulting in dissipation of the energy contained therein.

The magnitude of the turbulent diffusion coefficient in 
the wall flow region DTl is α times higher than the value of 
the turbulent diffusion coefficient in the axial flow region:

The magnitudes of low-scale turbulent pulsations of the 
flow velocity in the wall region exceed the magnitude of 
turbulent pulsations of zero-scale velocity in the near-axial 
flow region 4

√
� times

(64)DTl = �DTl0 (m
2∕s).

(65)Δ�l =
4
√
�Δ�l0 (m/s).

Table 1 presents the values of the velocity gradient G* 
in the wall sublayer, calculated by formula (6), the specific 
second energy dissipation εT, calculated by formula (48), 
coefficient α, calculated by the formula

the pulsating component of the flow rate Δ�a
l
 , calculated 

by formula (62), and Δ�l , calculated by the formula (53), as 
well as the values of the turbulent diffusion coefficients in 
the wall flow region Da

T
 , calculated by formula (63), and DTl, 

calculated by formula (60) in a tubular hydrodynamic mix-
ing device with a diameter of d = 0.05 m with an equivalent 
roughness of Δ = 0.1 × 10−3 m.

The values of hydraulic friction factor λ were determined 
by the Altshul Eq. (17) in the transition zone and by the 
Prandtl Eq. (16) in the quadratic resistance law for rough 
channels.

The values of the Reynolds number at the critical point 
of transition of the turbulent regime in the region of the 
quadratic resistance law were determined by formula (22).

In accordance with the data given in Adelshin and 
Potekhin (1997), formulas (62) and (63) were obtained in 
the range of Reynolds numbers Re = 100,000–150,000.

Data given in Table 1 show that the relative error of the 
values of the pulsation velocities, calculated by the empirical 
formula (62) and the theoretical formula (56) proposed by 
us in the velocity range υ = 2–3 m/s, does not exceed 3.0%, 
and the relative error of the values of the turbulent diffusion 
coefficients, calculated by the empirical formula (63) and 
the theoretical formula (60), however, does not exceed 2.7%.

(66)� =
�Re

64
,

Table 1  The calculation results

Average flow rate υ (m/s) 1 2 3 4 5 6 7

Reynolds number Re 49,505 99,010 148,515 209,099 247,525 297,030 346,535
Coefficient λ 0.0265 0.0250 0.0245 0.0234 0.0234 0.0234 0.0234
Dynamic velocity υ* 0.05757 0.1119 0.1660 0.2285 0.2705 0.3246 0.3787
Velocity gradient in the wall sublayer G*  (s−1) 160 320 480 676 800 960 1120
Specific second energy dissipation εT  (m2/s3) 0.2651 2.0035 6.6134 17.6425 29.2681 50.5753 80.3117
Coefficient (α) 20.5062 38.7429 56.8360 76.5188 90.5806 108.6967 126.8129
Δ�a

l
 (m/s) 0.0518 0.0950 0.1354 0.1827 0.2117 0.2484 0.2842

Δ�
l
 (m/s) 0.0484 0.0941 0.1396 0.1921 0.2275 0.2730 0.3184

Relative calculation error Δυl (%) 6.6 1.0 3.0 4.9 6.9 9.0 10.7
Coefficient Da

T
× 105  (m2/s) 4.272 7.835 11.17 15.07 17.47 20.49 23.45

Coefficient DTl × 105  (m2/s) 4.142 7.826 11.48 15.45 18.30 21.96 25.62
Relative calculation error DT (%) 3.0 0.1 2.7 2.5 4.5 6.7 8.5
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Conclusions

A new method for calculating hydrodynamic characteris-
tics of a turbulent fluid flow in pressure channels of circular 
cross section is proposed. The main mathematical relations, 
which allow determining the values of the main parameters 
of the turbulent fluid flow in the pressure channel of circu-
lar cross section, are obtained. The resulting mathematical 
relationships are shown in Table 2.

Using the proposed method for calculating the hydrody-
namic characteristics of a turbulent fluid flow in pressure 
channels, it is possible to optimize the operation mode of 
tubular mixing devices in terms of technological efficiency 
and energy consumption in the process of reagent wastewa-
ter treatment.
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Table 2  The resulting mathematical relationships

Nos. Fluid flow parameter Parameter value in the turbulent fluid flow

1 ReCT is the Reynolds criterion at the critical point of the turbulent flow ReCT =
64√
�CT

⋅

d

Δ
= 128

d

Δ
lg
�
3.7

d

Δ

�

2 αCT is a coefficient taking into account the increase in the coefficient of hydraulic friction λ, 
and a coefficient of kinematic viscosity in the wall sublayer ν*CT  (m2/s) at the critical point 
of the turbulent flow

�CT =
d

Δ

√
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3 lδ is the scale of turbulent velocity pulsations in the wall region of the turbulent flow (m)
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5 Gl is the velocity gradient of turbulent pulsations in the wall region of the turbulent flow  (s−1)
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6 DTl is a coefficient of turbulent diffusion in the wall region of the turbulent flow  (m2/s) DTl = 2��
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