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Abstract
In this study, four surface water quality datasets of upper Damodar river basin (DRB) covering three seasons; pre-monsoon, 
monsoon, post-monsoon and annual, for years 2007–2010 were generated by analyzing 280 grab water samples. Each data-
set consist of water quality constituents of 35 monitoring stations and sample of each station was evaluated by 17 critical 
parameters (total 4760 observations). Furthermore, each dataset was treated using six water quality indices (WQIs): four 
developed simplified indices  (WQIm,  WQImin,  WQIDO, and  WQIpca) and two existing extended indices  (WQIobj and  WQIsub), 
to assess spatiotemporal variations and suitability for human use and aquatic life. Results revealed that developed indices 
show on an average similar spatiotemporal variations as compared to  WQIobj at a lower analytical cost at most of sampling 
sites comes under good to medium categories of water quality. Geographical information system (GIS) technique was also 
used for generation of temporal pollution potential maps of DRB. Consequently, this study also presents the necessity and 
usefulness of developed indices over extended indices especially for the developing countries, because the cost of monitor-
ing and expenses associated with the implementation is less compared to extended methods and generated maps may also 
facilitate the decision-making processes under various scenarios considering spatial and temporal variability in DRB.
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Introduction

Assessment of water quality is important because clean 
water is necessary for human use and the integrity of aquatic 
ecosystem. It is usually monitored through conventional 
method, which involves in situ measurements of physical, 
chemical, biological, microbiological, and radiological 

parameters and/or the collection of water samples for labo-
ratory analysis and then comparing with the existing guide-
lines and standards for designated uses viz drinking, bathing, 
irrigation provided by national and international agencies. 
But, guidelines for the protection of aquatic life are more dif-
ficult to set, largely because aquatic ecosystems vary enor-
mously in their composition both spatially and temporally, 
and also because ecosystem boundaries rarely coincide with 
territorial ones. Therefore, scientific community are focusing 
on the spatiotemporal variations of water quality constitu-
ents and impacts of geographical factors and variations in 
human activities.

The conventional method is readily understood and well 
accepted only among water professionals, as it involves 
multiple parameters (Cude 2001). However, even by using 
multiple parameters, it is not possible to accurately estimate 
the overall water quality. To accomplish this, water quality 
index (WQI) is an alternative method that summarizes a 
large volume of information from multiple variables into 
a single variable ranging from 0 to 100, which is easy to 
understand and interpret about spatiotemporal variations of 
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water quality as well as possible uses of a given water body 
(Cude 2001; Kannel et al. 2007a, b).

WQI gives acceptable information at certain times and 
locations, if it is computed using limited number of criti-
cal water quality parameters based on regional watershed 
characteristics and suitable aggregation function. Thus, 
firstly, a set of critical parameters need to be chosen, which 
together reflect the overall water quality for designed uses 
(Ongley 1998). Otherwise, it may also become unwieldy if 
each and every possible constituent is included in the index 
(Akkoyounlu and Akiner 2012). Secondly, aggregation 
function, whereby multidimensional subindex information 
is reduced to overall a single value as index. However, aggre-
gation technique exhibits both substantive and structural 
shortcomings such as ambiguity (overestimation), eclips-
ing (underestimation), rigidity, and sensitivity (Singh et al. 
2008; Swamee and Tyagi 2007). Ambiguity problem exists 
where the aggregate index is too high and crosses a critical 
level. Eclipsing happens when the effect of a very high (per-
haps catastrophic) subindex value is lost in the aggregated 
index because of a low weighting factor. Rigidity problem 
exists when additional variables are included in the index 
to address specific water quality concerns. Besides these, 
aggregation function also possesses a high sensitivity to the 
changes in subindices of the selected water pollutant vari-
ables (Kumar and Alappat 2004; Sutadian et al. 2016).

Alternatively, other researchers have also used multivari-
ate statistical techniques such as correlation analysis (CA), 
principal component analysis (PCA), factor analysis (FA), 
and Fuzzy analysis method to reduce the dimensionality of 
the physicochemical–biological parameters (Debels et al. 
2005; Hanh et al. 2011; Liou et al. 2004; Koçer and Sev-
gili 2014). Furthermore, these techniques are often used 
to modify WQI with a minimum number of parameters for 
assessment of water quality of any water bodies.

Keeping the fact of minimum analytical cost involved and 
selection of appropriate aggregation functions for predic-
tion of water quality in mind, the objectives of the present 
study are: (1) to develop simplified WQIs and also explore 
usefulness of these over extended indices, (2) to assess the 
spatial and temporal variations of water quality using both 
simplified and extended WQIs (3) to classify the river water 
quality and (4) to identify the water quality index that is 
effective and quick assessable at low cost.

Earlier WQI

The use of WQI was initially proposed by Horton (1965). 
Since 1965, a number of WQIs have been developed by dif-
ferent researchers to evaluate water quality based on differ-
ent aggregation functions. Most frequently used functions 
are: weighted averaging methods (Ball and Church 1980; 

Brown et al. 1970; House and Ellis 1987; Jonnalagadda 
and Mhere 2001; Pesce and Wunderlin 2000; Ross 1977; 
Štambuk-Giljanovic 1999), weighted geometric means 
(Dinius 1987), minimum operators (Smith 1990), and hybrid 
methods (Dojlido et al. 1994; Liou et al. 2004; Swamee and 
Tyagi 2000). However, these developed indices have one or 
the other shortcomings such as ambiguity, eclipsing, and 
rigidity, due to faulty selection of aggregation function. 
Faulty aggregation function might artificially reduce the 
value of the aggregate index, such that it does not accurately 
reflect the true water quality. Therefore, search for a perfect 
one is still a challenge.

Two forms of aggregation functions: (1) arithmetic or 
additive and (2) geometric or multiplicative are commonly 
used, which suffer from both eclipsing and ambiguous 
effects (Cude 2001; Liou et al. 2004; Ott 1978; Smith 1990). 
Smith (1990) and Ott (1978) claimed that the problem of 
eclipsing might occur due to fewer representatives at the 
lower end of the quality scale when the additive form is 
applied in aggregation.

Brown et al. (1970) represented National Sanitation Foun-
dation’s Water Quality Index (NSF-WQI) used unweighted 
arithmetic mean function as depicted in Eq. 1. This function 
shows ambiguous, eclipsing, and little flexibility.

Later, Prasad and Bose (2001) and Sarkar and Abbasi 
(2006) used weighted arithmetic mean aggregation function, 
which is expressed as Eq. 2. This function shows ambigu-
ity free but still has small eclipsing with large number of 
variables.

Pesce and Wunderlin (2000) and Debels et al. (2005) 
used weighted average concentration function in their stud-
ies, which is expressed as Eq. 3. This function exhibits low 
sensitivity to changes in subindices for large number of 
variables

where Ci is the normalized subindex values; Pi is the weight-
ing factor that changes between 0 and 1 (according to rela-
tive importance for aquatic life/human use); i is the param-
eter, which ranges from 1 to n; k is the subjective constant 
and n is the total number of parameters.

(1)WQIuwa =

1
∑

i=1

Pi

(2)WQIwa =

n
∑

i=1

PiCi

(3)WQIwac = k

∑n

i=1
PiCi

∑n

i=1
Pi
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The other multiplicative formulation, which is shown in 
Eqs. (4) and (5), was suggested by researchers (e.g., Almeida 
et al. 2012; Bhargava 1985; Brown et al. 1973; Walski and 
Parker 1974). It may be ambiguity free but exhibits eclipsing 
at low weights and increasing scale indices.

where WQI—is the aggregated index, n—is the number of 
subindices, wi— is the ith weight and Si—is the ith subin-
dex. The weights (wi) indicate the relative importance of 
Si. When the weights in Eq. (4) are equal, then the equation 
takes the form presented in Eq. (5).

Smith (1990) used the minimum operator as an aggrega-
tion function:

Equation 6 does not have an eclipsing problem when the 
index has the minimum subindex value; it fails to give a 
composite picture of water quality.

On the other hand, some researchers have also used 
“normalization” technique in earlier aggregation functions. 
Normalized values of different water quality parameters are 
given in Table 1, which are based on European Standards 
(EU 1975) as well as expert opinion and variety of sources 
from the literature (Akkoyounlu and Akiner 2012; Cude 
2001; Ott 1978; Pesce and Wunderlin 2000). Normalized 
value does not show rigidity problems, because considering 
values are suggested by expert opinion.

Later, Liou et al. (2004) suggested that a combined form 
of both additive and multiplicative is better approach than a 
single one to produce the final index score which could elim-
inate ambiguity caused due to smaller weightings. A major 
drawback in the multiplicative form is that if any variable 
exhibits a low score value, then the overall index will exhibit 
poor environmental quality. Singh et al. (2008) conducted a 
comparative study of 18 different types of aggregation func-
tions and finally concluded that weighted arithmetic mean 
function is true linear, least ambiguous, and eclipsing free in 
estimating pollution or WQI for the river Ganga. Some other 
aggregation function might have shown superiority. Thus, 
they also suggested that the best idea is to use a mix aggre-
gation function by categorization of measured water quality 
parameters into groups. Furthermore, WQI was improved in 
the form of a weighted additive model, unweighted version, 
and weighted average concentration function. Pesce and 
Wunderlin (2000) categorized  WQIwac into two types: (1) 
subjective WQI  (WQIsub) and (2) objective WQI  (WQIobj) 

(4)WQI =

N
∏

i=1

S
wi

i

(5)WQI =

N
∏

i=1

S
1∕n

i

(6)WQI = min
(

s1, s2, s3, s4,……… sN
)

based on different value of k, given in Eq. 3. The  WQIsub 
represents the visual impression of the contamination level 
of a monitoring station. It takes one of the k values accord-
ing to the river condition. The values of k are: 1 = water 
without apparent contamination (clear or with natural sus-
pended solids); 0.75 = light contaminated water (apparently), 
indicated by light non-natural color, foam, light turbidity due 
to manmade pollutants reasons; 0.50= contaminated water 
(apparently), indicated by non-natural color, light to mod-
erate odor, high turbidity (no natural), suspended organic 
solids, etc.; 0.25 = highly contaminated water (apparently), 
indicated by blackish color, hard odor, visible fermentation, 
etc., whereas  WQIobj can be calculated using Eq. 3 but with 
k = 1 in any case.

In the last decade, researchers have also suggested sim-
plified WQIs approaches and use of limited water quality 
constituents for water quality assessment especially for the 
developing countries. The reason behind this approach is 
to minimize the cost and quick assessment of overall water 
quality and proved an advantage over conventional and 
extended WQI methods. Pesce and Wunderlin (2000) used 
three parameters (EC, turbidity, and DO), while Kannel et al. 
(2007a, b) used five parameters (EC, Tw, DO, pH, and TSS) 
for computing  WQImin to determine overall water quality of 
river Suquía (Argentina) and Bagmati (Nepal), respectively. 
Simoes et al. (2008) considered only three parameters (tur-
bidity, total phosphorus, and DO) for computing  WQImoc 
to assess the effect of fish farming activities in Macuco and 
Queixada rivers in Madio Paranapanema watershed in Bra-
zil. These indices usefully served as a simple tool to moni-
tor spatial and temporal trends of water quality in place of 
a conventional index, unless drastic changes in natural or 
anthropogenic activities would lead to completely different 
contamination load compositions.

Study area

This study was conducted in upper and middle regions of 
Damodar river basin (DRB). The basin is mainly drained 
by Damodar river which provides drinking water sustenance 
to millions of people in and around the river. It is a small 
rain-fed perennial river originating from the Khamerpet hill 
(elevation; 1068 m). The river Damodar flows for 541 km of 
which 240 km stretch is in Jharkhand and the rest is in West 
Bengal in eastern India and finally meets the Bay of Bengal.

The basin area is approximately 23,170 km2, which lies 
between 22°15′N to 24°30′N latitude and 84°30′E to 88°15′E 
longitude. It has number of tributaries and subtributaries, 
such as Barakar, Konar, Garga nalla, Jamunia, Khudia, Katri, 
Noonia, and Tamna nalla. It also has five reservoirs; two 
are located on Damodar river at Tenughat and Panchet, two 
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on Baraker river at Tilaiya and Maithon, and one on Konar 
river (Fig. 1).

The basin is also rich in deposits of coal (approximately 
46% of the Indian coal reserves), minerals, all of which are 

heavily mined. Besides mining, 182 non-coal mines, 78 
urban centers, 82 industrial centers, 4 coal-fired thermal 
power plants, 2 steel plants unplanned growth of urban and 
other settlements, heavy encroachments along both banks 

Fig. 1  Map showing location of study area and sampling points



 Applied Water Science (2019) 9:21

1 3

21 Page 6 of 15

of the river cause water pollution (Tiwary 1990; Verma 
et al. 2013). These anthropogenic activities such as dam-
ming, industrialization, urbanization, and encroachment 
have affected the river system including water quality and 
quantity as well as aquatic life.

In addition, the major sources of water pollution are dis-
charge of effluents generated due to various industries that 
have mushroomed on its riverbanks. Majority of them are 
government-owned coke oven plants, coal washeries, iron 
and steel plants, cement plants, and thermal power plants. 
Their effluent discharge brings excessive fly ash, poisonous 
metals, as well as coal dust (Tiwary 2004), which go directly 
into the river. Mining and its associated mineral processing 
activities withdraw a lot of water and also impact on the 
hydrological regime of the river and often affect the water 
quality. Runoff from dumps and drainage from mining sur-
face carry substantial amounts of suspended solids or sedi-
ment suspension.

The basin experiences tropical climate; summer is usually 
very hot and dry with average temperature of 30 °C and in 
May–July month, temperature could reach up to 48 °C. Win-
ter is cold; temperature could be as low as 2 °C. The mean 
annual precipitation ranges from 765 to 1850 mm with an 
average value of 1250 mm; 80% of the rainfall occurs during 
monsoon season between June and September month.

Methodology

Sampling strategy and analytical procedures

A total of 35 sampling sites were selected: 27 sites (S1–S27) 
along river Damodar and 8 sites (T1–T8) from its eight trib-
utaries between stretches of about 132 km from downstream 
of Tenughat dam to downstream of Tamna nalla (Fig. 1). 
Total 280 grab water samples were collected for periods of 
2007–2010 during pre-monsoon (April–May 2007, 2008, 
2009, 2010), post-monsoon (November–December 2007, 
2008, 2009) and once in monsoon (August–September 2008) 
season.

Furthermore, samples were analyzed as per Standard 
Methods (APHA 2005) and generated four datasets of 17 
critical water quality parameters such as water temperature 
(Tw), pH, electric conductivity (EC), total dissolved solids 
(TDS), total suspended solids (TSS), dissolved oxygen (DO), 
5-day biochemical oxygen demand  (BOD5), total hardness 
(TH), chemical oxygen demand (COD), nitrate–nitrogen 
 (NO3

−–N), sulfate ion  (SO4
2−), calcium ion  (Ca2+), mag-

nesium ion  (Mg2+), chloride ion  (Cl−), fluorides ion  (F−), 
bicarbonate ion  (HCO3

−), and total coliforms (T-coli). Tw 
was recorded on spot. Rest other parameters were meas-
ured in the water laboratory of the CIMFR, Dhanbad; pH 
values were measured using Orion ATI ion analyzer (EA 

960); EC by conductivity meter (Model No. C831 mul-
tiparameter analyzer);  BOD5 and DO were determined by 
titration method. TSS and TDS were separated by filter-
ing the samples through .42 mm Whatman filter paper and 
determined according to standard methods (APHA 2005). 
Anions  (Cl−,  F−,  SO4

2−,  NO3
−–N, and  HCO3

−) were deter-
mined by ion chromatograph (882 compact ion-plus). T-coli 
(MPN/100 mL) were assayed according to the multiple tube 
fermentation method, taking the more probable number.

WQI computation and development

Normally, WQI computation requires four steps: (1) the raw 
analytical results for the optimum set of water quality param-
eters, having different units of measurements, (2) normalize 
all these parameters into 0–100 scale, where 100 represents 
the maximum quality, (3) apply a weighting factor in accord-
ance with the importance of the parameters in determining 
water quality, and (4) combine these two normalized and 
weighting factors using suitable aggregation function/s into 
overall index.

In order to avoid rigidity problem, significance ratings, 
weight assign values, and normalization factor as given in 
Table 1 were used to compute both extended as well as the 
proposed simplified indices. Extended indices:  WQIobj and 
 WQIsub (considering all 17 parameters), were calculated 
using Eq. (3), while  WQIobj was calculated with k = 1 in all 
the cases, because all the sites along Damodar river appeared 
clear during the time of sampling.

In addition, to avoid possible misinterpretation of results, 
all discussed WQIs were applied on all four datasets to clas-
sify river water into five categories: (1) 0–25, (2) 26–50, (3) 
51–70, (4) 71–90, and (5) 91–100 as very bad, bad, medium, 
good, and excellent water quality, respectively. Furthermore, 
Geographical information system (GIS) technique was also 
used for generating spatiotemporal pollution potential maps 
of DRB on software package ArcGIS 9.1 Desktop.

Developing WQI using minimum number 
of parameters

Kannel et  al. (2007a, b) developed an index “WQImin,” 
which was computed based on five parameters (EC, Tw, DO, 
pH, and TSS) using Eq. 7. This is one way to minimize asso-
ciated analytical cost and also important in view of drinking 
and aquatic life.

DO is probably the most important parameter in any 
water body. It also influences other parameters. Recognizing 

(7)WQImin =

∑5

i=1
Pi ∗ Ci

5
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this fact, the empirical relationships between  WQIobj and 
DO have been developed as “WQIDO” (Debels et al. 2005; 
Kannel et al. 2007a, b).

By using similar concept, two new indices: (1) minimal 
WQI  (WQIm) and (2)  WQIDO, were developed considering 
minimum number of parameters. The  WQIm was gener-
ated by a regression analysis between the results of  WQIobj 
and  WQImin (α and β are regression constants) as shown in 
Eq. (8):

In case of  WQIDO, single parameter DO was used. The 
relationships between  WQIobj and DO were also derived 
using linear regression model as shown in Eq. (9):

Development of simplified WQI based on PCA

Another simplified index “WQIpca” was also developed 
by coupling two methodologies: mix aggregation function 
(arithmetic and multiplicative) and PCA. PCA is a widely 
accepted method to categorize parameters used in the WQI 
calculations, which are having common features and are 
responsible for most of the variation observed in measured 
data (Debels et al. 2005). This index would optimize the 
eclipsing and sensitivity problems in conventional method-
ologies through the parameter categorization.

Considering the additional fact that weights and normal-
ization factor of different water quality constituents were 
used (Table 1) in the calculation of  WQIpca which would 
also reduce rigidity problem.

Statistical analysis

Statistical analysis involves linear regression model, one-
way analysis of variance (ANOVA) and PCA. A linear 
regression model was used to determine empirical relation-
ships among computed WQIs and DO. ANOVA was con-
ducted to examine the statistical significance of differences 
in the means of WQIs computed during different seasons at 
P < .005. All the statistical processing was performed using 
SPSS 16 software for windows.

Results and discussion

Development of  WQIm and  WQIDO

Two new simplified indices:  WQIm and  WQIDO were gen-
erated by regression analysis between the values of  WQIobj 
(called  WQIm hereafter) and  WQImin and DO, respectively.

(8)WQIm = � WQImin + �

(9)WQIDO = � DO + �

First, linear relationship was observed between  WQIobj 
and  WQImin, which is given as Eq. 10 and shown in Fig. 2. 
Second, linear relationship between  WQIobj (hereafter called 
 WQIDO) and DO was observed as Eq. (11) and shown in 
Fig. 3. Figures 2 and 3 reveal that there exists a high correla-
tion for the mean seasonal value (105 numbers). Regression 
fits well with the determination coefficient (R2 = .782 and 
.771), which shows reliability.

PCA analysis and development of simplified index 
“WQIpca”

To distinguish temporal differences and development of 
“WQIpca,” separate PCAs were performed on log-trans-
formed datasets of all four datasets: pre-monsoon, monsoon, 
post-monsoon and annual. In the analysis, raw data were 

(10)
WQIm = 0.6098 ∗ WQImin + 34.538

(

R2 = 0.782, P < 0.000
)

(11)
WQIDO = 6.0062 ∗ DO + 34.762

(

R2 = 0.7713, P < 0.000
)

WQI = 0.6098 WQImin  + 34.538
R² = 0.782

40
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Regression diagram between WQI and WQImin

Fig. 2  Regression diagram between  WQIobj and  WQImin values 
obtained from 35 sampling sites in DRB

Fig. 3  Regression diagram between  WQIobj and DO values obtained 
from 35 sampling sites in DRB
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transformed into new uncorrelated variables, called principal 
components (PCs).

Due to the paucity of space, the result of only annual 
dataset is presented here. From the annual dataset, five PCs 
were extracted, together explaining 79% of the variance of 
information contained in the original data (Table 2). PC1 
accounted for 33.79% of total variance, indicating posi-
tive loading on  BOD5, COD,  SO4

2−,  NO3
−–N and negative 

loading on DO, is denoted as organics component. PC2 
explained 20.12%, moderately with TH concentration due 
to mining water discharge. PC3 assigned as particulates 
pollution, correlated moderately with TDS and TSS, and 
explained 12.38% of total variance. PC4 accounted for 
6.49% of total variance was contributed by T-coli concentra-
tion responsible for domestic discharge and PC5 accounted 
for 5.89% of total variance due to alkaline pH. Finally, a 
simplified index “WQIpca” is developed as Eq. (12), which 
consists of arithmetic weighted mean, geometric mean and 
multiplied by three coefficients.

where  WQIpca—is the water quality index based on results 
of PCA; Ci—is the value assigned to parameter DO,  BOD5, 
COD,  SO4

2−, and  NO3
−–N after normalization; Pi—is the 

weight of the parameter DO,  BOD5, COD,  SO4
2−, and 

 NO3
−–N; Cj—is the value assigned to parameters TDS and 

TSS after normalization; Pj—is the weight of the param-
eters TDS and TSS; Ck— is the value assigned to parameter 
T-coli after normalization; Pk—is the weight of the param-
eter T-coli.

Three scaling coefficients are prefixed, which address the 
subindices of temperature (Ctem), pH, (CpH) and total hard-
ness (CTH), respectively. In addition, assigned weights to 
them are fewer in comparison with rest of the parameters, 
because lowered sensitivity of the overall index is inevitable, 
even having dramatic changes with different circumstances.

(12)

WQIpca = CpHCTwCTH

[

1

5

5
∑

i=1

PiCi ∗
1

2

2
∑

j=1

PjCj ∗

1
∑

k=1

PkCk

]1∕3

Table 2  The component matrix, eigenvalues, and cumulative 
extracted PCs

PC1 PC2 PC3 PC4 PC5

Loading of variables
Tw .029 .058 .283 − .058 − .069
pH .067 .101 − .052 .030 .991
EC .005 .118 .320 − .018 .191
DO − .581 − .340 − .317 − .097 − .048
BOD5 .562 .426 .104 .097 .033
COD .685 .332 .270 − .044 .073
TDS .268 .162 .642 .086 .049
TSS .512 − .420 .657 .197 − .065
TH .202 .648 .193 − .009 − .042
Ca2+ .313 .053 .093 − .041 .004
Mg2+ .260 .283 .272 − .186 .034
SO4

2− .725 .146 .129 .267 .121
NO3

−–N .955 .030 − .089 .018 .019
Cl− .323 .335 .210 .276 .164
F− .154 .160 .104 .002 .123
HCO3

− .097 .321 − .038 − .162 .058
T-coli .145 .192 − .436 .797 .087
Eigenvalues 4.29 2.70 1.60 1.01 1.00
Percentage of total variance 33.79 20.12 12.38 6.49 5.89
Cumulative percentage 33.79 53.92 66.29 72.79 78.69

Fig. 4  Spatial and temporal variations of  WQIobj at 35 sites in upper DRB
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Evaluation of spatial and temporal variations 
of  WQIobj and  WQIsub

Both  WQIobj and  WQIsub were computed at each sampling 
site and the results depicted in Figs. 4 and 5, respectively. 
 WQIobj indicates good and medium water quality in most 
of the reaches in DRB throughout the year in comparison 
with the tributaries (Fig. 4). It may be due to high carrying 
or reaeration capacity of Damodar river (George et al. 2010; 
Verma et al. 2013), whereas  WQIsub tends to underestimate 
the water quality status due to the use of a subjective con-
stant, which is not necessarily correlated with the measured 
parameters. Therefore,  WQIobj could be considered as an 
appropriate indicator to assess spatiotemporal variations of 
surface water quality in DRB, as reported in earlier studies.

The computed  WQIobj values were found in ranged from 
41.52 to 87.27 (Avg. 71.72 ± 7.64), 43.64 to 82.12 (Avg. 
68.10 ± 6.90), and 42.42 to 86.06 (Avg. 72.69 ± 7.80) dur-
ing pre-monsoon, monsoon, post-monsoon season, respec-
tively, and overall annual ranged from 40.6 to 83.64, (Avg. 
70.55 ± 7.30) which corresponded to good to medium cat-
egory. While, mean annual  WQIobj value for the tributaries 
was 61.97 ± 9.35 which lies in the medium category, except 
Garga nalla, a tributary which falls into the bad water quality 
category even for aquatic life. This could be because effluent 
of Bokaro thermal power plant as well as domestic sewage 
from Bokaro and Chas cities is discharged in the tributary.

Figure 4 also shows overall water quality is found bet-
ter during post-monsoon season than during the monsoon 
season. During monsoon season, additional diffused pollu-
tion including percolation through land and soil cover and 
storm runoff generally bring pollutants into the river from 
overburdened dumps of opencast mines in the vicinity of 
mining area (Verma et al. 2012).

In the tributaries, annual mean value of  WQIobj was 
61.97 ± 9.35, which lies in the medium category. Although 
a stretch between downstream of Tenughat dam to Phusro 
along the main river, water quality lies in the good category 
as there are no major effluent discharges except some coal 
mines. In the middle region, a high concentration of COD, 
 BOD5, TDS, TSS,  HCO3

−, and T-coli was observed due to 
industries and urban wastewater discharge and conform to 
the medium category. Although in lower region beyond Dur-
gapur, observed water quality showed some improvement 
due to the river’s assimilative capacity and absence of major 
industries and domestic effluent discharges.

In the context of temporal assessment, it was observed 
that water quality variation was not much distinct in seasons 
(Figs. 4, 5). Sampling sites S11, T1, T4, and T8 showed 
almost constant good water quality throughout study peri-
ods. The results also indicate that Garga nalla was the most 
polluted tributary with mean annual value of 42.04 ± 1.12, 
reflecting the bad category for human use/aquatic life when 
compared to other tributaries like Noonia nalla and Tamna 
nalla. These two tributaries flow through the major indus-
trial areas and receive large quantities of industrial effluents 
besides domestic effluents; could be the reason

Evaluation of spatial and temporal variations 
of  WQImin,  WQIDO, and  WQIm

In order to evaluate the feasibility of simplified developed 
indices:  WQImin,  WQIDO, and  WQIm as indicators of the 
level of pollution, were determined at all 35 sampling sites. 
 WQImin,  WQIDO, show approximately similar spatiotempo-
ral trend as observed with the result of extended  WQIobj, 
based on 17 parameters (Figs. 6, 7). Recognizing the high 

Fig. 5  Spatial and temporal variations of  WQIsub at 35 sites in upper DRB
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relationship between  WQIobj and  WQImin, proposed  WQIm 
shows almost similar trends as extended index “WQIobj” 
(Fig. 8).

Evaluation of spatial and temporal variations 
of water quality using  WQIpca

The results from computed  WQIpca are shown in Fig. 9. 
Numerically, the mean values of the seasonal and annual 
 WQIpca calculations are slightly inferior to those obtained 
with the standard index  WQIobj (r2 = .9; mean differ-
ence = − 5.0; P < .05).

Comparison of developed indices with existing 
indices

Both existing and developed indices were evaluated at 
each sampling site. However, computed values revealed 
that developed indices had identical trends of increasing or 
decreasing scores with slight variations over each sampling 
site.

Figure 10 shows quality criteria obtained by using dif-
ferent type of indices. It can be observed that results are in 
good agreement with  WQImin and  WQIDO with those from 
 WQIobj. However,  WQIm is mostly agreed among them with 
 WQIobj. Thus, it is useful method for quick assessment of 
spatiotemporal variations in the river system, keeping in 
mind minimum cost involved. Furthermore, the variations 

Fig. 6  Spatial and temporal variations of  WQImin at 35 sites in upper DRB

Fig. 7  Spatial and temporal variations of  WQIDO at 35 sites in upper DRB
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among WQIs were also authenticated by ANOVA results. 
The outcome of ANOVA indicated that arithmetic  WQIobj 
exhibited a significant difference when compared with 
 WQIsub and  WQIpca (P < .005) and had insignificant varia-
tions with  WQIm,  WQImin, and  WQIDO scores (P = .433 and 
P = .883, respectively).

Fig. 8  Spatial and temporal variations of  WQIm at 35 sites in upper DRB

Fig. 9  Spatial and temporal variations of  WQIpca at 35 sites in upper DRB

Fig. 10  Quality categorization of surface water samples in upper 
DRB
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Fig. 11  (continued)
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River classification

As discussed in the previous section,  WQIm is a most appropri-
ate simplified index. Thus, based on the estimated values of 
 WQIm, river classification can be done for better management 
of the river Damodar and its catchment. The  WQIm data of 
various sampling sites have been pictorially represented using 
GIS and spatial interpolation method as shown in Fig. 11. 
These interpolations were run on pre-monsoon, monsoon, 
post-monsoon and annual WQI values and classified into five 
categories: very bad, bad, medium, good, and excellent. This 
classification can be directly used to stratify both sampling 
and management effort to more efficiently protect large river 
ecosystems

Conclusions

1. In this study, total 280 water samples were collected 
from 35 monitoring sites during 2007–2010 in DRB 
and 17 critical physicochemical–biological parameters 
were analyzed. Furthermore, spatiotemporal variations 
of surface water quality in the river system were also 
assessed by four ambiguity and eclipsing free simplified 
developed indices:  WQIm,  WQImin,  WQIDO, and  WQIpca 
and two extended indices  WQIobj and  WQIsub.

2. A comparative analysis revealed that the simplified 
WQIs on an average represent similar result: class as 
well as spatiotemporal variations as obtained by an 
extended index “WQIobj.” However,  WQIm is most 
agreed among them with  WQIobj. Therefore, developed 
indices could be useful in case of minimum parameters 
needed to assess water quality changes and river clas-
sification.

3. Average  WQIm for years 2007–2010 was calculated, and 
it was observed that out of 105 mean seasonal values, 
64 and 35 lie in the good and the medium water quality 
category, respectively.

4. Results also revealed that the overall indices scores 
were found in the following order, post-monsoon > pre-
monsoon > monsoon season, and this could be due to 
discharges from industries and domestic sources as 
well as low flow during that time of sampling. Overall, 
computed values of indices show that there was a slight 
improvement in water quality, which means the river 
water is not as much polluted for human use/aquatic life 
as it is usually projected in earlier studies.

5. The study also suggested simplified indices which could 
be used as simple tool to understand the status of the 
surface water quality especially for assessing suitabil-
ity of human use/aquatic life in general and its compre-
hensive applications in spatial and temporal assessment 

could be applied to optimize future monitoring program 
by reducing the number of monitoring sites and param-
eters, and thus, the subsequent cost.

6. The developed indices clubbed with GIS can be directly 
used to analyze and compare condition across river 
basins and detect temporal variation. It could provide a 
technical support for governmental or local agencies to 
implement integrated river basin management.
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