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Abstract
This paper proposes a method for rigorously analyzing the sign-change structure of 
solutions of elliptic partial differential equations subject to one of the three types of 
homogeneous boundary conditions: Dirichlet, Neumann, and mixed. Given explic-
itly estimated error bounds between an exact solution u and a numerically computed 
approximate solution û , we evaluate the number of sign-changes of u (the number of 
nodal domains) and determine the location of zero level-sets of u (the location of the 
nodal line). We apply this method to the Dirichlet problem of the Allen–Cahn equa-
tion. The nodal line of solutions of this equation represents the interface between 
two coexisting phases.

Keywords Numerical verification · Sign-change structure · Elliptic differentical 
equations · Allen–Cahn equation · Computer-assisted proof · Verified numerical 
computation

Mathematics Subject Classification 35J25 · 35J61 · 65N15

1 Introduction

Numerical verification methods for partial differential equations have been devel-
oped in recent decades. Such methods were first proposed in [14, 17] and have 
been further developed by many researchers (see the recent survey book [15] and 
the references therein). These approaches are also known as computer-assisted 
proofs, validated numerics, or verified numerical computations for partial 
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differential equations and have been applied to various problems, including some 
for which purely analytical methods have failed. One such successful application 
is to the semilinear elliptic equation

with appropriate boundary conditions, where � is the Laplacian, 
𝛺 ⊂ ℝ

N  (N = 2, 3,…) is a bounded domain with a Lipschitz boundary, and 
f ∶ ℝ → ℝ is a nonlinear map (see, for example, the numerical results in [11, 12, 
15, 16, 19, 21, 26]). Further regularity assumptions for � and f will be shown later 
for our setting. Hereafter, Hk(�) denotes the k-th order L2 Sobolev space. We define 
H1

0
(�) ∶= {u ∈ H1(�) ∶ u = 0 on ��} , with the inner product 

(u, v)H1
0
∶= (∇u,∇v)L2 and norm ‖u‖H1

0
∶=

√
(u, u)H1

0
.

Numerical verification methods enable us to obtain an explicit ball contain-
ing exact solutions of (1). More precisely, for a “good” numerical approximation 
û ∈ H1

0
(𝛺) , they enable us to prove the existence of an exact solution u ∈ H1

0
(�) 

of (1) that satisfies

with an explicit error bound 𝜌 > 0 . Additionally, under an appropriate condition, we 
can obtain an L∞-estimation

with bound 𝜎 > 0 . For instance, when u, û ∈ H2(𝛺) , we can evaluate the L∞-bound 
𝜎 > 0 by considering the embedding H2(�) ↪ L∞(�) ; details are discussed later 
in this section. Thus, this approach has the advantage that quantitative information 
about the solutions of a target equation is provided accurately in a strict mathemati-
cal sense. From the error estimates, we can identify the approximate shapes of solu-
tions. Despite these advantages, information about the sign change of solutions is 
not guaranteed without additional considerations, irrespective of how small the error 
bound ( � or � ) is. To be more precise, we introduce the following.

Definition 1.1 For u ∶ � → ℝ , the connected components of the open sets

are called the nodal domains of u and denoted by N.D.(u). In particular, 
{x ∈ 𝛺 ∶ u(x) > 0} contains the positive nodal domains of u and is denoted by 
P.N.D.(u), and {x ∈ 𝛺 ∶ u(x) < 0} contains the negative nodal domains of u and is 
denoted by N.N.D.(u).

The zero level-set

is called the nodal line of u.

(1)−�u(x) = f (u(x)), x ∈ �

(2)‖u − û‖H1
0
≤ 𝜌

(3)‖u − û‖L∞ ≤ 𝜎

{x ∈ 𝛺 ∶ u(x) > 0} and {x ∈ 𝛺 ∶ u(x) < 0}

{x ∈ � ∶ u(x) = 0}
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According to the above definition, nodal lines do not contain the boundary of 
� ; however, we interpret zero-Dirichlet boundaries as parts of nodal lines when we 
apply this later to the Allen–Cahn equation (see Subsect. 2.3).

An essential problem is that #N.D.(u) (the number of nodal domains) does not 
generally coincide with #N.D.(û) (see Fig. 1). For example, when u is imposed on 
the homogeneous Dirichlet boundary conditions, it is possible for u to be negative 
near the boundary �� even when û is positive in � . In previous studies, we devel-
oped methods for verifying the positivity of solutions of (4) [23, 25–27]. These 
methods succeeded in verifying the existence of positive solutions with precise error 
bounds by checking simple conditions, but determining the sign-change structure 
has been out of scope.

The main contribution of this paper is a proposed method for verifying the sign-
change structure of solutions u of (1) subject to one of the three types of homo-
geneous boundary value conditions—Dirichlet type, Neumann type and mixed 
type—while assuming the error estimations (2) and (3). If error bounds are suffi-
ciently precise, our theorems can be applied to the case in which f is a subcritical 
polynomial

where p∗ = ∞ when N = 2 and p∗ = (N + 2)∕(N − 2) when N ≥ 3 . They are also 
applicable to more general nonlinearities other than polynomials (see Theorems 2.1 
and 3.1). In the later sections, we discuss the applicability of our method to the Dir-
ichlet problem

the Neumann problem

and the mixed boundary value problem

f (t) = 𝜆t +

n(<p∗)∑
i=2

ait|t|i−1, 𝜆, ai ∈ ℝ, ai ≠ 0 for some i,

(4)
{

−�u(x) = f (u(x)), x ∈ �,

u(x) = 0, x ∈ ��,

(5)
{

−�u(x) = f (u(x)), x ∈ �,
�u

�n
(x) = 0, x ∈ ��,

Fig. 1  Conceptual figure for the area in which (û − 𝜎)(û + 𝜎) < 0 between the two solid lines. Nodal 
lines of u lay inside the area and do not exist outside. Regardless of how small 𝜎 > 0 is, we cannot deny 
the possibility that there exist (small) nodal domains in the area only from the error estimations � and/
or � . If the nonexistence of nodal domains inside the area is proved, we can estimate #N.D.(u) and deter-
mine the topology of the nodal lines (that is, how the lines intersect)
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Here, �D is a relatively open subset of �� and �N = ����D . We allow �D (or �N ) 
to be empty to unify (5) (or (4)) with (6); otherwise, we assume that both �D and �N 
are connected sets such that �D ∩ �N  is an (N − 2)-dimensional Lipschitz submani-
fold of �� . Therefore, when 𝛺 ⊂ ℝ

2 is simply connected, the intersection �D ∩ �N  
is composed of two points. This assumption is not essential for our theory but can be 
weakened (see Remark 3.2).

To our knowledge, H2-regularity of solutions u of the above elliptic problems 
((4), (5), or (6)) is required for obtaining an L∞-bound � using existing methods. We 
obtain an explicit bound for embedding H2(�) ↪ L∞(�) using [18, Theorem  1]. 
Moreover, we require an explicit bound C > 0 that satisfies

for all v ∈ H2(�) satisfying the boundary condition in (4), (5), or (6) in the trace 
sense, where vxx denotes the Hesse matrix of v. When � is a polygonal domain, we 
have ‖vxx‖L2 = ‖�v‖L2 for such v and therefore can set C = 1 (see [5]). Combining 
the ideas from [18, Sect. 4] and [15, Sect. 6.2.7] looks promising to prove inequality 
(7) for more general domains, including in higher-dimensional cases. The L∞-bound 
� can be derived by applying the embedding bound for H2(�) ↪ L∞(�) and ine-
quality (7) to the error u − û when û ∈ H2(𝛺) fulfills the same boundary condition 
imposed on u. In this way, we obtain an L∞-bound � for the Dirichlet problem of 
the Allen–Cahn equation in Sect. 2.3. We believe that future methods can be devel-
oped to obtain L∞-bounds without assuming H2-regularity because weak solutions 
of these three problems always belong to L∞(�) when f is subcritical (see [4, Corol-
lary 6.6]).

We briefly explain some known facts about the H2-regularity of solutions of the 
Poisson problem

given h ∈ L2(�) and 𝛺 ⊂ ℝ
2 with corners, where B.C. represents one of the three 

types of homogeneous boundary value conditions mentioned above. For the zero-
Dirichlet or zero-Neumann cases, i.e., when B.C. is replaced with u = 0 or �u

�n
= 0 , 

solutions u of (8) have H2-regularity if � is convex and has a piecewise C2-bound-
ary (see, for example, [5] and [3, Subsect. 5.3]). For the mixed case, i.e., when B.C. 
is replaced with the boundary condition of (6), the opening angle �x0 at a corner 
x0 ∈ �� between �D and �N is essential for H2-regularity. If �x0 ≤ �

2
 , solutions u of 

(8) have H2-regularity around x0 (see [3, Subsect. 5.3] for details).
The remainder of this paper is organized as follows. In Sect. 2, we focus on the Dir-

ichlet problem (4), propose a method to estimate the number of nodal domains of solu-
tions u and discuss the applicability of this method. This section contains numerical 

(6)

⎧
⎪⎨⎪⎩

−�u(x) = f (u(x)), x ∈ �,

u(x) = 0, x ∈ �D,
�u

�n
(x) = 0, x ∈ �N ,

(7)‖vxx‖L2 ≤ C‖�v‖L2

(8)
{

−�u = h in �,

B.C. on ��
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applications of the method to the Allen–Cahn equation. For several verified solutions, 
the number of nodal domains is estimated and then the locations of nodal lines are 
determined (see Subsect. 2.3). Subsequently, in Sect. 3, we extend our method to the 
other boundary value conditions: the Neumann type (5) and mixed type (6).

2  Verification for sign‑change structure—the Dirichlet case (4)

In this section, we limit our focus to the Dirichlet problem (4). Our scope will be 
extended in Sect. 3.

We begin by introducing required notation. We denote V = H1
0
(�) and V∗ = 

(the topological dual of V). For two Banach spaces X and Y, the set of bounded lin-
ear operators from X to Y is denoted by L(X, Y) with the usual supremum norm 
‖T‖L(X,Y) ∶= sup{‖Tu‖Y∕‖u‖X ∶ u ∈ X ⧵ {0}} for T ∈ L(X, Y) . A norm bound for 
the embedding V ↪ Lp+1(�) is denoted by Cp+1(= Cp+1(�)) ; that is, Cp+1 is a positive 
number that satisfies

where p ∈ [1,∞) when N = 2 and p ∈ [1, p∗] when N ≥ 3 . If no confusion arises, 
we use the notation Cp+1 to represent the embedding constant on the entire domain 
� , whereas, in some parts of this paper, we must consider an embedding constant on 
some subdomain 𝛺′

⊂ 𝛺 . This is denoted by Cp+1(�
�) to avoid confusion. Moreo-

ver, �1(�) denotes the first eigenvalue of −� imposed on the homogeneous Dirichlet 
boundary condition. This is characterized by

Note that, when domains 𝛺1,𝛺2 ⊂ ℝ
N satisfy 𝛺1 ⊂ 𝛺2 , Cp+1(�2) can be used 

as a bound Cp+1(�1) by considering the zero-extension outside �1 to �2 for 
u ∈ H1

0
(𝛺1) ⊂ H1

0
(𝛺2) . In the same way, we confirm �1(�1) ≥ �1(�2).

Throughout this paper, we assume that f is a C1 function that satisfies

for some a0, a1, b0, b1 ≥ 0 and p < p∗ . We define the operator F by

Moreover, we define another operator F ∶ V → V∗ by F(u) ∶= −�u − F(u) , which 
is characterized by

(9)‖u‖Lp+1(�) ≤ Cp+1‖u‖V for all u ∈ V ,

(10)�1(�) = inf
v∈V�{0}

‖v‖2
V

‖v‖2
L2

.

|f (t)| ≤ a0|t|p + b0 for all t ∈ ℝ,

|f �(t)| ≤ a1|t|p−1 + b1 for all t ∈ ℝ

F ∶

{
u(⋅) ↦ f (u(⋅)),

V → V∗.

(11)⟨F(u), v⟩ = (∇u,∇v)L2 − ⟨F(u), v⟩ for all u, v ∈ V ,
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where ⟨F(u), v⟩ = ∫
�
f (u(x))v(x)dx . The Fréchet derivatives of F and F  at � ∈ V  , 

denoted by F′
�
 and F′

�
 , respectively, are given by

Under the notation and assumptions, we look for solutions u ∈ V  of

which corresponds to the weak form of (4). We call this the D-problem to prevent 
confusion with the other boundary value problems to be discussed in Sect. 3. Recall 
that the weak solution u ∈ V  of the D-problem is in L∞(�) ; see [4, Corollary 6.6]. 
We assume that some numerical verification method succeeds in proving the exist-
ence of a solution u ∈ V ∩ L∞(�) of (14) in the intersection of

given û ∈ V ∩ L∞(𝛺) and 𝜌, 𝜎 > 0 . Although the regularity assumption for û (to be 
in ∈ V ∩ L∞(�) ) is theoretically sufficient to obtain the error bounds (15) and (16), 
we further assume that û is continuous or piecewise continuous. This assumption 
impairs little of the flexibility of actual numerical verification methods. Indeed, past 
verification was implemented with such approximate solutions û ; again, see [11, 12, 
15, 16, 19, 21, 26]. Then, we use the following notation:

𝛺+ ∶= {x ∈ 𝛺 ∶ û − 𝜎 > 0} where u > 0 therein;
𝛺− ∶= {x ∈ 𝛺 ∶ û + 𝜎 < 0} where u < 0 therein;
�0 ∶= ��(�+ ∪�−).

The subset �0 approximates the nodal line of u, and therefore the location of �0 
is essential for determining the topology of the nodal line. In practice, �+ and 
�− are set to a subset of {x ∈ 𝛺 ∶ û − 𝜎 > 0} and {x ∈ 𝛺 ∶ û + 𝜎 < 0} ), respec-
tively, then �0 is defined as above. This generalization can be applied directly to 
our theory. We assume the following geometric properties:

�+ , �− , and �̊�0 are Lipschitz subdomains composed of a finite number of 
connected components, where �̊�0 denotes the interior of �0.
�0 is not empty, and satisfies 𝛺0 = �̊�0 ∩𝛺.
� is small so that �0 ≠ �.

(12)⟨F�
�
u, v⟩ = ∫

�

f �(�(x))u(x)v(x)dx for all u, v ∈ V ,

(13)⟨F�
�
u, v⟩ = (∇u,∇v)L2 − ⟨F�

�
u, v⟩ for all u, v ∈ V .

(14)F(u) = 0,

(15)B(û, 𝜌, ‖ ⋅ ‖V ) ∶=
�
v ∈ V ∶ ‖v − û‖V ≤ 𝜌

�
,

(16)B(û, 𝜎, ‖ ⋅ ‖L∞) ∶=
�
v ∈ L∞(𝛺) ∶ ‖v − û‖L∞ ≤ 𝜎

�
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2.1  Main theorem

The following lemma plays an essential role in our main result.

Lemma 2.1 Let f satisfy

for some 𝜆 < 𝜆1(𝛺) , nonnegative coefficients a1, a2,… , an , and subcritical expo-
nents p1, p2,… , pn ∈ (1, p∗) . If a solution u ∈ V  of the D-problem (14) satisfies the 
inequality

then u is the trivial solution u ≡ 0 , where Cpi+1
= Cpi+1

(�).

Remark 2.1 The left-hand side of (18) converges to zero as ‖u‖Lpi+1 ↓ 0 . Therefore, if 
the solution u of (14) is sufficiently small to satisfy (18), then u must vanish.

Remark 2.2 The inequality (17) can be reduced to a combination of the following 
inequalities:

Therefore, the polynomial f (t) = 𝜆t +
∑n(<p∗)

i=2
ait�t�i−1 with 𝜆 < 𝜆1(𝛺) and ai ∈ ℝ 

obviously satisfies the required inequality (17). Indeed, for the set of subscripts �+ 
for which ai ≥ 0 (i ∈ �+) and ai < 0 (otherwise), we have f (t) ≤ �t +

∑
i∈�+

ait
i and 

−f (−t) ≤ �t +
∑

i∈�+
ait

i for all t ≥ 0.

2.1.1  Proof of Lemma 2.1

We prove that ‖u‖V = 0 . Because u satisfies

by fixing v = u , we have

(17)tf (t) ≤ �t2 +

n∑
i=1

ai|t|pi+1 for all t ∈ ℝ

(18)
n�
i=1

aiC
2
pi+1

‖u‖pi−1
Lpi+1

< 1 −
𝜆

𝜆1(𝛺)
,

f (t) ≤ �t +

n∑
i=1

ait
pi for all t ≥ 0,

− f (−t) ≤ �t +

n∑
i=1

ait
pi for all t ≥ 0.

(∇u,∇v)L2 = ⟨F(u), v⟩ for all v ∈ V ,
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Therefore, (18) ensures that ‖u‖V = 0 .   ◻

For two sets A,B ⊂ ℝ
N , we denote by #C.C.(B;A) the number of connected com-

ponents Bi (i = 1, 2,…) of B such that A ∩ Bi ≠ � . We simply write #C.C.(A) = 
#C.C.(A;A) , the number of all the connected components of A. Before describing the 
main theorem (Theorem 2.1), we prepare the following lemma.

Lemma 2.2 Let A,B ⊂ ℝ
N be composed of a finite number of connected components 

Ai
⊂ A and Bi

⊂ B (i = 1, 2,…) . If A ⊂ B , each connected component Bi of B such 
that Bi ∩ A ≠ � contains a connected component of A, and thus

Proof When Bi ∩ A ≠ � , there exists a connected component Aj of A such that 
Bi ∩ Aj ≠ � . Let x ∈ Bi ∩ Aj . One confirms that Bi is the maximal connected subset 
of B that contains x, and Aj is a subset in B that contains x. Thus, Aj

⊂ Bi .   ◻

On the basis of Lemmas 2.1 and 2.2 , the following theorem evaluates the number 
of nodal domains of u from the inclusions (15) and (16) for û.

Theorem 2.1 Let f satisfy (17) for some 𝜆 < 𝜆1(�̊�0) . We denote Cpi+1
= Cpi+1

(�) . If

then a solution u ∈ V ∩ L∞(�) of the D-problem (14) existing in the intersection of 
the balls (15) and (16) satisfies

Note that if �̊�0 is disconnected, (21) is understood as the set of inequalities for all 
connected components �̊�j

0
 (j = 1, 2,…) of �̊�0.

Remark 2.3 The formula inside the parentheses in (21) converges to 0 as � ↓ 0 and 
|�0| ↓ 0 , which is equivalent to � ↓ 0 when û is continuous. Therefore, if verification 
succeeds for a continuous approximation û with sufficient accuracy, the number of 
nodal domains of u can be evaluated using Theorem 2.1.

(19)

‖u‖2
V
≤�

�

�
�(u(x))2 +

n�
i=1

ai�u(x)�pi+1
�

dx

=�‖u‖2
L2
+

n�
i=1

ai‖u‖pi+1Lpi+1

≤
�

�

�1(�)
+

n�
i=1

aiC
2
pi+1

‖u‖pi−1
Lpi+1

�
‖u‖2

V
.

(20)#C.C.(B;A) ≤ #C.C.(A).

(21)
n�
i=1

aiCpi+1
(�̊�0)

2
�
‖û‖Lpi+1(�̊�0)

+ Cpi+1
𝜌

�pi−1

< 1 −
𝜆

𝜆1(�̊�0)
,

(22)#C.C.(�+ ∪�0;�+) ≤ #P.N.D.(u) ≤ #C.C.(�+),

(23)#C.C.(�− ∪�0;�−) ≤ #N.N.D.(u) ≤ #C.C.(�−).
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Remark 2.4 The connected components on either side of the inequalities (22) and 
(23) can be determined only from the information on the approximation û and the 
L∞-error � as in (16); see the definitions of �+ , �− , and �0 located just before 
Lemma 2.1.

Remark 2.5 Explicitly estimating a lower bound for 𝜆1(�̊�0) and upper bounds for 
Cp+1(= Cp+1(�)) and Cp+1(�̊�0) is essential for Theorem 2.1. This topic is discussed 
in Appendix A.

2.1.2  Proof of Theorem 2.1

We first prove that there is no nodal domain of u in �̊�0 . To achieve this, we confirm 
that if u|

�′ (the restriction of u over �′ ) can be regarded as a solution of the D-problem 
(14) for some subdomain 𝛺′

⊂ �̊�0 with the notational replacement � → �
′ , then u|

�′ 
should be a trivial solution that satisfies u|

�′ ≡ 0.
Suppose that there exists such a subdomain �′ so that u|

𝛺� ∈ H1
0
(𝛺�) (⊂ V) is a 

solution of the D-problem (14) with the replacement � → �
′ . We express u ∈ V  as 

u = û + 𝜌𝜔 , where � ∈ V  satisfies ‖�‖V ≤ 1 . This ensures that, for p ∈ (1, p∗),

because ‖�‖Lp+1(��) ≤ ‖�‖Lp+1(�) ≤ Cp+1‖�‖V ≤ Cp+1 . Therefore, it readily follows 
from ‖û‖Lp+1(𝛺�) ≤ ‖û‖Lp+1(�̊�0)

 that

Therefore, (21) and (25) ensure that

where ‖u‖Lpi+1(��) =
��u���

��Lpi+1(��)
 and 𝜆1(𝛺�) ≥ 𝜆1(�̊�0) . Because Cp+1(�̊�0) can be 

used as a bound Cp+1(�
�) , it follows from Lemma 2.1 that u|

�′ ≡ 0 . Thus, there is 
no nodal domain in �̊�0.

In the following, we evaluate the number of nodal domains of u. Let us write 
𝛺

∗
+
= {x ∈ 𝛺 ∶ u(x) > 0} , so that C.C.(�∗

+
) = P.N.D.(u) . Because there is no posi-

tive nodal domain in the interior of �0 ∪�− , we have

Because 𝛺+ ⊂ 𝛺
∗
+
 , it follows from Lemma 2.2 that

Thus, the right inequality in (22) is proved. Besides, Lemma 2.2 indicates from the 
inclusion 𝛺∗

+
⊂ 𝛺+ ∪𝛺0 that

(24)‖u‖Lp+1(𝛺�) ≤ ‖û‖Lp+1(𝛺�) + Cp+1𝜌

(25)‖u‖Lp+1(𝛺�) ≤ ‖û‖Lp+1(�̊�0)
+ Cp+1𝜌.

n∑
i=1

aiCpi+1
(�̊�0)

2‖‖u|𝛺�
‖‖pi−1Lpi+1(𝛺�)

< 1 −
𝜆

𝜆1(�̊�0)
≤ 1 −

𝜆

𝜆1(𝛺
�)
,

(26)C.C.(�∗
+
;�+) = C.C.(�∗

+
) = P.N.D.(u).

(27)#P.N.D.(u) = #C.C.(�∗
+
;�+) ≤ #C.C.(�+).

(28)#C.C.(�+ ∪�0;�
∗
+
) ≤ #C.C.(�∗

+
) (= #P.N.D.(u)).
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Again, from the inclusion 𝛺+ ⊂ 𝛺
∗
+
 , we see that 

#C.C.(�+ ∪�0;�+) ≤ #C.C.(�+ ∪�0;�
∗
+
) . This ensures the left inequality in (22).

Inequality (23) is ensured in the same way with the notational replacements 
�+ → �− and 𝛺∗

+
→ 𝛺

∗
−
∶= {x ∈ 𝛺 ∶ u(x) < 0} .   ◻

2.2  Further discussion on the main theorem

In this subsection, we provide some remarks about Theorem 2.1.

2.2.1  Inequality (17) can be weakened

Assuming the L∞-error estimation (3) (or (16)), we ensure that the range of u is 
taken over [min{û} − 𝜎, max{û} + 𝜎] . Therefore, the condition (17) imposed on f is 
replaceable with

because (19) is confirmed in the same manner when the L∞-error � is explicitly 
estimated.

2.2.2  When assuming only an L∞‑error

Given � satisfying (3), u can be written as u = û + 𝜎𝜔 with � ∈ L∞(�) satisfying 
‖�‖L∞ ≤ 1 . Therefore, applying the inequality

instead of (25), we have the following similar theorem without assuming an H1
0
-error 

� but only an L∞-error �.

Theorem 2.2 Let f satisfy (17) for some 𝜆 < 𝜆1(�̊�0) . If

then a solution u ∈ V ∩ L∞(�) of the D-problem (14) existing in the ball (16) satis-
fies (22) and (23).

Note that almost all existing verification methods for the partial differential Eq. 
(1) estimate an L∞-error � after deriving an H1

0
-error � , as described in Subsect. 2.3 

(see, e.g., [15]). However, if � is obtained directly without computing � , Theo-
rem 2.2 becomes useful.

(29)tf (t) ≤ 𝜆t2 +

n∑
i=1

ai|t|pi+1 for all t ∈ [min{û} − 𝜎, max{û} + 𝜎]

(30)‖u‖Lp+1(𝛺�) ≤ ‖û‖Lp+1(�̊�0)
+ 𝜎�𝛺0�

1

p+1

(31)
n�
i=1

aiCpi+1
(�̊�0)

2

�
‖û‖Lpi+1(�̊�0)

+ 𝜎�𝛺0�
1

pi+1

�pi−1

< 1 −
𝜆

𝜆1(�̊�0)
,
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2.2.3  Sufficient conditions for (21)

Because Cpi+1
(�) can be regarded as a bound Cpi+1

(�̊�0) , the following simplified 
inequality is sufficient for (21).

If we have 𝜆 < 𝜆1(𝛺) , this is further reduced to

because 𝜆1(�̊�0) ≥ 𝜆1(𝛺) . Generally, the shape of �0 tends to be more complicated 
than � , which makes the evaluation of Cpi+1

(�̊�0) and/or 𝜆1(�̊�0) difficult. The above 
sufficient inequalities can be useful in such cases.

2.2.4  Application to specific nonlinearities

We apply Theorem 2.1 to two specific problems in which we are interested. The 
first problem is (4) with the nonlinearity f (t) = �t + t|t|p−1 , p ∈ (1, p∗) . Adapting 
Theorem 2.1 to this case, we have the following.

Corollary 2.1 Let f (t) = �t + t|t|p−1 , with p ∈ (1, p∗) . If

then a solution u ∈ V  of the D-problem (14) in the intersection of the balls (15) and 
(16) satisfies (22) and (23).

The second problem is the case in which f (t) = �
−2(t − t3) (𝜀 > 0) . We only 

consider the case where �−2 ≥ �1(�) , because there is no solution of the D-prob-
lem (14) other than the trivial solution u ≡ 0 when 𝜀−2 < 𝜆1(𝛺) . Indeed, no posi-
tive solution is admitted when 𝜀−2 < 𝜆1(𝛺) . This can be confirmed by multiply-
ing −�u = �

−2(u − u3) with the first eigenfunction of −� and integrating both 
sides. For a sign-changing solution u, let �′ be a positive nodal domain of u. Note 
that −u is also a solution of (14), and therefore, considering only positive nodal 
domains is sufficient. The restricted function u

�′ is a solution of a zero-Dirichlet 
problem restricted on �′ and �1(�) ≤ �1(�

�) . Thus, if 𝜀−2 < 𝜆1(𝛺)(≤ 𝜆1(𝛺
�)) , u 

is the trivial solution.
Because

applying Theorem 2.1 to the nonlinearity gives us the following.

n�
i=1

aiC
2
pi+1

�
‖û‖Lpi+1(�̊�0)

+ Cpi+1
𝜌

�pi−1

< 1 −
𝜆

𝜆1(�̊�0)
.

n�
i=1

aiC
2
pi+1

�
‖û‖Lpi+1(�̊�0)

+ Cpi+1
𝜌

�pi−1

< 1 −
𝜆

𝜆1(𝛺)

(32)Cp+1(�̊�0)
2
�
‖û‖Lp+1(�̊�0)

+ Cp+1𝜌

�p−1

< 1 −
𝜆

𝜆1(�̊�0)
,

(33)tf (t) ≤ �
−2t2 for all t ∈ ℝ,
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Corollary 2.2 Let f (t) = �
−2(t − t3) , with �−2 ≥ �1(�) . If

then a solution u ∈ V  of the D-problem (14) in the intersection of the balls (15) and 
(16) satisfies (22) and (23).

In the next subsection, Corollary 2.2 is applied to an important problem.

2.3  Numerical example

In this subsection, we consider the stationary problem of the Allen–Cahn equation:

for which Corollary 2.2 can be used. The Allen–Cahn equation was originally pro-
posed as a simplified model for the phase separation process [1]. Because the nodal 
line of solutions of this equation represents the interface between two coexisting 
phases, determining its location is important for the problem.

We demonstrated the applicability of our theory to the problem on square 
� = (0, 1)2 . All computations were implemented on a computer with 2.20 GHz 
Intel Xeon E7-4830 CPUs × 4, 2 TB RAM, and CentOS 7 using MATLAB 2019b 
with GCC version 6.3.0. All rounding errors were strictly estimated using the tool-
boxes INTLAB version 11 [20] and kv Library version 0.4.48 [6]. Therefore, the 
accuracy of all results was guaranteed mathematically. We constructed approxi-
mate solutions of (14) for the domain via a Legendre polynomial basis. Spe-
cifically, we define a finite-dimensional subspace VM (⊂ V) as the tensor product 
VM = span {𝜙1,𝜙2,… ,𝜙M}⊗ span {𝜙1,𝜙2,… ,𝜙M} , where each �n ( n = 1, 2, 3,… ) 
is defined as

For a fixed integer Mu ≥ 1 , we construct û in VMu
 as

Note that our method does not limit the basis functions that constitute approximate 
solutions, but can be applied to many bases other than the Legendre polynomial 
basis, such as the finite element and Fourier bases.

In actual computations to obtain H1
0
-errors � using the methods proposed in [19, 

28], verification was implemented on the solution space V with the generalized inner 
product and norm

(34)𝜀
−2

< 𝜆1(�̊�0),

(35)
{

−�u(x) = �
−2(u(x) − u(x)3), x ∈ �,

u(x) = 0, x ∈ ��

(36)
�n(x) =

1

n(n + 1)
x(1 − x)

dQn

dx
(x)

with Qn =
(−1)n

n!

(
d

dx

)n

xn(1 − x)n, n = 1, 2, 3,… .

(37)û(x, y) =

Mu∑
i=1

Mu∑
j=1

ui,j𝜙i(x)𝜙j(y), ui,j ∈ ℝ.
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where � is a nonnegative number chosen as

However, because the norm ‖⋅‖
�
 monotonically increases with � , the usual norm 

‖⋅‖V (= ‖∇⋅‖L2 ) is bounded by ‖⋅‖
�
 for any � ≥ 0 . Therefore, we can use the error 

bound ‖u − û‖
𝜏
 as the error bound � in the sense of the usual norm that is desired in 

Subsect. 2.1, whereas we should allow some overestimation for � (see, Table 1 for 
estimation results).

We used [7, Theorem 2.3] to obtain an explicit interpolation error constant C(M) 
( M ≥ 1 ) satisfying

where the orthogonal projection PM from V to VM is defined as

(38)(u, v)
�
= (∇u,∇v)L2 + �(u, v)L2 , ‖u‖

�
=
√
(u, u)

�
,

(39)𝜏 > −f �(û(x)) = 𝜀
−2(−1 + 3û2) for all x ∈ 𝛺.

(40)��v − PMv
��V ≤ C(M)‖�v‖L2 for all v ∈ V ∩ H2(�),

(v − PMv, vM)V = 0 for all v ∈ V and vM ∈ VM .

Table 1  Verification results for solutions of (35) displayed in Fig. 2

� : positive parameter in (35). M
u
 : number of basis functions for constructing approximate solution û ; see 

(37). M
K

 : number of basis functions for calculating K. � : nonnegative number satisfying (39). C� (M
K
) : 

interpolation constant calculated via (42). � : defect bound required in [19, Theorem 1] . K: norm of the 
inverse operator required in [19, Theorem 1] . � : H1

0
-error bound. � : L∞-error bound. |�0| : volume of �0 ; 

�0 is defined just before Subsect. 2.1. �1(�0) : first eigenvalue of −� on �0 defined by (10). #P.N.D.(u) 
( #N.N.D.(u) ): number of positive (negative) nodal domains of u; see Definition 1.1. #N.D.(u) : number of 
nodal domains that satisfy #N.D.(u) = #P.N.D.(u) + #N.N.D.(u)

ID (A) (B) (C)

� 0.1 0.08 0.06 0.1 0.08 0.06 0.1 0.08 0.06
M

u
100 100 100 80 80 80 100 100 100

M
K

80 80 80 80 80 80 50 100 100
� 0 102.3 436.3 0 126.1 481.7 0 217.5 545.6
C
� (M

K
) 6.0e–03 6.0e–03 6.1e–03 6.0e–03 6.1e–03 6.1e–03 9.4e–03 4.9e–03 4.9e–03

� 1.6e–16 5.4e–13 2.8e–08 1.5e–16 1.1e–12 1.5e–08 1.5e–16 3.7e–15 7.2e–13
K 1113 10.4 53.4 263 12.9 13.4 261 14.8 12.3
� 4.0e–14 5.1e–13 6.9e–08 8.8e–15 1.2e–12 8.6e–09 8.8e–15 4.1e–15 3.8e–13
� 1.5e–13 1.1e–11 3.2e–06 3.2e–14 1.9e–11 3.3e–07 3.2e–14 5.5e–14 1.4e–11
2m 220 220 220 220 222 224 220 220 220

|�0| 9.5e–02 1.1e–02 1.1e–02 4.6e–02 2.9e–02 1.6e–02 9.0e–03 1.1e–02 1.4e–02
�1(�0) ≥ 664.6 625.7 597.6 137.5 222.8 396.3 704.7 574.1 459.0
�
−2 100.0 156.3 277.8 100.0 156.3 277.8 100.0 156.3 277.8
#P.N.D.(u) 1 1–2 1
#N.N.D.(u) 1–2 1–2 1
#N.D.(u) 2–3 2–4 2
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The interpolation error constant C�(M) ( M ≥ 1 ) corresponding to the generalized 
norm (38) is defined as

where P�

M
 is the orthogonal projection from V to VM corresponding to (38) that 

satisfies

This generalized constant C�(M) can be estimated from C(M) via

see [27, Remark A.4].
This constant C�(M) was used to obtain K, a key constant for error estimation 

introduced below. The lower bounds for �(�0) were estimated using Corollary A.1.

(41)��v − P�

M
v��� ≤ C�(M)‖−�v + �v‖L2 for all v ∈ V ∩ H2(�),

(v − P�

M
v, vM)� = 0 for all v ∈ V and vM ∈ VM .

(42)C� (M) ≤ C(M)
√
1 + �C(M)2;

Fig. 2  Sign-changing solutions of (35) on � = (0, 1)2
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We proved the existence of solutions u of the D-problem (14) (that is, weak 
solutions of (35)) in B(û, 𝜌, ‖ ⋅ ‖V ) and B(û, 𝜎, ‖ ⋅ ‖L∞) given approximate solu-
tions û constructed as (37). The proof was achieved by combining the methods 
described in [19] and [28]. On the basis of [19, Theorem  1] , we obtained H1

0

-error estimates � . The required constants � and K and function g in the theorem 
were computed as follows:

– � was evaluated as 𝛿 ≤ C2‖𝛥û + 𝜀
−2(û − û3)‖L2 with C2 = (2�2 + �)−

1

2 . This L2
-norm was computed using a numerical integration method with strict estima-
tion of rounding errors [6].

– K, the norm of the inverse operator, was computed using the method described 
in [28], with C�(MK) defined above given MK ≥ 1.

– g was taken as g(t) = 6𝜀−2C3
4
t
�‖û‖L4(𝛺) + C4t

�
 ; see [19, Subsect.  4.4] for the 

construction of g. An upper bound for C4 was evaluated using the smaller esti-
mation from [26, Corollary A.2] and [19, Lemma 2] (see Corollary A.2 and 
Theorem A.3). Although [26, Corollary A.2] estimates C4 in the sense of the 
usual norm ‖ ⋅ ‖V , it becomes an upper bound for the embedding constant with 
the generalized norm (38) because ‖ ⋅ ‖V ≤ ‖ ⋅ ‖

�
 for any nonnegative �.

The solution u ∈ B(û, 𝜌, ‖ ⋅ ‖V ) of (35) has H2-regularity because problem (8) sub-
ject to the zero-Dirichlet boundary condition has a unique solution u ∈ H2(�) for 
each h ∈ L2(�) , such as when � is a bounded convex polygonal domain (again, 
see [5]) . Therefore, to obtain an L∞-error � , we used the following bound for the 
embedding H2(�) ↪ L∞(�) provided in [18, Theorem 1, Corollary 1].

Theorem 2.3 ([18]) There exist constants c0 , c1 , c2 dependent on � such that, for all 
u ∈ H2(�),

where uxx denotes the Hesse matrix of u.

Remark 2.6 When N = 2 , the norm of the Hesse matrix of u is precisely defined by

Moreover, when � is polygonal, we have ��uxx��L2 = ‖�u‖L2 for all 
u ∈ H2(�) ∩ V  (see, for example, [5]).

Explicit values of c0 , c1 , c2 were provided in [18] for N = 2, 3 . The con-
stants displayed in example set (2) on p. 42 of [18] can be directly used for 
our case where � = (0, 1)2 . Let us write the solution u ∈ B(û, 𝜌, ‖ ⋅ ‖V ) as 
u = û + 𝜌w with some w ∈ V  , ‖w‖V ≤ 1 . By applying Theorem  2.3 to the error 
𝜌w = u − û ∈ H2(𝛺) , we have

‖u‖L∞ ≤ c0‖u‖L2 + c1‖∇u‖L2 + c2‖uxx‖L2 ,

‖uxx‖L2 =
���� 2�

i,j=1

�����
�2u

�xi�xj

�����

2

L2

.
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The last term ‖��‖L2(�) is estimated via

where we write f (t) = �
−2(t − t3) . Then, the left integral is calculated as

Using Hölder’s inequality, we have

Thus, we have the following L∞-estimation

Remark 2.7 Inequality (44) was used in our computations. However, different esti-
mates of the right-side norm of (43) are possible. One such example is to calculate

Other than this, expanding w2(1 − 3û2 − 3𝜌ûw − 𝜌
2w2)2 and applying Hölder’s ine-

quality to each term need somewhat tedious calculations but would give a better 
estimation. In this case, the maximal exponent p required for the embedding con-
stant Cp is reduced to 6.

Table 1 shows the verification results for the solutions of (35) displayed in Fig. 2. 
The values in rows � , C(MK) , � , K, � , � , |�0| , and �−2 represent strict upper bounds in 
decimal form; for instance, 6.0e–03 means 6.0 × 10−3 . The values in row �1(�0) are 
lower bounds, which were estimated using Corollary A.1. Integers Mu , MK , and 2m 
are displayed as strict integers. Volumes |�0| were estimated by dividing � into 2m 
smaller congruent squares and implementing interval arithmetic on them to confirm 
(û + 𝜎)(û − 𝜎) ≤ 0 . Approximate solutions û and the corresponding defect bounds � 
were computed in double-double precision using the data type “dd” or “interval< dd 
>” provided in the kv Library [6]. Although the values in row � represent the error 

‖u − û‖L∞ = 𝜌‖𝜔‖L∞
≤ 𝜌

�
c0‖𝜔‖L2 + c1‖𝜔‖V + c2‖𝛥𝜔‖L2

�

≤ 𝜌
�
c0C2 + c1 + c2‖𝛥𝜔‖L2

�
.

𝜌‖𝛥𝜔‖L2 =‖f (û + 𝜌𝜔) + 𝛥û‖L2
≤‖f (û + 𝜌𝜔) − f (û)‖L2 + ‖𝛥û + f (û)‖L2 ,

(43)‖f (û + 𝜌𝜔) − f (û)‖2
L2

= 𝜀
−4
𝜌
2���w(1 − 3û2 − 3𝜌ûw − 𝜌

2w2)
���
2

L2
.

‖f (û + 𝜌𝜔) − f (û)‖2
L2

≤𝜀−4𝜌2‖w‖2
L3
���1 − 3û2 − 3𝜌ûw − 𝜌

2w2���
2

L6

≤𝜀−4𝜌2C2
3
(1 + 3‖û‖2

L12
+ 3𝜌C12‖û‖L12 + 𝜌

2C2
12
)2.

(44)
‖u − û‖

L
∞ ≤ c0C2𝜌 + c1𝜌 + c2

�
𝜌𝜀

−2
C3

�
1 + 3‖û‖2

L
12

+3𝜌C12‖û‖L12 + 𝜌
2
C
2

12

�
+
���𝛥û + 𝜀

−2(û − û
3)
���L2

�
.

���w(1 − 3û2 − 3𝜌ûw − 𝜌
2w2)

���
2

L2
≤ ‖w‖2

L4
���1 − 3û2 − 3𝜌ûw − 𝜌

2w2���
2

L4
.
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bounds in the sense of the norm (38) for corresponding �’s, these can be regarded as 
upper bounds for them in the sense of the usual norm ‖ ⋅ ‖V required in Subsect. 2.1.

In all cases, Corollary 2.2 estimated the numbers of nodal domains under the con-
dition (34). This indicated that #N.N.D.(u) for type (A) was 1 or 2. The reason why 
#N.N.D.(u) was not strictly determined is that it is difficult to determine whether the 
negative nodal domains that appear to be composed of two parts are connected or 
not through the boundary (see Fig. 3A).

For solutions of type (B), neither #P.N.D.(u) nor #N.N.D.(u) was strictly deter-
mined. However, we can determine both #P.N.D.(u) and #N.N.D.(u) to be two by con-
sidering the symmetry of the solutions and the topology of nodal lines (that is, “how 
the lines intersect”) in the following discussion: Let us define v(x1, x2) ∶= −u(x2, x1) 
so that v is also a solution of (35). We define v̂(x1, x2) ∶= −û(x2, x1) for each 
approximate solution û for type (B), assuming that ‖v̂ + û‖V ≤ 𝜂 for small 𝜂 > 0 . 
Actually, we confirmed this inequality when selecting � =1e-15 in all cases for 
type (B). Then, we have ‖v − û‖V ≤ 𝜌 + 𝜂 . We again checked the conditions 
required by [19, Theorem 1] with � replaced by � + � , thereby proving the unique-
ness of the solution u in B(û, 𝜌 + 𝜂, ‖ ⋅ ‖V ) . Therefore, we concluded u = v and thus 
u(0.5, 0.5) = −u(0.5, 0.5) = 0 . Similarly, the symmetry of the solutions was con-
firmed with respect to the lines x = 0.5 and y = 0.5 by considering the transformed 
functions u(1 − x, y) and u(x, 1 − y) , respectively. Hence, by considering the topol-
ogy of nodal lines, we have confirmed #P.N.D.(u) = #N.N.D.(u) = 2.

For solutions of type (C), Corollary 2.2 strictly determined both #P.N.D.(u) and 
#N.N.D.(u) without a topological consideration such as that for type (B). These solu-
tions are special because the inner nodal line does not touch the original boundary 
�� (see Fig. 3C). In this sense, we can regard the inner nodal line can as a “new” 
nontrivial Dirichlet boundary. To our knowledge, the existence of such solutions of 
problem (35) has not been proved. Our method confirmed this existence using the 
methods in [18, 19, 28] and Corollary 2.2.

From the above verification results, we can determine the location of the nodal line 
of u. Figure 3 shows verified nodal lines of the solutions (A), (B), and (C) for � = 0.08 . 
We confirmed that (û + 𝜎)(û − 𝜎) ≤ 0 on the red squares displayed in Fig. 3. For ease 

Fig. 3  Verified nodal lines of the solutions (a), (b), and (c) for � = 0.08 . These were drawn with rough 
accuracy by dividing the domain � into 212 smaller congruent squares and implementing interval arith-
metic on each
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of viewing, these are drawn with rough accuracy by dividing the domain � into 212 
smaller congruent squares and implementing interval arithmetic on each. In Fig. 4, we 
display a more accurate nodal line via division into 216 smaller congruent squares. Our 
method proved the nonexistence of nodal domains of u in the union of the red squares 
for each solution. Simultaneously, the sign of u is strictly determined in the blanks.

3  Extension to other boundary value conditions

In this section, we extend the results from Sect. 2 to Neumann (5) and mixed (6) bound-
ary conditions. Because (6) coincides with (5) when �D = � and �N = �� , we discuss 
the application to (6). The Dirichlet problem (4) is regarded as (5) for the special case 
�N = � and �D = �� . Therefore, the generalization to (6) is considered as an extension 
of the method provided in Sect. 2.

We introduce (or replace) some required notation. We extend the solution space 
V to V (= V(�,�D)) ∶= {u ∈ H1(�) ∶ u = 0 on �D} adapting to the correspond-
ing boundary value condition. The inner product endowed with V should be changed 
according to the boundary value conditions. When �D = � (Neumann condition), we 
endow V with the inner product (u, v)V = (∇u,∇v)L2 + (u, v)L2 ; otherwise (Dirichlet 
or mixed condition), we endow it with (u, v)V = (∇u,∇v)L2 . The norm endowed with 
V is always ‖u‖V =

√
(u, u)V  regardless of the boundary conditions. Additionally, the 

topological dual of V is denoted by V∗ . In this function space, the weak form of (6) is 
characterized by the form (14) with the same assumptions for nonlinearity f introduced 
in Sect. 2. To avoid confusion, we call (14) corresponding to (5) (assuming �D = � and 
�N = �� ) the N-problem, and call (14) corresponding to (6) (assuming �D ≠ ∅ and 
�N ≠ ∅ ) the M-problem.

We extend the definition of embedding constants. A norm bound for the embedding 
V(�,�D) ↪ Lp+1(�) is denoted by Cp+1 (= Cp+1(�,�D)) , which satisfies

where p ∈ [1,∞) when N = 2 and p ∈ [1, p∗] when N ≥ 3 . In the following defini-
tion (46), we assume �D ≠ ∅ ; considering this case is sufficient for completing the 

(45)‖u‖Lp+1(�) ≤ Cp+1‖u‖V(�,�D)
for all u ∈ V ,

Fig. 4  Accurate inclusion of the nodal line of solution (C) with � = 0.08 (left), and its magnifications 
(center and right). These were drawn by dividing the domain � into 216 smaller congruent squares and 
implementing interval arithmetic on each
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later discussion. The first eigenvalue of −� on V(�,�D) is denoted by �1(�,�D) , the 
definition of which is

Lemma 3.1 The same argument in Lemma 2.1 is true for the M-problem (14) with a 
nonempty �D , where the old notation of eigenvalue �1(�) and embedding constants 
Cpi+1

(�) is replaced with the new notation �1(�,�D) and Cpi+1
(�,�D) , respectively.

Proof Inequality (19) holds for the notational replacements.   ◻

The connected components of �̊�0 are denoted by �̊�j

0
 ( j = 1, 2,… ), the number of 

which is assumed to be finite. Note that 𝜕�̊�j

0
∖𝛤N is not empty because 𝜕�̊�j

0
∖𝜕𝛺 ≠ ∅ 

is ensured from �0 ≠ �.
Moreover, we recall our assumption: some numerical verification method suc-

ceeds in proving the existence of a solution u ∈ V ∩ L∞(�) of the D-, N-, or 
M-problem of (14) in both balls (15) and (16) in this “extended” setting.

Theorem  3.1 Let f satisfy (17) for some 𝜆 < min
j
{𝜆1(�̊�

j

0
, 𝜕�̊�

j

0
�𝛤N)} . Let 

Cpi+1
= Cpi+1

(�,�D) , C
j

pi+1
= Cpi+1

(�̊�
j

0
, 𝜕�̊�

j

0
�𝛤N) , and 𝜆j

1
= 𝜆1(�̊�

j

0
, 𝜕�̊�

j

0
�𝛤N) . If we 

have

for each j, then a solution u ∈ V ∩ L∞(�) of the D-, N-, or M-problem of (14) exist-
ing in the intersection of balls (15) and (16) satisfies (22) and (23).

Proof We prove the nonexistence of nodal domains in �̊�j

0
 for every j, as well as in 

the proof of Theorem 2.1. To achieve this, we consider the following two cases.

3.1  Case 1—when V( ̊̋
j

0
,@ ̊̋

j

0
��N) = H1

0
( ̊̋

j

0
)

In this case, almost the same discussion as in the proof of Theorem  2.1 can be 
applied (see �3

0
 in Fig. 5).

Suppose that there exists a subdomain 𝛺
′
⊂ �̊�

j

0
 such that 

u|
𝛺� ∈ H1

0
(𝛺�) (⊂ H1

0
(�̊�

j

0
)) is a solution of the D-problem (14) with the replacement 

� → �
′ . We express u ∈ V (= V(�,�D)) as u = û + 𝜌𝜔 , where � ∈ V  satisfies 

‖�‖V ≤ 1 . This ensures that, for p ∈ (1, p∗),

(46)�1(�,�D) ∶= inf
v∈V�{0}

‖v‖2
V(�,�D)

‖v‖2
L2(�)

.

(47)
n�
i=1

ai(C
j

pi+1
)2
�
‖û‖

Lpi+1(�̊�
j

0
) + Cpi+1

𝜌

�pi−1

< 1 −
𝜆

𝜆
j

1

,

‖u‖Lp+1(𝛺�) ≤ ‖û‖Lp+1(𝛺�) + Cp+1𝜌
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because ‖�‖Lp+1(��) ≤ ‖�‖Lp+1(�) ≤ Cp+1‖�‖V ≤ Cp+1 , where Cp+1 = Cp+1(�,�D) . It 
readily follows from ‖û‖Lp+1(𝛺�) ≤ ‖û‖

Lp+1(�̊�
j

0
) that

Therefore, (47) and (48) ensure that

where �1(��) ≥ �
j

1
 . Because Cj

pi+1
 can be regarded as Cpi+1

(��, ���) , it follows from 
Lemma 2.1 that u|

�′ ≡ 0.

3.1.1  Case 2—when V( ̊̋
j

0
,@ ̊̋

j

0
��N) ≠ H1

0
( ̊̋

j

0
)

The main difference from Theorem 2.1 is the possibility of this case (see �1
0
 or �2

0
 

in Fig. 5). Let �′ be an arbitrary subdomain of �̊�j

0
 . To reach the desired fact (there 

exists no nodal domain of u inside �̊�j

0
 ), it is necessary to prove that u|

�′ vanishes if 
it can be considered as a solution of the D- or M-problem of (14) with the notational 
replacements � → �

′ , �D → �
′
D
 , and �N → �

′
N

 , where � �
N
= ��

� ∩ �N (allowed to 
be empty) and � �

D
= ��

��� �
N

 . When V(��,� �
D
) = H1

0
(��) , u can be considered as a 

solution of the D-problem on �′ ; therefore, the same argument as that in Case 1 is 
true.

We are left to consider the case in which u|
�′ is a solution of the M-problem 

where V(��,� �
D
) ≠ H1

0
(��) . Considering the zero extension outside �′ to �̊�j

0
 , the 

(48)‖u‖Lp+1(𝛺�) ≤ ‖û‖
Lp+1(�̊�

j

0
) + Cp+1𝜌.

n�
i=1

ai(C
j

pi+1
)2
�
‖û‖

Lpi+1(�̊�
j

0
) + Cpi+1

𝜌

�pi−1

< 1 −
𝜆

𝜆
j

1

≤ 1 −
𝜆

𝜆1(𝛺
�)
,

Fig. 5  Conceptual image of 
domains � , �+ , �− , and �0 . 
The upper side (black line) 
is imposed on the Neumann 
boundary condition. The lower 
side (green line) is imposed on 
the Dirichlet boundary condi-
tion. The green lines satisfy 
�0 = �

1

0
∪�

2

0
∪�

3

0
 , which 

includes the part of � where 
|û| ≤ 𝜎 . These green lines 
are expected to topologically 
approximate the nodal lines 
of u in the sense that no nodal 
domain exists inside them. Note 
that ��3

0
 consists of Dirichlet 

boundaries in their entirety, 
whereas some parts of ��1

0
 and 

��
2

0
 are Neumann boundaries 

located on their “ends”

Ω−

Ω+

Ω0
1

Ω0
2

Ω0
3

Γ

Γ

Ω+
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restriction u|
�′ can be regarded as a function in V(�̊�j

0
, 𝜕�̊�

j

0
�𝛤N) ; note that u|

��′ can 
be nonzero only on a subset of �N (again, see �1

0
 or ��2

0
 in Fig. 5). Therefore, it 

follows that 𝜆1(𝛺�,𝛤 �
D
) ≥ 𝜆1(�̊�

j

0
, 𝜕�̊�

j

0
�𝛤N) and Cp+1(�̊�

j

0
, 𝜕�̊�

j

0
�𝛤N) can be used as 

Cp+1(�
�,� �

D
) for p ∈ (1, p∗) . Thus, we make the same argument as that in Case 1 

combined with Lemma 3.1.   ◻

Remark 3.1 Section  A discusses explicit estimations for a lower bound of �j
1
 and 

upper bounds of Cpi+1
 and Cj

pi+1
.

Remark 3.2 We have assumed that �D and �N are con-
nected sets to avoid redundant discussion. However, Theorem  3.1 
remains true for many other cases, such as when � = (0, 1)2 and 
𝛤D = {(x, y) ∈ ℝ

2 ∶ y = 0, 0 < x < 1} ∪ {(x, y) ∈ ℝ
2 ∶ y = 1, 0 < x < 1} . Note 

that, in this case, a solution of (8) with the mixed boundary condition has H2-regu-
larity for h ∈ L2(�) (see [3, Subsect. 5.3]).

4  Conclusion

We proposed a rigorous numerical method for analyzing the sign-change structure 
of solutions of the semilinear elliptic Eq. (1). Given two types of error estimates 
‖u − û‖H1

0
 and ‖u − û‖L∞ between an exact solution u and a numerically computed 

approximate solution û , we provided a method for estimating the number of nodal 
domains (see Theorems  2.1 and 3.1). The location of the nodal line of u can be 
determined via the information of û and a verified L∞-error � . Our method was used 
to analyze the sign-change structure of the Allen–Cahn Eq. (35) subject to the 
homogeneous Dirichlet boundary condition. In Sect. 3, our method was extended to 
Neumann and mixed boundary conditions (see Theorem 3.1).

Required constants—eigenvalues and embedding constants

In this section, we discuss evaluating the minimal eigenvalue 𝜆1(�̊�0) and embedding 
constants Cp+1 required in Theorems 2.1 and 3.1 .

The following theorem can be used to obtain an explicit lower bound for the k-th 
eigenvalue �k(�) of the Laplacian imposed on the homogeneous Dirichlet boundary 
condition for a bounded domain �.

Theorem A.1 ([8]) Let 𝛺 ⊂ ℝ
N (N = 1, 2, 3,…) be a bounded domain. We have

(49)�k(�) ≥ 4�2N

N + 2

(
k

BN|�|
) 2

N

,
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where |�| and BN denote the volume of � and the unit N-ball, respectively.

Adapting Theorem A.1 to the case in which N = 2, 3 , we have the following esti-
mations for the first eigenvalue.

Corollary A.1 Under the same assumption of Theorem A.1, we have

Theorem  A.1 (or Corollary   A.1) is reasonable for obtaining rough lower 
bounds for 𝜆1(�̊�0) (= 𝜆1(�̊�0, 𝜕�̊�0)) . The Temple-Lehmann-Goerisch method can 
be helpful for us to obtain a more accurate evaluation of 𝜆1(�̊�0) if more accuracy 
is required to satisfy the inequalities assumed in Theorems 2.1 and 3.1 (see, for 
example, [15, Theorem 10.31]). Another possible approach is Liu’s method pro-
vided in [9, 10], which is based on the finite element method and can be applied 
also to estimate the eigenvalues 𝜆1(�̊�

j

0
, 𝜕�̊�

j

0
�𝛤N) (corresponding to a mixed 

boundary condition) required in Theorem 3.1.
Upper bounds for Cp(�) (= Cp(�, ��)) can be estimated via [26, Corollary 

A.2] or [19, Lemma 2] , which are used in the numerical examples in Subsect. 2.3. 
Before introducing them, we cite the following famous result for the best constant 
in the classical Sobolev inequality. Hereafter, the range of p is shifted by 1 (in 
place of p + 1 ) to fit the original notation.

Theorem A.2 ([2] and [22]) Let u be any function in W1,q
(
ℝ

N
)
(N = 2, 3,…) . More-

over, let q be any real number such that 1 < q < N , and let p = Nq∕(N − q) . Then,

holds for

where |∇u|2 =
(
(�u∕�x1)

2 + (�u∕�x2)
2 +…+ (�u∕�xN)

2
)1∕2 , and �  denotes the 

gamma function.

The following corollary obtained from Theorem A.2 provides a simple bound 
for the embedding constant from H1

0
(�) to Lp(�) for a bounded domain � , where 

H1
0
(�) is endowed with the usual norm ‖∇ ⋅ ‖L2 . Recall that this can be used as an 

upper bound for the embedding constant with the generalized norm (38).

�1(�) ≥ 2�|�|−1, N = 2,

�1(�) ≥ 3 × 6
2

3

5
�

4

3 |�|− 2

3 , N = 3.

(
�
ℝN

|u(x)|pdx
) 1

p ≤ Tp

(
�
ℝN

|∇u(x)|q
2
dx

) 1

q

(50)Tp = �
−

1

2N
−

1

q

�
q − 1

N − q

�1−
1

q

⎧
⎪⎨⎪⎩

�

�
1 +

N

2

�
� (N)

�

�
N

q

�
�

�
1 + N −

N

q

�
⎫
⎪⎬⎪⎭

1

N

,
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Corollary A.2 ([26, Corollary A.2]) Let 𝛺 ⊂ ℝ
N(N = 2, 3,…) be a bounded domain. 

Let p be a real number such that p ∈ (N∕(N − 1), 2N∕(N − 2)] if N ≥ 3 and 
p ∈ (2,∞) if N = 2 . Additionally, set q = Np∕(N + p) . Then, (9) holds for

where Tp is the constant in (50).

The following theorem estimates the embedding constants, where H1
0
(�) is 

endowed with the generalized norm (38). This theorem is applicable to unbounded 
domains.

Theorem A.3 ([15, Lemma 7.10]) Let 𝛺 ⊂ ℝ
N(N = 2, 3,…) be a bounded or 

unbounded domain. Let �1 ∈ [0,∞) denote the minimal point of the spectrum of −� 
on H1

0
(�) endowed with the inner product (38), where � is selected so that 𝜏 > 0 

when �1 = 0 . For s ∈ [0, 1] , we define

where 00 ∶= 1 . 

a)     Let N = 2 and p ∈ [2,∞). With the largest integer � satisfying � ≤ p∕2 , (9) 
holds for

where 
p

2

(p
2
− 1

)
…

(p
2
− � + 2

)
= 1 if � = 1.

b)      Let N ≥ 3 and p ∈ [2, 2N∕(N − 2)] . With s ∶= N(p−1 − 2−1 + N−1) ∈ [0, 1], 
(9) holds for

Although Corollary  A.2 and Theorem  A.3 are reasonable for evaluating 
embedding constants under the homogeneous Dirichlet boundary conditions, 
Theorem 3.1 requires upper bounds for more general constants Cpi+1

(�, ����N) 
and Cpi+1

(�̊�
j

0
, 𝜕�̊�

j

0
�𝛤N) . Generally, directly evaluating the best values of these 

embedding constants is not easy. Instead of a direct estimation, we can use 

Cp(�) = |�| 2−q

2q Tp,

�s ∶=

⎧⎪⎨⎪⎩

ss(1−s)1−s

�s
if s�1 ≤ (1 − s)�,

�
1−s
1

�1+�
otherwise,

Cp =
(
1

2

) 1

2
+

2�−3

p
[p
2

(p
2
− 1

)
…

(p
2
− � + 2

)] 2

p
√

� 2

p

,

Cp =

⎛⎜⎜⎜⎜⎝

1√
N(N − 2)�

⎡⎢⎢⎢⎣

� (N)

�

�
N

2

�
⎤⎥⎥⎥⎦

1

N ⎞⎟⎟⎟⎟⎠

1−s

√
�s.
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the bound for embedding H1(�) ↪ Lp+1(�) as an upper bound. Such an upper 
bound is provided, for example, in [13, 24] although estimations derived using 
these methods are rather larger than those in the homogeneous Dirichlet case. 
Therefore, for Case 2 in the proof of Theorem 3.1, inequality (47) is less likely to 
hold than for Case 1. In the following, we introduce [13, Theorems 2.1 and 3.3] 
, which provide reasonable estimates for the embedding constant. These can be 
applied to a domain � that can be divided into a finite number of bounded convex 
domains �i (i = 1, 2, 3,… , n) such that

Theorem A.4 Let 𝛺 ⊂ ℝ
N be a bounded convex domain. Moreover, let 

d
�
∶= supx,y∈� |x − y| , �x ∶= {x − y ∶ y ∈ �} for x ∈ � , and U ∶= ∪x∈��x . Sup-

pose that 1 ≤ q ≤ p < qN∕(N − q) if N > q , and 1 ≤ q ≤ p < ∞ if N = q . Then, we 
have

with

where u
�
= |�|−1 ∫

�
u(x)dx , r = qp∕((q − 1)p + q) , and

Theorem A.5 Let 𝛺 ⊂ ℝ
N be a bounded domain, and let p and q sat-

isfy 1 ≤ q ≤ p ≤ ∞ . Suppose that there exists a finite number of bounded 
domains �i (i = 1, 2, 3,… , n) satisfying (51). Moreover, suppose that for every 
�i (i = 1, 2, 3,… , n) there exist constants Dp(�i) such that

Then,

holds for

(51)� =
⋃
1≤i≤n

�i and �i ∩�j = � (i ≠ j).

(52)‖u − u
�
‖Lp(�) ≤ Dp(�)‖∇u‖Lq(�) for all u ∈ W1,q(�)

Dp(�) =
dN
�

N��� (ArAqAp� )
N‖�x�1−N‖Lr(U),

Am =

{√
m

2

m
−1(m − 1)1−

1

m (1 < m < ∞),

(m = 1, ∞).

(53)‖u − u
�i
‖Lp(�i)

≤ Dp(�i)‖∇u‖Lq(�i)
for all u ∈ W1,q(�i).

(54)
(
�
�

|u(x)|pdx
) 1

p ≤ C�
p
(�)

(
�
�

|u(x)|qdx + �
�

|∇u(x)|qdx
) 1

q
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where this formula is understood with 1∕∞ = 0 when p = ∞ and/or q = ∞.

Using Theorems A.4 and A.5 with q = 2 , we can estimate required bounds for 
embedding constants. Indeed, C�

p
(�) in (54) with q = 2 becomes an upper bound for 

Cp(�,�D) for any choices of �D.
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