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Abstract
The performance of factorial designs is still limited due to some uncertainties that usually intensify process complexities, 
hence, the need for inter-platform auto-correlation analyses. In this study, the auto-correlation capabilities of factorial designs 
and General Algebraic Modeling System (GAMS) on the effects of some pertinent operating variables in wastewater treat-
ment were compared. Individual and combined models were implemented in GAMS and solved with the trio of BARON, 
CPLEX and IPOPT solvers. It is revealed that adsorbent dosage had the highest effect on the process. It contributed the most 
effect toward obtaining the minimum silica and TDS contents of 13 mg/L and 814 mg/L, and 13.6 mg/L and 815 mg/L from 
factorial design and GAMS platforms, respectively. This indicates a concurrence between the results from the two platforms 
with percentage errors of 4.4% and 0.2% for silica and TDS, respectively. The effects of the mixing speed and contact time 
are negligible.
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List of symbols
ANOVA	� Analysis of variance
R2	� Coefficient of determination
df	� Degrees of freedom
SD	� Standard deviation

F-value	� Test statistic
P-value	� Probability value
TDS	� Total dissolved solids
DOF	� Dual-objective function
Y	� Response
β12AB	� An interaction term
R	� Combined objective functions
A	� Adsorbent dosage, g
B	� Mixing speed, rpm
C	� Contact time, min
Y1	� Silica content, mg/L
Y2	� TDS content, mg/L
β0	� Constant coefficient
β1, β2, β3	� Linear coefficients
Ε	� Random error term

Introduction

In process systems engineering, uncertainty, an inexorable 
concomitant of unknown events and imprecise informa-
tion exists in many processes, and this usually influences 
the decision-making process and system sustainability, as 
well as intensifies the process complexities. Examples of 
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the uncertainties that exist in every process designs and 
operations are: platform uncertainty, which usually reflects 
the identification of the best fitting design for a particular 
process, and the principles upon which the different plat-
forms utilized for process designs are built; and process 
uncertainty, reflecting the uncertainty faced in determining 
the requirements that the control variables must fulfill in 
arriving at the best process besides their interactive effects 
on the objective functions. Once the main sources of a pro-
cess uncertainty having significant effects are identified, then 
only those variables will be used in the final process design. 
In the design of experiments intended for bigger and com-
plex systems, the larger number of involved variables and 
experimental runs makes certain analyses impractical or pro-
hibitive. For any process to be sustainable, the development 
of sound approaches that characterize the uncertainty within 
process variables as well as provide decision-makers with a 
comprehensive analysis of the effects of variable variations 
on the process responses is crucial. To tackle such uncer-
tainty issues, several mathematical modelling (Abass and 
Majozi 2016; Amosa and Majozi 2016; Buabeng-Baidoo 
and Majozi 2015; Mafukidze and Majozi 2016) and statisti-
cal methods (Alam et al. 2016; Amosa 2015; Amosa et al. 
2016a; Asghar et al. 2014) have been proposed.

One of the broadly applied statistical methods in design 
of experiments (DoE) is the factorial design which is usually 
employed in studying the interactive effects of two or more 
variables/factors on an objective function or response vari-
able. The full-factorial (FF) design is an authoritative pro-
cedure of studying the effects of numerous control variables 
with multiple levels on a response/objective function. For 
instance, if the effect of a control variable on the response 
depends on the level of another control variable(s), then 
there is an interaction between them. Thus, through facto-
rial designs, we can study not only the core effects but also 
the interactive effects between variables. Furthermore, the 
technique involves the statistical experimental design which 
is observed as an efficient way of obtaining the exhaustive 
amount of information with the least sum of experiments 
probable (Zhang et al. 2009).

The objective/response of the FF design is anticipated to 
be seamlessly modeled by a function (linear) of the control 
variables, and then, a first-order model will be the approxi-
mation function. Moreover, since there are typically just two 
levels for each variable, the usual assumption is to have an 
approximately linear objective function over the selected 
levels of variable range. This especially holds for the study 
of a system/process just starting with a necessity to conduct 
variable screening experimentation. The utility of factorial 
designs is imperative since they are extensively employed 
in research works to form the basis for the decision frame-
works or designs of highly substantial practical value. The 
regression model for the prediction of an objective function 

(Y) for such designs is given in Eq. 1 (Adeniyi et al. 2019a; 
Montgomery 2004):

The regression model(s) generated for the objective 
function(s) besides ANOVA tests are employed in the deci-
sive evaluation of the statistically significant variables or 
interaction (Adeniyi et al. 2019b). However, the perfor-
mance of factorial among other methods is still limited due 
to some uncertainties that usually intensify process com-
plexities of which conflicting regions of variable interest are 
a basic example (Amosa and Majozi 2016).

General Algebraic Modeling System (GAMS) is an opti-
mization and modeling framework whose concepts and 
designs are drawn from both interactive database theory and 
mathematical programming. It consists of a language com-
piler and integrated highly efficient solvers for formulating, 
solving, and/or analyzing an optimization problem. GAMS 
could well be adapted for complex, large-scale modeling 
applications, and can aid in building sustainably huge mod-
els that may rapidly be well adapted to newer situations. 
The platform is designed for modeling linear, nonlinear and 
mixed integer optimization problems, and more interestingly, 
complex and large types of optimization problems requiring 
many revisions to establish an accurate model can be han-
dled (GAMS 2015). It has been successfully applied in a 
variety of applications such as optimizing wastewater treat-
ment networks (Galan and Grossmann 1998), membrane 
networks synthesis and optimization (Abass and Majozi 
2016; Buabeng-Baidoo and Majozi 2015; Khor et al. 2011; 
Mafukidze and Majozi 2016) and water network synthesis as 
excellently reviewed by Khor et al. (2014). Besides, GAMS 
has been successfully employed for multi-objective models 
of the stacks of thermo-acoustic engines/refrigerators (Tar-
tibu et al. 2014, 2015).

Recently, the removal of silica, TDS and other pollutants 
from industrial wastewater has become a thought-provoking 
task for the environmental process engineers (Eletta et al. 
2020; Ighalo and Adeniyi 2020b). High silica and TDS 
contents of wastewater will always be a concern, especially 
when the wastewater is to be reclaimed for specific reuse 
purposes. Among other possible damages to reactors, these 
two constituents can result in corrosion, scale deposition, 
fouling in membranes and boiler water solutes in steam 
if they are not kept within the necessary threshold range 
(Adeniyi and Ighalo 2020; Jami et al. 2013). Several pro-
cesses have been adopted for removal of silica and TDS 
(Basha et al. 2008; Broséus et al. 2009; Latour et al. 2014, 
2015; Lee et al. 2008; Sik Ali et al. 2004; Weeks et al. 1992). 
Overall, some of these methods are efficient, but each one of 
them has their limitations ranging from process complexi-
ties to cost implications. This creates the room for a need 

(1)Y=�0 + �1A + �2B + �3C + �12AB +…+ �
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to develop innovative and cheaper technologies that can 
remove TDS at a larger scale with a focus on minimizing 
energy and material costs, maximizing water recovery, with-
out any compromise on the environment (Ighalo and Adeniyi 
2020a). Having realized that there is a dearth of documen-
tation about how efficient adsorbents could be in removing 
silica and TDS, this study has focused on adsorption process 
using a locally produced adsorbent derived from a waste 
called oil palm empty fruit brunch. Specifically, there is a 
need to investigate the interactive trends between the control 
variables and the pollutants compared to other contaminants.

In our previous investigation, we established how regres-
sion models developed from response surface methodology 
(RSM) could be well supported and facilitated by GAMS, 
especially when the regions of variable interests are con-
flicting (Amosa and Majozi 2016). Our main aim and con-
tribution in the present study were to evaluate two main 
strategies, i.e., the comprehensive study of the variable inter-
actions and/or the effects of process variables on the uptake 
of silica and TDS from high strength wastewater using FF 
design. The second evaluated strategy, which to the best of 
our knowledge has not been previously reported, is to auto-
correlate the variable effects of the two platforms (facto-
rial design and GAMS) toward making a steadier trade-off 
decision on the appropriate choice of the variable(s) hav-
ing the most significant effect on the objective function(s). 
This will add to the knowledge necessary for choosing the 
best adsorption operating conditions towards achieving 
local optimum, and economical utility of adsorbents and 
energy consumption concerning the mixing requirements 
for silica and TDS removal from wastewaters of similar 
chemistry. It was also expected that this work would give 
a justifiable basis for the accurate evaluation of interactive 
effects between the specific variables and objective func-
tions in similar adsorption processes. Also, it will form a 

basis on which large adsorption systems can be designed and 
controlled using minimal costs, time and space. Discussion 
on adsorbent characterization, and kinetics and equilibrium 
studies is, however, outside the scope of the current study.

Materials and methods

Adsorbent

A locally produced low-cost adsorbent (powdered activated 
carbon—PAC) with steam pyrolysis activation route was uti-
lized for the uptake of silica and TDS. The comprehensive 
features of the adsorbent are hereby presented in Table 1 
and have been exclusively reported elsewhere (Amosa 2015; 
Amosa et al. 2016b, 2014, 2015, 2016c).

Table 1   Characteristic features of the employed PAC

Parameter Unit Value

BET surface area m2/g 886.2
Langmuir surface area m2/g 999.1
MB surface area m2/g 1185.3
Total pore volume cc/g 0.663
Average pore diameter Å 35.4
Surface weighted mean “D [3,2]” µm 11
Volume weighted mean “D [4,3]” µm 42
Moisture content % 6.94
Bulk density g/cc 1
Ash content % 8.13
Carbon yield % 25
Surface chemistry Carbonyl, aldehydes and ketones, mono-alkyl, amines, acid anhydrides, alcohol and phe-

nols, sufonyl chloride, sufate and phosphoramides

Table 2   Wastewater profile

Contaminant Concentration (± SD)

Turbidity, NTU 1050 ± 47
Total dissolved solids (TDS), mg/L 1207 ± 51
Chemical oxygen demand (COD), mg/L 1730 ± 110
Iron as Fe, mg/L Not detected
Manganese as Mn, mg/L 3.08 ± 0.5
H2S, mg/L 0.88 ± 0.1
Calcium hardness, mg/L 240 ± 23
Magnesium hardness, mg/L 1800 ± 71
Silica, mg/L 73 ± 20
Phenolphthalein alkalinity, mg/L 180 ± 17
Total/Methyl alkalinity, mg/L 2000 ± 79
Suspended solids (SS), mg/L 761 ± 67
pH 8.65 ± 0.1
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Wastewater sampling and preservation

The wastewater (biotreated POME) employed in this study 
was sampled from the Sime Darby Mill located in Carey 
Island, Malaysia. The physicochemical characterization of 
the sample was carried out using the Standard Methods for 
the Examination of Water and Wastewater approved by the 
American Public Health Association (APHA) and HACH 
Company (APHA 2005; HACH 2012). Besides, the sam-
ple was appropriately preserved strictly implementing the 
US EPA preservation standards (Alam et al. 2016; US EPA 
1982). The profile of the measured contaminants in the 
wastewater is presented in Table 2.

Water quality characterization

Silica content was determined with the aid of a HACH spec-
trophotometer model DR 5000 (HACH, Loveland, USA), 
while TDS content was determined with HACH sensION™ 
7 model (HACH, Loveland, USA). Extensive procedural 
methods for the measurement of all contaminants have been 
reported elsewhere (Amosa 2015; Amosa et al. 2014, 2015, 
2016c).

Software packages

The design of experiment (DoE) for the process execution 
and statistical analyses was implemented in Design Expert® 
software version 10.0.4.0 (Stat-Ease Inc., MN, USA). The 
first-order polynomial models that were generated were 
directly implemented in GAMS without any adjustment to 
permit easy comparison of the results. Meanwhile, the mod-
els are nonlinear; hence, they are handled as NLP models 
implemented in GAMS version 24.4.3 (GAMS 2015), and 
solved with BARON (Tawarmalani and Sahinidis 2005), 
together with CPLEX and IPOPT solvers, for comparison. 
The three different solvers were applied to see if there is 
any discrepancy in the results obtained. A personal com-
puter characterized by a Core i5-3210 M CPU processor at 
2.50 GHz and 12.0 GB RAM was utilized to carry out all 
computations. The three control variables were bounded as 
presented in Eq. 2, representing the necessary constraints for 
the solver in searching for the best solutions in the regions 
set for the constraints. This set of constraints is utilized for 
all models in this study.

Since real wastewater is employed in this study, and the 
main objective is to monitor the removal of the contaminants 
contained therein, the final concentrations of silica and TDS 

(2)
2 ≤ A ≤ 5

100 ≤ B ≤ 200

30 ≤ C ≤ 60

are set as the objective functions. The variables A (adsor-
bent dosage), B (mixing speed) and C (contact time) in the 
constraints are employed to identify the vital variables that 
affect the adsorption process. This enhances the discovery 
of the ideal combination of categorical variables. All the 
results were compared using the percentage error approach. 
Percent error, which is the absolute value of the difference 
of two values divided by the theoretical value, was utilized 
here because the experimental result was compared with a 
theoretical (model) value.

Batch adsorption tests using 23 full‑factorial design 
(first‑order model)

To observe the manners in which the control variables and 
their interactions are influential to the objective functions, 
a full-factorial design was performed using the Design 
Expert® software. Batch adsorption experimentation was 
conducted to evaluate the adsorption efficiency and the 
effects of operating variables using a 2-level FF design. To 
be certain of the homogeneity of the representative sample 
throughout the experimentation, the sample was homoge-
nized in large aliquot to abate random sampling errors due to 
segregation effects. The agitated system is used to maintain 
balanced quantities of the contaminants in different phases 
based on concentration levels. And since soluble solids 
are involved, the agitation is used to increase interaction 
between the particles and avoid uneven accumulation at one 
point. Though turbulent regions of the homogenized solu-
tion may be chaotic and difficult to determine, the agitation 
process enhanced the wastewater samples to be taken from 
well-mixed regions.

The experimentations were carried out by mixing vary-
ing doses of the adsorbent with 100 mL of the wastewater 
sample, followed by agitation in 250-mL-sized Erlenmeyer 
flasks at various mixing speeds and contact time, depending 
on the set of variable levels in the factorial design. The tem-
perature and pH values of the sample were left unchanged 
to specifically simulate the nature of the ready-to-discharge 
wastewater. The wastewater profile is characterized using 
the standard methods (APHA 2005; HACH 2012) before 
and after the adsorption processes. All the experiments are 
triplicated, and the average values are logged.

Table 3   Control variables employed for the FF design

Control variables Units Levels

Actual (coded)

A: adsorbent dosage g 2 (− 1) 3.5 (0) 5 (+ 1)
B: mixing speed rpm 100 (− 1) 150 (0) 200 (+ 1)
C: contact time min 30 (− 1) 45 (0) 60 (+ 1)
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Throughout the adsorption process in this investigation, 
the independent/control variables: adsorbent dosage, mixing 
speed and contact time are, respectively, represented as A, B 
and C. The levels and range of the control variables involved 
in the experimental design are shown in Table 3. The values 

for the variable range were adjusted based on the results of 
preliminary study and previous findings (AbdulHalim et al. 
2011; Alam et al. 2016, 2009; Alkhatib et al. 2011; Amosa 
et al. 2014; Emad 2010; Neşe and Ennil 2008; Razali et al. 
2010; Tumin et al. 2008).

Results and discussion

Analyses of the effects of control variables 
on responses

Based on the 2-level FF design, monitoring of the adsorp-
tion trends of each constituent was performed to obtain the 
variable relational effects on the adsorption process through 
a combination of 11 experimental runs as offered by the 
design software. The experimental design and results for 
the removal of silica and TDS are presented in Table 4. The 
results are appropriately analyzed through the ANOVA. 
ANOVA implies a statistical algorithm that splits the overall 

Table 4   Experimental design 
and results for the 2-level (23) 
FF design

Expt’l Run Control variables Objective function/responses

A: adsorbent 
dosage (g)

B: mixing speed 
(rpm)

C: contact time 
(min)

Silica (mg/L) TDS (mg/L)

1 2 200 30 40 976
2 3.5 150 45 16 896
3 5 100 60 13 814
4 5 100 30 33 829
5 2 200 60 38 950
6 3.5 150 45 17 898
7 5 200 30 24 855
8 5 200 60 14 833
9 2 100 30 34 945
10 2 100 60 47 930
11 3.5 150 45 17 898

Table 5   ANOVA based on 
silica removal for the selected 
factorial model

ANOVA table for partial sum of squares (type III)

Source Sum of squares df Mean square F value p-value Prob. > F

Model 1057.88 7 151.13 453.38 0.0022 significant
A 703.12 1 703.12 2109.38 0.0005
B 15.12 1 15.12 45.37 0.0213
C 45.12 1 45.12 135.38 0.0073
AB 3.13 1 3.13 9.38 0.0922
AC 210.13 1 210.13 630.38 0.0016
BC 3.13 1 3.13 9.38 0.0922
ABC 78.13 1 78.13 234.38 0.0042
Curvature 410 1 410 1230.01 0.0008 significant
Pure error 0.67 2 0.33
Cor total 1468.55 10

Table 6   SolVAR and SolEQU showing the variable and equation 
attributes

Lower Level Upper Marginal

EQU silica  − 48.000  − 48.000  − 48.000 1.000
EQU tds 989.330 989.330 989.330 1.000
EQU Pollutant – – – 1.000
VAR a 2.000 5.000 5.000  − 49.126
VAR b 100.000 100.000 200.000 0.194
VAR c 30.000 60.000 60.000  − 1.164
VAR x – 13.600  + INF 5.766E − 11
VAR y – 815.540  + INF 5.107E − 13
VAR z –INF 829.140  + INF –



	 Applied Water Science (2021) 11:43

1 3

43  Page 6 of 14

disparity in a set of data into component items concerning 
specific variation sources with the aim of hypotheses testing 
on the model variables and parameters (Alam et al. 2016; 
Amosa et al. 2016c; Turan and Ozgonenel 2013). In this 
study, the statistical significance of the variation in mean 
square ratio due to the residual errors and regression of the 
mean square are appraised with the application of ANOVA 
(Ighalo and Eletta 2020). It is observed that some of the 
control variables showed significant effects (i.e., p ˂ 0.05) 
while some of them are not significant (i.e., p ˃ 0.05)—see 
Tables 5 and 6.

Silica removal

With an initial concentration of silica (73 mg/L), the lowest 
residual concentration of 13 mg/L was obtained at the oper-
ating conditions of 5 g adsorbent dosage, 100 rpm mixing 
speed and 60 min of contact time. This indicates an 82.2% 
removal efficiency from the adsorption process. In Table 5, 
the ANOVA representing the model that adjusts for the sig-
nificant curvature on silica removal is presented.

The presented ANOVA is based on the default model 
used for diagnostic plots as well as the prediction and model 
plots. As observed in Table 5, it could be inferred from a 
model F-value of 453.38 that the model is significant, and 
there is a chance of 0.22% that "Model F-value" this big 
could occur because of noise. A p-value of 0.0022 for the 
overall model signifies the strong significance of the model, 
since the values of "Prob. > F" value of ˂ 0.050 indicate that 
the model terms are highly significant and values greater 

than 0.100 signify insignificant model terms. The "Curvature 
F-value" of 1230.01 suggests that in the design space, there 
is a significant curvature (measured by a difference between 
the center points average and factorial points average). Also, 
a chance of only 0.08% exists for a large "Curvature F-value" 
like this to occur as a result of noise. The signal-to-noise 
ratio is appropriately measured by adequate precision, and 
any ratio greater than 4 is deemed desirable. The signal-to-
noise ratio as given by the model is 65.105 which implies 
an acceptable signal.

The relationship between the predicted and actual values 
is depicted in Fig. 1, and the linear trend proves that the two 
sets of values do relatively concur with each other. In this 
case, the significant model terms appear to be variables A, B, 
C, alongside the AC and ABC terms with R2 and adjusted R2 
values of 0.9994 and 0.9972, respectively. Such magnitudes 
of R2 values are clear indications that the model successfully 
correlates the objective functions to the variables studied. 
Furthermore, this is an indication that the model is fit to be 
utilized in the navigation of the design space. The model has 
an SD of 0.58, and the final regression model equation was 
generated by the Design Expert® software for the lowest 
concentration of silica residual in terms of the actual and 
coded variables as, respectively, given in Eqs. 3 and 4:

Moreover, 3D variable interactive plots are also possible 
since the study conducted here involves at least two control 
variables. The 3D plots (Fig. 2) depict the interaction of 
the three variables that are involved in the silica sorption 
process. Figure 2a shows the relationship between the mix-
ing speed and adsorbent dosage. An increase in the dosage 
of 2–5 g resulted in higher silica uptake from the effluent as 
evident from the low trend of silica residuals. Though not as 
highly significant as that of the dosage, it was also observed 
that as the mixing speed increases from 100 to 200 rpm, 
there is a slight reduction effect on the silica residuals. In 
the illustrated 3D diagram shown in Fig. 2b, the contact 
time and dosage had a significant effect on the process. The 
silica residual tends toward a rapid reduction as both vari-
ables increase, and the presence of curvature in the surface 
plot indicates a significant interaction between the variables. 
3D plot in Fig. 2c shows that contact time and mixing speed 
interaction affected as the silica concentration continues to 
slightly decrease evident from the slight imbalances exhib-
ited in the 3D plot axes.

(3)

Min Y1, mg/L (actual) = − 48 + 24A+0.48B+2.22C − 0.13AB−

0.64AC − 0.011BC+2.78 × 10−3ABC

(4)

Min Y1 (coded) = +30.37 − 9.38A − 1.37B − 2.37C − 0.63AB−

5.13AC − 0.63BC+3.13ABC

Fig. 1   Plot of model (predicted) vs. experimental (actual) values for 
silica uptake
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Fig. 2.   3D surface plots depict-
ing the interactive effects of 
all control variables on silica 
uptake
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It also helps to view the results in the cubical factor space. 
Figure 3 shows a cubical plot showing the combined effects 
of all the three control variables on the objective function. 
Since the variables of interest here are A, B and C, they 
were picked by default by the software program. The shown 
values are the predicted values, which permits plots to be 
made even with missing actual data. It is observed that silica 
is minimum at the A + , B − , C + settings (lower back right 
corner of the cube).

GAMS validation for minimum silica content 
possible

The model Eq. 3 was subjected to the constraints in Eq. 2 
and solved with the BARON, CPLEX and IPOPT solvers in 
GAMS platform to find the local optimum for silica removal. 

The solver utilizes the set upper and lower boundaries to 
determine the level and marginal values. The three solvers 
interestingly gave similar results of local optimum, levels 
and marginal values as shown in Table 6. Furthermore, the 
platform gave a model statistics of 11 non-zero elements, 6 
single variables, a derivative pool of 20, 6 nonlinear N-Z, 
29 constant pool, a code length of 52 with a generation time 
of 0.375. The level represents the proposed local optimum 
given as 13.6 mg/L but at the operating settings of 5 g of 
adsorbent dose, 100 rpm of mixing speed and 60 min of mix-
ing time in which concurs with the results from the factorial 
design analysis.

Moreover, the interesting part of the analysis is given in 
the marginal column. This has a certain meaning that the 
set constraints are the binding constraints. It means that if 
the lower limits are changed, then the objective function 
value will change (Soroudi 2017). The marginal values 
show the sensitivity coefficients of objective functions to 
the constraints (bounded control variables or equations). 
The marginal value represents the amount and direction of 
change in the objective value given a unit increase in the 
active variable bound (GAMS 2018). This will enable the 
decision-maker to identify the binding constraint having the 
most influence on the objective function (Soroudi 2017).

The minimum value obtained in the GAMS platform rep-
resents a synergistic percent error of 4.4% when compared 
with the experiment-based result (13 mg/L). This solution 
can be physically interpreted thus:

•	 Keeping the adsorbent dosage and the mixing speed at 
levels suggested by both the experimental and theoretical 
solutions ensures that the objective is adequately mini-
mized.

•	 Still, there exists a synergistic effect of the control vari-
ables on the response since the minimum values obtained 
from each platform are very close with a percent error of 
just 4.4%.
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Fig. 3   A cubical plot of the interactions between the control variables 
and silica uptake

Table 7   ANOVA based on 
TDS removal for the selected 
factorial model

ANOVA table for partial sum of squares (type III)

Source Sum of squares df Mean square F value p-value prob > F

Model 29,574 7 4224.86 3168.64 0.0003 significant
A 27,612.5 1 27,612.5 20,709.38  < 0.0001
B 1152 1 1152 864 0.0012
C 760.5 1 760.5 570.37 0.0017
AB 4.5 1 4.5 3.37 0.2076
AC 2 1 2 1.5 0.3453
BC 40.5 1 40.5 30.37 0.0314
ABC 2 1 2 1.5 0.3453
Curvature 74.24 1 74.24 55.68 0.0175 significant
Pure error 2.67 2 1.33
Cor total 29,650.91 10
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Total dissolved solids (TDS)

The minimum TDS residual of 814 mg/L (from an initial 
concentration of 1207 mg/L) was observed at the operating 
conditions of 5 g adsorbent dosage, mixing speed of 100 rpm 
and 60 min of contact time. This leaves the highest removal 
efficiency at 32.6%. Besides, 829 mg/L and 833 mg/L were 
the closest TDS residuals observed but at different operating 
conditions.

As presented in Table 7, the ANOVA gives a model 
F-value of 3168.64 for the adsorption process thereby sig-
nifying a relatively high significance of the model. Also, 
there exists just a chance of 0.03% that such a relatively large 
model F-value could occur from noise effect. The general 
model has a p-value of 0.0003, thereby indicating that the 
model is highly significant since "Prob. > F" values of < 0.05 
are known to indicate significant model terms. The "Curva-
ture F-value" of 55.68 infers that in the design space, there 
is certainly a significant curvature and the ANOVA suggests 
that for such a large curvature F-value to occur due to noise, 
there exists only a chance of 1.75%. An adequate precision 
ratio of 155.103 indicates an adequate signal since a ratio 
greater than 4 is deemed desirable.

Figure 4 shows a plot depicting the correlation between 
the predicted (model) and actual (experimental) TDS resid-
ual concentration values. The linearity of the correlation 
plot proves that a relative agreement between both values 
exists. In this case, variables A, B, C and BC term represent 

the significant model terms with R2 and adjusted R2 values 
of 0.9999 and 0.9996, respectively. Such high R2 values are 
indications that the model has successfully correlated the 
studied variables and the objective response. An SD of 1.15 
is exhibited by the model which is an indication that in the 
design space, it can be used for navigation. Valid mathemati-
cal relationships of the variables and objective function are 
obtained for TDS residual concentration as a result of the 
ANOVA analyses of the experimental data selected via the 
FF design. The regression models generated by the Design 
Expert® software in the form of actual and coded variables 
are presented in Eqs. 5 and 6, respectively.

In this case as well, 3D plots (Fig. 5) depicting the inter-
active behaviors between the objective function and all con-
trol variables are generated by the software for analyses. The 
plots depict the effects of operating factors’ interactions on the 
abatement of TDS. The interaction between the dosage and 
contact time is noticeable as the increase in contact time and 
dosage from 30 to 60 min and 2 to 5 g, respectively, favored 
TDS abatement. However, 3D plots in Figs. 5a and c sug-
gest favorable TDS abatement trend when any of the factors 
interacted with decreasing mixing speed from 200 to 100 rpm 
as its increase did not favor TDS removal. This is not unprec-
edented as a similar observation on TDS sorption by activated 
carbon was also reported by Mortula and Shabani (2012). With 
the inspection of Fig. 5b, it is evident that any increase in the 
adsorbent dosage resulted in a lower concentration of TDS. 
This could be attributed to the fact that increased dosage pro-
vided extra surface area, available pores and functional groups 
ready for the TDS entrapment. And since the activated carbon 
is a porous material that acts as a sieve for the contaminants, 
it could be inferred that the PAC may have acted as a filter 
medium. It has been reported that adequate filter media such 
as porous materials including membranes, activated carbon, 
zeolitic materials or roughing filters are usually more effi-
cient in TDS removal (AquaFit4Use 2010; Karakulski et al. 
2006; Karimi et al. 2015; Nkwonta and Ochieng 2010; Pal 
et al. 2014; Song 2004; Wu et al. 2007). Besides, it must be 
noted that the variable effects on TDS also give the idea of 
the behaviors of salinity and electrical conductivity under 
similar operating conditions, since the three parameters are 
all closely related. An increase in any of the parameters leads 
to an increase in the other two parameters and vice versa.

(5)

Min Y2, mg/L (actual) = +989.33 − 35.67A+0.48B − 0.04C − 0.03AB−

0.04AC − 4.56 × 10−3BC+4.44 × 10−4ABC

(6)

Min Y2(coded) = +891.50 − 58.75A+12.00B − 9.75C − 0.75AB+

0.50AC − 2.25BC+0.5 − ABC

Fig. 4   Plot of model (predicted) vs. experimental (actual) values for 
TDS removal



	 Applied Water Science (2021) 11:43

1 3

43  Page 10 of 14

Fig. 5.   3D surface plots show-
ing the interactive effects of all 
control variables on TDS uptake
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Moreover, if the cube plot (Fig. 6) is also inspected, it is 
observable that the lowest TDS concentrations are achieved 
with A + , B − and C + which also corresponds to the same 
operating conditions attained in the case of silica concentra-
tion. Generally, it is obvious that the obtained model values 
in all cases were close to the experimental values and that 
is indicative of the fact that the developed models are effica-
cious in unfolding the correlation between the variables and 
the objective functions. Also, according to the ANOVA, the 
most significant of all the control variables is the dosage in 
both cases due to their very low p-values compared with the 
other two variables. This is indicative of the fact that a slight 
change in the dosage will significantly affect the two responses 
or objective functions. The model qualities in each case are 
also assessed based on the coefficient of determination (R2) 
values with all R2 values observed to be very close to unity. 
Besides, it is also detected that R2 values are in reasonable 
agreements with their respective adjusted R2 values for all 
both pollutants studied, and very low SD values are exhibited 
by the models. As R2 values tend to unity with very low SD, 
the model becomes better indicating an established resilience 
of agreement between the predicted and actual values of the 
objective functions.

GAMS validation for minimum TDS content possible

Model Eq. 5, which is based on the actual variables and 
response values, was also subjected to the constraints in 
Eq. 2 and implemented in GAMS. The result proposed a 
local optimum setting of 5 g of adsorbent dose, 100 rpm of 
mixing speed and 60 min of mixing time as with a minimum 

TDS content of 815.5 mg/L. Though this value is a bit higher 
than the minimum value (814 mg/L) obtained from the 
experimental design, both values are still synergistic since 
the percentage error is only 0.18%. The result can thus be 
physically interpreted as follows:

•	 Maintaining the levels of adsorbent dosage and mixing 
time as that obtained from both platforms is sufficient to 
obtain the minimum TDS content.

•	 The control variables led to a synergistic effect on the 
objective as the residual concentration was 0.18% higher 
than the value provided by the model when GAMS was 
not implemented.

Combined solutions of the objective functions 
under factorial design and GAMS platforms

It was observed that the pollutants experienced their lowest 
residual concentrations (13 mg/L silica and 814 mg/L TDS) 
at the same non-conflicting operating conditions of 5 g of 
adsorbent dosage, 100 rpm of mixing speed and 60 min of 
contact time (Table 3). However, with more than two vari-
ables, the best or optimal conditions have to be obtained 
using numerical optimization methods as suggested by the 
software. This will allow the simultaneous consideration 
of all objective functions involved in the design and find 
a single operating setting and value of the objective func-
tion. The statistical analysis of the Design-Expert® software 
version 10.0.4.0 offered 28 numerical solutions for the best 
removal of silica and TDS with desirability values ranging 
from 0.747 to 1.000 for their possible minimum contents. 
The application of desirability function to systems in designs 
of experiments has been fully elucidated elsewhere (Amosa 
and Majozi 2016). Experimental validation of operating 
conditions having the highest desirability value of 1.000, 
and operating setting of 5 g of dosage, 100 rpm of mixing 
speed and 60 min of contact time was carried out, and it 
was observed that the validated results fully agreed with the 
numerically proposed results.

Subsequently, to simultaneously find the minimum possi-
ble residual contents of the two pollutants, the process objec-
tive function models Y1 and Y2, based on the actual values, 
were combined as a single dual-objective function (DOF) 
and represented as R for finding the best operating process 
conditions as follows:

The DOF is subjected to the constraints in Eq. 2, and as 
GAMS approach was implemented in solving the DOF, a 
solution of 13.6 mg/L of silica and 815.5 mg/L of TDS was 
predicted with the set of control variables: 5 g of dosage, 
100 rpm of mixing speed and 60 min of mixing/contact time. 

(7)Min R (mg/L) = Y1+Y2
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Fig. 6   Cube plot of the interactions between the control variables and 
TDS uptake
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Moreover, the model statistics of the GAMS-based solu-
tion revealed that there are 3 single and blocks of equations, 
6 single and blocks of variables of which 3 variables are 
projected, 11 nonzero elements, 6 nonlinear N-Z, a deriv-
ative pool of 20, constant pools of 29 and a code length 
of 52. More importantly and just as the ANOVA analyses 
suggested for both uptake cases, GAMS platform also sug-
gests based on the marginal values that a slight change in 
the dosage will significantly affect the objective function 
by a marginal value of − 49.126 (see Table 6). Other two 
control variables (mixing speed and contact time) are not as 
significant as the dosage due to their very low and negligi-
ble marginal values. It appeared that both the GAMS- and 
factorial-based solutions agreed with the experimental val-
ues as the % errors were all less than 5%. Moreover, GAMS 
implementation in simultaneously solving the DOF problem 
appeared more economically viable since only a single set 
of control variables was suggested as the optimum. This 
was easier to validate experimentally even with triplicates, 
coupled with the fact that the optimal was somewhat close 
to that obtained from the factorial-based solution.

Conclusions

The statistical regression models for the two scenarios have 
been developed and their suitability confirmed with the 
ANOVA for prediction of the effects of variable interactions 
and interest regions for the process. Subsequently, the model 
is confirmed with three (3) solvers under the GAMS plat-
form. Conclusions of the present investigation are abridged 
as follows:

1.	 The use of GAMS in combination with factorial design 
through ANOVA and marginal effects proved an effec-
tive and insightful way to characterize the relationships 
between control variables representing the constraints 
on the objective functions.

2.	 There is a close agreement between the results obtained 
from the two platforms regarding the variable signifi-
cance, and both pointed to the fact that dosage is the 
most significant variable in the process. A slight change 
in the variable leads to a significant change in the objec-
tive functions.

3.	 This study further supports the use of the statistical 
design approach for the model development in terms of 
variable interactive effects that contributes to the suit-
ability of the desired changes in the process being con-
sidered.

4.	 The studied interacting effects from the model are 
examined, and these expressed the close similitude with 

experimental interpretations. The results and regions 
of variable interests proposed by both the factorial 
and GAMS platforms concur with the experimentally 
derived results.

5.	 The model is confirmed under GAMS platform in terms 
of the best region of process variables necessary for the 
sustainability of the process.

6.	 Despite the multicomponent nature of the wastewater, 
the process efficiency was 82.2% for silica removal, 
while a lower efficiency was observed in the case of 
TDS removal.

7.	 Results of the variable interactive effects and probable 
levels form the basis for a proposed decision frame-
work.
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