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Abstract It is known that for special types of reaction–diffusion Systems, such as
the Gierer–Meinhardt model and the Gray-Scott model, stable stationary spike solu-
tions exist on boundary points with maximal curvature. In this paper, we rigorously
give the equation describing the motion of spike solutions along boundaries for gen-
eral types of reaction–diffusion systems in R2. We also apply the general results to
the Gierer–Meinhardt model and show that a single spike solution moves toward a
boundary point with locally maximal curvature. Moreover, by showing the repulsive
interaction of spikes along boundaries for solutions of the Gierer–Meinhardt model,
we have stable multispike stationary solutions in the neighborhood of a boundary point
with locally maximal curvature.

Keywords Reaction–diffusion systems · Boundary spike solutions ·
The Gierer–Meinhardt model

Mathematics Subject Classification 35K61 · 35K57

1 Introduction

In 1972, Gierer and Meinhardt [9] proposed model equations to describe pattern forma-
tions in biology, according to the mechanism of diffusion-induced instability described
by Turing [14]. The model equation is as follows:
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70 S.-I. Ei, T. Ishimoto

Fig. 1 Profile of a spike solution with one peak in R2. Only the A-component is drawn

{
At = d1�A − A + Aa1

Ha2 + a5,

τ Ht = d2�H − H + Aa3

Ha4 ,
t > 0, x ∈ � ⊂ Rn (1.1)

with the Neumann boundary conditions, where d1 and d2 are positive constants, and
a j ≥ 0 are nonnegative constants satisfying

0 <
a1 − 1

a2
<

a3

a4 + 1
.

In the model, d1 is assumed to be sufficiently small, and we write it as d1 = ε2 for a
sufficiently small ε > 0.

One of the typical solutions of (1.1) is a spike solution. A spike solution has a
profile such that the A-component is close to A(x) ∼ ε−ηw(|x|/ε) for η > 0 and a
radially symmetric function w(r) ≥ 0. That is, the A-component has a sharp peak, as
in Fig. 1. For the Gray-Scott model, similar spike solutions are observed [15,16].

There have been many works which studied the existence and stability of stationary
spike solutions for (1.1) under appropriate conditions in one- or higher-dimensional
spaces. We do not touch here on works related to one-dimensional problems of (1.1),
because in this paper we consider (1.1) in two-dimensional spaces.

For higher-dimensional problems for (1.1), one of the most typical solutions is a
boundary spike solution, which has peaks on the boundaries of its domain.

Related to boundary spike solutions in higher-dimensional spaces, a stationary spike
solution with one peak on the boundary ∂� with globally maximum mean curvature
was constructed in [13], and, later, a stationary spike solution with multiple peaks
both inside � and on the boundary ∂� was constructed in [10]. Recently, [11] and
[12] proved the existence and stability of a stationary spike solution with more than
one peak at points with locally maximal mean curvatures of ∂� under the condition
a3 = a1 + 1 in (1.1). Thus, there has been much research and many results on station-
ary spike solutions with peaks on boundaries for (1.1), but we do not know a result on
the dynamics of spikes along boundaries.

There have been several studies of the dynamics of solutions along boundaries for
other models. Studies [1–5], dealt with the mass-conserving Allen–Cahn equations
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Dynamics and their interaction of spikes 71

and/or the Cahn–Hilliard equations, and showed that small bubble solutions move
along boundaries toward a boundary point with maximal mean curvature. This was
proven using variational structures of systems together with other techniques.

On the other hand, many important examples of reaction–diffusion systems, such
as the Gierer–Meinhard model and the Gray-Scott model, do not have such variational
structures. But it is strongly expected that boundary spike solutions move toward points
on boundaries with maximal mean curvature because many types of stable boundary
spike solutions with peaks located at points with maximal mean curvature have been
constructed.

In this paper, we give a general criteria necessary to study the dynamics and interac-
tions of boundary spikes in a domain � ⊂ R2, for general types of reaction–diffusion
systems, and without assuming any variational structures. As one application of our
results, we show the movement of a boundary spike solution for (1.1) toward a point on
the boundary with locally maximal curvature. We also show the repulsive interaction
between two boundary spikes and hence the existence of stable stationary solutions
with two peaks in the neighborhood of a point with maximal curvature.

Here we note that there is a simplified version, called a shadow system, for the
Gierer–Meinhardt model. It has a boundary spike solution, and a similar movement
along the boundary is observed. But the treatment for the model is rather different
from the one in this paper because the shadow system has nonlocal terms. This is
reported in [7].

Now, we shall briefly discuss the results we present in this paper. Let � be a
bounded domain in R2, and we assume that the boundary ∂� is a sufficiently smooth
closed curve given by {�(s) ∈ R2; 0 ≤ s ≤ s0, �(0) = �(s0)}, where s is
the arc-length parameter of ∂�. Then we can take a tubular neighborhood of ∂� as
x = (x, y) = �(s)+ zν(s), where ν = ν(s) is the inward normal unit vector of ∂� at
�(s). Define 
(x) and Z(x) by the functions satisfying x = �(
(x))+Z(x)ν(
(x)),

and let κ = κ(s) be the curvature of ∂� at �(s) measured in the direction of ν. We
consider general types of reaction–diffusion systems:

Ut = δ2 D�U + F(U ), t > 0, x ∈ � (1.2)

with the Neumann boundary condition. Here, U = U (t, x) ∈ RN , D := diag(d1,

d2, · · · , dN ) for d j > 0, and δ > 0 is a sufficiently small constant. Let Lδ(U ) :=
δ2 D�U + F(U ).

First we consider

Ut = D�U + F(U ), t > 0, ζ ∈ R2+ (1.3)

with the Neumann boundary condition, where R2+ := {ζ := (l, μ) ∈ R2;
−∞ < l < ∞, μ > 0}. Let 0 := (0, · · · , 0) ∈ RN . We assume as follows:
(H1) F(0) = 0 is satisfied and (1.3) has a stationary radially symmetric solution, say
S = S(r), on the boundary ∂ R2+ with asymptotic form S(r) → 1√

r
e−αr a, where

r = √
l2 + μ2, α > 0 and a ∈ RN .
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72 S.-I. Ei, T. Ishimoto

Let A(U ) := D�U + F(U ), A := A′(S(r)), and A0 := A′(0) in R2+. We assume
the stability of 0 and S for (1.3).
(H2) S(r) is stable in the linearized sense, that is, the spectral set I (A) of A is I (A) ⊂
I0 ∪ I1, where I0 := {0} and I1 ⊂ {Reλ < −γ0} for γ0 > 0, and 0 is simple.
(H2)’ 0 is a stable equilibrium for (1.3) in the linearized sense. That is, the spectral
set I (A0) of A0 satisfies I (A0) ⊂ {Reλ < −γ0}.

Note that A∂l S = 0. Hereinafter we denote ∂l S(r(l, μ)) simply by ∂l S for
r = √

l2 + μ2. Other cases, such as when r is a different function, are treated

similarly, while we denote
d S

dr
by Sr . Let A∗ be the adjoint operator of A, and

φ∗(x) be the eigenfunction satisfying A∗φ∗ = 0 with 〈∂l S, φ∗〉2 = π
2 , where

〈U, V 〉2 := ∫
R2

+
〈U, V 〉 dζ . We note that ∂l S = cos θ Sr = l

r Sr and that φ∗ is

also given by φ∗(ζ ) = ∂l�
∗ = cos θ�∗

r = l
r �∗

r for a radially symmetric function
�∗(r) under suitable conditions, where l = r cos θ and μ = r sin θ, which will be
mentioned in the next section. Then the normalization 〈∂l S, φ∗〉2 = π

2 implies that〈
Sr ,�

∗
r

〉
R = 1, where 〈U, V 〉R := ∫ ∞

0 r 〈U, V 〉 dr for radially symmetric functions
U = U (r) and V = V (r) ∈ RN .

Now, coming back to the original problem (1.2) in �, we show the following: Let
r(x, h) := √

(
(x) − h)2 + Z2(x), (0 ≤ h ≤ s0), and

M0 := − 8

15π

⎛
⎝2

∞∫
0

r2 〈
DSr ,�

∗
r

〉
dr + 3

∞∫
0

r3 〈
DSrr ,�

∗
r

〉
dr

⎞
⎠ .

Then the solution U (t, x) of (1.2) keeps close to S(r(x, h(t))/δ), and h(t) is governed
by the dynamics

ḣ = M0δ
3 dκ

ds
(h) + O(δ4), (1.4)

where ḣ denotes
dh

dt
. These results are proved by using invariant manifold theory

(e.g. [5]), while we need to obtain explicit estimates of several objects, such as spec-
trum and resolvent, for (1.2).

The above results are applied to the Gierer–Meinhardt model of the form
{

ut = ε2�u − u + ua1

(v+a)a2 ,

τvt = d�v − v + ua3

(v+a)a4 ,
(1.5)

where τ and a are nonnegative constants, and the a j are the same ones as (1.1). If both
τ and a are positive or τ = a = 0 in (1.5), the case has been treated on the whole R2

space in [8], and, by using the results, the constant M0 is shown to be positive. This
shows that h(t) approaches the point of the maximal κ(s), that is, the point with the
maximal curvature of ∂� (Fig. 2).

Thus, our results give the well-known results for a stable boundary spike solution
of the Gierer–Meinhardt model [9,11–13,16] from the viewpoint of dynamics.
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Dynamics and their interaction of spikes 73

Fig. 2 Movement of a boundary spike toward a point with maximal curvature, which is denoted by a
black circle in the figure. The parameter values are τ = 0.5, ε = 0.01, d = 1.0, a = 0.01, a1 = 2,

a2 = 2, a3 = 3, and a4 = 3

Fig. 3 Stable stationary solution with two peaks in the neighborhood of a point with maximal curvature,
which is denoted by a black circle in the figure. The parameter values are the same as in Fig. 2

We can also show the existence of a stable stationary solution with two peaks in
the neighborhood of a point with maximal curvature of ∂� by using the repulsive
interaction (Fig. 3). The idea was presented in [8].

In this paper, only the two-dimensional case is considered. All the arguments and
techniques can be applied to the higher dimensional cases, too but we do not do it here.

2 Main results

Define �(z0) := {x = �(s)+zν(s), 0 ≤ s ≤ s0, 0 ≤ z < z0}, where we regard �(s)
and ν(s) as periodic functions of s with period s0. We fix N1 > 0 and represent � =
�0 ∪ �1, where �1 := �(2N1

√
δ) and �0 := �\�(N1

√
δ). Hereinafter, c, c j , c′

j ,

and γ j denote general positive constants independent of δ. Let χ0(x) and χ1(x) be cut-
off functions such that 0 ≤ χ j (x) ≤ 1, χ0(x)+χ1(x) = 1, χ0(x) = 1, and χ1(x) = 0
for x ∈ �\�1; and χ0(x) = 0 and χ1(x) = 1 for x ∈ �\�0 = �(N1

√
δ).

In the tubular neighborhood �1, define the coordinates s = 
(x) and z = Z(x)

by x = �(s) + zν(s). Define S(x; h) := χ1(x)S(r(x; h)/δ), where r(x; h) :=√
(
(x) − h)2 + Z(x)2. Here, we extend r(x; h) to the whole domain � so as to

satisfy c′
1|x − �(h)| ≤ r(x; h) ≤ c′

2|x − �(h)| uniformly for x ∈ � and 0 ≤ h ≤ s0.
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74 S.-I. Ei, T. Ishimoto

Let �2 := �0 ∩�1. Since S(r) satisfies S(r) → 1√
r
e−αr a as r → +∞, S(x; h) ≤

O(e−c/
√

δ) in �2.

We add the following assumption. Let X R := {U = U (r); ‖U‖2
R := 〈U, U 〉R <

∞} be a set of the radially symmetric functions, and define ARU := D(Urr + 1
r Ur )+

F ′(S(r))U, ÂRU := D(Ur + 1
r U )r + F ′(S(r))U. Note that AR is the restriction of

A in X R, and ÂR Sr = 0. Then we assume:
(H3) 0 is an isolated simple eigenvalue of ÂR, and AR is invertible in X R .

If (H3) holds, there exists φ∗
0 (r) ∈ X R such that Â∗

Rφ∗
0 = 0 and

〈
Sr , φ

∗
0

〉
R = 1,

where Â∗
R is the adjoint operator of ÂR . Then setting �∗(r) := ∫ r

φ∗
0 (r)dr, we have

φ∗(ζ ) = ∂l�
∗(r) = cos θ�∗

r (r) = cos θφ∗
0 (r) = l

r φ∗
0 (r) for r = √

l2 + μ2, and the
normalization

〈
Sr , φ

∗
0

〉
R = 1 implies 〈∂l S, φ∗〉2 = π

2 because A∗φ∗ =cos θ Â∗
Rφ∗

0 =0.

Theorem 2.1 Assume (H1) to (H3) and that the initial data U0(x) is sufficiently close
to S(x; h0) for 0 ≤ h0 ≤ s0. Then for a positive constant c the solution U (t, x) of
(1.2) and h(t) satisfy

‖U (t, ·) − S(·; h(t))‖∞ ≤ cδ

and (1.4) uniformly for any t > 0 and sufficiently small δ > 0.

Let us consider the reduced ODE of (1.4)

ḣ = M0δ
3 dκ

ds
(h). (2.1)

Corollary 2.1 If h∗ is a stable (or unstable) equilibrium of (2.1) in the linearized

sense, that is M0
d2κ

ds2 (h∗) < 0 (or > 0), then there exists a stable (or unstable)

stationary solution U∗(x) of (1.2) satisfying ‖U∗(·) − S(·; h∗)‖∞ ≤ cδ for c > 0.

Next we give the results for the movement of multispike solutions on the boundary.
Define G(r) := ∫ ∞

r

〈
F ′(S(r)) − F ′(0)a, φ∗(r)

〉
dr and M1 := ∫ ∞

0 rG(r)dr∫ π

0 esin θdθ.

Theorem 2.2 Suppose the initial data U0(x) is sufficiently close to S(x; h1) +
S(x; h2) for c1 < h1 < h2 < s0 − c1 with c2|δ log δ| < h2 − h1 < 1

2 c1 for positive
constants c1 and c2. Then

⎧⎪⎪⎨
⎪⎪⎩

ḣ1 = M0δ
3 dκ

ds
(h1) − M1

√
δ

h
e−αh/δ

(
1 + O

(
δ

h

))
+ O(δ4),

ḣ2 = M0δ
3 dκ

ds
(h2) + M1

√
δ

h
e−αh/δ

(
1 + O

(
δ

h

))
+ O(δ4)

(2.2)

as long as c1 < h1 < h2 < s0 − c1 with c2|δ log δ| < h2 − h1 < 1
2 c1, where

h := h2 − h1.
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Remark 2.1 The restriction of the range of h1 and h2 is not necessary because we
may consider h1 and h2 with mod s0. However, the statement of Theorem 2.2 then
becomes complicated, and so, for simplicity, we restrict the range in the theorem.

Consider the reduced system of (2.2)

⎧⎪⎪⎨
⎪⎪⎩

ḣ1 = M0δ
3 dκ

ds
(h1) − M1

√
δ

h
e−αh/δ,

ḣ2 = M0δ
3 dκ

ds
(h2) + M1

√
δ

h
e−αh/δ.

(2.3)

Suppose that M0, M1 are positive and that h∗ is a stable equilibrium of (2.1) in the
linearized sense. Then we can check that (2.3) has a linearly stable equilibrium, say
H∗ = (h∗

1, h∗
2) with h∗

1 < h∗ < h∗
2 and h∗

2 − h∗
1 = O (|δ log δ|) . The proof is given

in Sect. 6.

Corollary 2.2 Under the above assumptions, there exists a stable stationary solution
U∗(x) of (1.2) satisfying ‖U∗(·) − {S(x; h∗

1) + S(x; h∗
2)}‖∞ ≤ cδ for c > 0.

U∗(x) has a profile with two peaks in the neighborhood of a boundary point with
maximal curvature.

Corollary 2.3 For (1.5), suppose that both τ and a are positive, or both τ and a are
equal to zero. If a3 = 2 and 1 < a1 < 3, or a3 = a1 + 1 for 1 < a1 < ∞, then the
constant M0 is positive. That is, a spike on the boundary moves toward a point with
maximal curvature. Moreover, M1 is also positive, which implies the existence of a
stable stationary solution of (1.5) with two peaks in the neighborhood of a point with
maximal curvature, as stated in Corollary 2.2.

3 Formal derivation of (1.4)

In this section, we formally derive the ordinary differential equation (ODE) (1.4).
Equation (1.2) is represented by

Ut − ht

δ
Ul = D

{
Uμμ − δκ

1−δμκ
Uμ + 1

1−δμκ

(
1

1−δμκ
Ul

)
l

}
+ F(U ) (3.1)

for x ∈ �1 if we take U (t, x) = U (t, (s − h(t))/δ, z/δ) with s = 
(x), z =
Z(x), δl := s − h(t), and δμ := z. Since δ is sufficiently small, we can regard �1 as
approximately R2+. Let

K δ(l, μ)U := 1

δ
D

{
− δκ

1 − δμκ
Uμ + 1

1 − δμκ

(
1

1 − δμκ
Ul

)
l
− Ull

}
.

Although K δ is defined only in �1, we may assume it is appropriately extended in
R2+, e.g. by multiplying K δ by cut-off functions disappearing outside of �1 and for
sufficiently large μ. Then (3.1) is written as
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76 S.-I. Ei, T. Ishimoto

Ut − ht

δ
Ul = D�l,μU + F(U ) + δK δ(l, μ)U, t > 0, (l, z) ∈ R2+. (3.2)

Substituting U (t, l, μ) = S(r) + V (t, l, μ) into (3.2) for V ∈ E⊥, we have

Vt − ht

δ
(cos θ Sr + Vl) = AV + δK δ S + O(|V |2 + δ2), (3.3)

where l = r cos θ, μ = r sin θ, and E⊥ := {V ; 〈V, φ∗〉2 = 0}. Now we assume
V = V (T, l, μ) with T := δt, and may set ht = δhT = δ(H0 +δH1 +δ2 H2 + O(δ3))

and V = δV1 + δ2V2 + O(δ3).

Since κ = κ(h(t) + δl) = κ(h(t)) + δlκs(h(t)) + O(δ2), K δ is expanded as
K δ = K1 + δK2 + O(δ2), where

K1U := κ(h)D(−Uμ + 2μUll), K2U := κs(h)D(μUl − lUμ + 2μlUll)

+κ2(h)D{−μUμ + 3μ2Ull}.

H0 = 0 is easily shown. Considering terms of order δ, we have

− H1 cos θ Sr = AV1 + K1S. (3.4)

Taking the inner product of (3.4) with φ∗(l, μ) = cos θ�∗
r (r), we have

− π

2
H1 = 〈

K1S, φ∗〉
2 . (3.5)

Lemma 3.1 H1 = 0.

Proof Since ∂μS = sin θ Sr and ∂2
l S = sin2 θ

r Sr + cos2 θ Srr , the direct calculation
of the right-hand side of (3.5) gives H1 = 0. ��

In order to obtain H2, we now consider terms of order δ2 of (3.3). Then we have

∂T V1 − H2 cos θ Sr = AV2 + K2S + K1V1 + 1

2
F ′′(S)V 2

1 . (3.6)

First, we note that ∂T V1 = O(hT ) = O(δ) because H1 = 0. Hence from (3.6), H2
is given by

− π

2
H2 =

〈
K2S + K1V1 + 1

2
F ′′(S)V 2

1 , φ∗
〉

2
. (3.7)

Since V1 ∈ E⊥ is a unique solution of 0 = AV1 + K1S and K1S is even with
respect to l, V1 = V1(l, z) is also even with respect to l. Hence 〈K1V1, φ

∗〉2
= 〈 1

2 F ′′(S)V 2
1 , φ∗〉

2 = 0 and

−π

2
H2 = 〈

K2S, φ∗〉
2
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hold in (3.7). The right-hand side is directly calculated as

〈
K2S, φ∗〉

2 = 〈
K2S, cos θ�∗

r

〉
2 = − 4

15
M0κs(h),

and we have H2 = 8
15π

M0κs(h). This shows (1.4).

4 Proofs of Theorem 2.1 and Corollary 2.1

4.1 Proof of Theorem 2.1

Let L(h) := L′
δ(S(x; h)) = δ2 D� + F ′(S(x; h)) in �, and X := Cuni f (�) with the

sup-norm ‖ · ‖.
Lemma 4.1 The spectral set, say I (h) of L(h), is given by I (h) = I0(h) ∪ I1(h),

where I0(h)⊂{|λ|≤c 4
√

δ} and I1(h)⊂{Reλ < −γ1} for positive constants c and γ1.

Proof We take 0 < γ1 < γ0 such that {Reλ > −γ1} ⊂ ρ(A0), the resolvent set of
A0.

First, we consider L(h) in �′
1 := �\�0. In �′

1, L(h) is expressed by using the
coordinate (l, μ) of the tubular neighborhood as

L(h)U = D�l,μU + F ′(S(r))U + δK δ(l, μ)U = AU + δK δU

for (l, μ) ∈ Iδ := [0, s0/δ] × [0, N1/
√

δ) with the Neumann boundary condition at
μ = 0 and the periodic boundary condition with respect to l. Here we note that the
estimate ‖δK δU‖ = O(

√
δ)‖U‖C2(Iδ) holds. Hence we appropriately extend the oper-

ator AU + δK δU to the one in R2+ by extending the operator δK δU to R2+ satisfying
this estimate, which can be done by multiplying K δ by cut-off functions disappearing
outside of Iδ.

Let A1(h) := A + δK δ in Cuni f (R2+). Since A is sectorial as an operator in
Cuni f (R2+), ‖(λ − A)−1‖ ≤ c3/|λ| for λ ∈ ρ(A), where ρ(A) denotes the resolvent
set of A. Now we need the following proposition.

Proposition 4.1

‖δ(λ − A)−1 K δ‖ ≤ √
δc3

(
1 + 1

|λ|
)

for λ ∈ ρ(A) with |λ| ≥ c4
4
√

δ.

Proof Let (λ − A)−1(δK δ)g = U. Then δK δg = (λ − A)U. δK δg contains terms of
gz, gll , and so on, with O(

√
δ) coefficients. For example, let us consider a(l, μ)gll =

(λ − A)U for some function a = a(l, μ) ∈ R with a = O(
√

δ). Set U∗ :=
(λ−A)−1(ag). Then (λ−A)U∗

ll = agll +2al gl +all g+(F ′(S(r))U∗)ll −F ′(S(r))U∗
ll .
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78 S.-I. Ei, T. Ishimoto

Similarly, setting U∗∗ := (λ − A)−1(al g), we have (λ − A)U∗∗
l = al gl + all g +

(F ′(S(r))U∗∗)l − F ′(S(r))U∗∗
l . Then (λ − A)(U − U∗

ll + 2U∗∗
l ) = g∗ and U is

given by U = U∗
ll − 2U∗∗

l + (λ − A)−1g∗, where g∗ := all g − (F ′(S(r))U∗)ll +
F ′(S(r))U∗

ll + 2(F ′(S(r))U∗∗)l − 2F ′(S(r))U∗∗
l . Since U∗

ll , U∗∗
l , and g∗ are esti-

mated by
√

δc4

(
1 + 1

|λ|
)

‖g‖, ‖U‖ ≤ √
δc5

(
1 + 1

|λ|
)

‖g‖. All other cases are treated

similarly. ��
Let us come back to the proof of Lemma 4.1. We consider (λ − A1(h))U = g for

λ ∈ ρ(A). Since λ ∈ ρ(A),

{I d − δ(λ − A)−1 K δ}U = (λ − A)−1g.

If the inequality |λ| ≥ c6
4
√

δ holds, Proposition 4.1 implies

‖δ(λ − A)−1 K δ‖ ≤ √
δc3

(
1 + 1

|λ|
)

≤ c7

(√
δ + 4

√
δ
)

because δK δ = O(
√

δ). Thus {I d − δ(λ − A)−1 K δ} is invertible, and U is given by

U = {I d − δ(λ − A)−1 K δ}−1(λ − A)−1g,

which shows

‖(λ − A1(h))−1‖ ≤ c8

|λ| (4.1)

for λ ∈ ρ(A) with |λ| ≥ c6
4
√

δ. Here we note that A1(h) is an operator in Cuni f (R2+).

Since s0/δ is sufficiently large, we may assume (4.1) holds for A1(h) in R′+ := {0 ≤
μ < ∞, 0 ≤ l ≤ s0/δ}.

Let L0 := δ2 D� + F ′(0) in �, and L1(h) of (x, y) ∈ �1 be the operator A1(h)

of (l, μ) ∈ Cuni f (R′+), expressed with the original coordinates s = δl + h and
z = δμ. We may assume L1(h) is defined in �3 := �(3N1

√
δ). Define D(λ) :=

χ1(x)(λ − L1(h))−1χ̃1(x) + χ0(x)(λ − L0)
−1, where χ̃1(x) is a cut-off function

satisfying 0 ≤ χ̃1(x) ≤ 1, χ̃1(x) = 1 for x ∈ �1, and χ̃1(x) = 0 for x ∈ �\�3.

Here we note that L(h) = L1(h) in �′
1 and

(λ − L(h))D(λ) = I d (4.2)

in �′
1 ∪ �′

0, where �′
0 := �\�1. Since � = �′

1 ∪ �′
0 ∪ �2, it suffices to consider in

�2. Let U0 := (λ − L0)
−1g and U1 := (λ − L1(h))−1χ̃1g.

Proposition 4.2 If Reλ > −γ1 for γ1 > 0, then

‖U1 − U0‖C2(�2)
≤ c10e−c9/

√
δ(‖U0‖C0(�3)

+ ‖U1‖C0(�3)
)

for c9, c10 > 0.

The proof of this proposition will be shown in the appendix.
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We can write U0 = U1 + B0(h)U0 + B1(h)U1 with ‖B j (h)‖ ≤ O(e−c9/
√

δ) in �2.

Hence it follows in �2

(λ − L(h))D(λ)g = (λ − L(h))(χ1U1 + χ0U0) = g + B2(h)g,

where B2(h)g := (λ− L(h))χ0{B0(h)(λ− L0)
−1g + B1(h)(λ− L1(h))−1χ̃1g} with

‖B2(h)‖ ≤ O(e−c9/
√

δ). We may assume B2(h) is defined in � with the same estimate.
Then from (4.2), it follows in �

(λ − L(h))D(λ)g = g + B2(h)g.

Since ‖B2(h)‖ ≤ O
(

e−c9/
√

δ

|λ|
)

≤ O
(

e−c9/
√

δ

4√
δ

)
<< 1 for |λ| ≥ c11

4
√

δ, (I d + B2(h))

is invertible. Thus we find that

(λ − L(h))D(λ)(I d + B2(h))−1 = I d

and

(λ − L(h))−1 = D(λ)(I d + B2(h))−1 = D(λ)(I d + B3(h)), (4.3)

where B3(h) := (I d + B2(h))−1 − I d with ‖B3(h)‖ ≤ O(e−c9/
√

δ). This shows
{|λ| ≥ c11

4
√

δ} ∩ {Reλ > −γ1} ⊂ ρ(L(h)). ��
Let Xω be the fractional powered space of X for 1/2 < ω < 1. Then we note

that ‖∇U‖ ≤ c‖U‖ω for c > 0, where ‖ · ‖ω is the norm of Xω. Let Q(h) :=
1

2π

∫
C0

(λ − L(h))−1dλ and R(h) := I d − Q(h), where C0 is a circle surround-
ing I0(h) in the region {Reλ > −γ1}. Then in a way quite similar to Lemma 5.2
in [6], Q(h)U = 2

πδ2

〈
U,φ∗(h)

〉
2 φ(x; h) + B4(h)U with ‖B4(h)‖ ≤ O(δ), and

I0(h) = {λ0(h)} with |λ0(h)| ≤ O(δ), where φ(h)(x) := χ1(x)∂l S(r(x; h)/δ) and
φ∗(h)(x) := χ1(x)φ∗(r(x; h)/δ). Let ϕ(h) and ϕ∗(h) be eigenfunctions correspond-
ing to the spectral set I0(h) of L(h) and the adjoint operator L∗(h), respectively
satisfying ϕ(h)(x) = φ(h)(x) + O(δ) and ϕ∗(h)(x) = φ∗(h)(x) + O(δ). Note that
〈φ(h), ϕ∗(h)〉2 = π

2 δ2 + O(δ3). Set E(h) := Q(h)X and E⊥(h) := R(h)X. Now
we can construct a map �(h) : E⊥(h0) → E⊥(h) such that

‖�(h)‖, ‖�−1(h)‖ ≤ c, ‖�h(h)W‖ ≤ c‖∇W‖ (4.4)

for 0 ≤ h ≤ s0 (periodic with respect to h). This is proved in Appendices.
Define �(x; h) := χ1(x)V1(l, μ) for l = (
(x) − h)/δ and μ = Z(x)/δ, where

V1(l, μ) ∈ E⊥ is the function defined in (3.4).
Defining S(x; h, δ) := S(x; h) + δ�(x; h) and substituting U = S(x; h, δ) +

�(h)W for W ∈ E⊥(h0), we have

ht (Sh(h, δ)+�h(h)W )+�(h)Wt =L(S(h, δ))+L(h)�(h)W + G(W, h), (4.5)

with |G(W, h)| ≤ c|W |2. Define W (D1) := {W ∈ E⊥(h0) ∩ Xω; ‖W‖ω ≤
D1δ

2} and W (D1, D2) := {W ∈ C([0, s0]; E⊥(h0)); ‖W (h)‖ω ≤ D1δ
2,
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‖W (h)−W (k)‖ω ≤ D2δ|h−k|}. Since ∂h S(x; h) = − s−h
δr(x;h)

Sr (r(x; h)/δ)+O(δ) =
− 1

δ
∂l S(r(x; h)/δ) + O(δ), we have 〈∂h S(h, δ), ϕ∗(h)〉2 = −π

2 δ + O(δ2). Then for
W ∈ W (D1) operating Q(h) on (4.5), we have

ht

(
−π

2
δ + O(δ2)

)
= 〈L(S(h, δ)),φ∗(h)

〉
2 + O(δ6)

because ϕ∗(h)(x) is a function of the form E(r(x; h)/δ, θ) for some function E(r, θ)

decaying exponentially with respect to r. Hence we can write ht = G1(W, h) satisfy-
ing G1(W, h) = − 2

πδ

〈L(S(h, δ)),φ∗(h)
〉
2 + O(δ5). Since

〈L(S(h, δ)),φ∗(h)
〉
2 = −δ4 4

15
M0κs(h) + O(δ5)

by the calculation in Sect. 3, we have

G1(W, h) = δ3 8

15π
M0κs(h) + O(δ4) (4.6)

for W ∈ W (D1).

On the other hand, operating R(h) on (4.5), we have

ht O(δ2) + �(h)W = R(h)L(S(h, δ)) + L(h)�(h)W + R(h)G(W, h)

= L(h)�(h)W + O(δ2).

Thus, (4.5) is written as

{
ht = G1(h, W ),

Wt = L̂(h)W + G2(h, W ),
(4.7)

where L̂(h) := �−1(h)L(h)�(h) and G2(h, W ) := �−1(h){R(h)L(S(h, δ)) +
R(h)G(W, h) − G1(h, W )R(h)Sh} = O(δ2). Moreover it follows that for W,

V ∈ W (D1),

‖L̂(h) − L̂(k)‖ ≤ c12

δ
|h − k|,

|G1(h, W ) − G1(k, V )| ≤ c13δ
2{|h − k| + ‖W − V ‖ω},

‖G2(h, W ) − G2(k, V )‖ ≤ c14δ{|h − k| + ‖W − V ‖ω}.

Combining the above estimates and (4.4), we can show the existence of an attractive
invariant manifold M := {W = σ ∗(h) ∈ W (D1, D2) ; 0 ≤ h ≤ s0} in (4.7) for an
appropriately taken D1, D2 in a way quite similar to [6]. That is, the solution U (t, x)

of (1.2) is given by

U (t, x) = S(x; h(t)) + δ�(x; h(t)) + �(h(t))σ ∗(h(t))(x),

which completes the proof of the theorem.
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4.2 Proof of Corollary 2.1

In the first equation of (4.7), h satisfies

ht = G1(h, σ ∗(h)) = δ3G∗
1(h, σ ∗(h)) =: δ3G∗∗(h; δ).

Since σ ∗ ∈ W (D1, D2), a stable (or unstable ) equilibrium h∗ of 8
15π

M0κs(h) =
G∗∗

1 (h; 0), in the linearized sense, generates a stable (or unstable ) equilibrium of
G∗∗(h; δ) by the implicit function theorem for small δ > 0, which completes the proof.

5 Proofs of Theorem 2.2 and Corollary 2.2

5.1 Proof of Theorem 2.2

If h := h2 − h1 > βδ| log δ| for a large β > 0, then we have
√

δ
h e−αh/δ ≤ O(δ4),

which trivially implies the equation (2.2). Hence it suffices to consider the case when
β1δ| log δ| ≤ h = h2 − h1 ≤ β2δ| log δ| for 0 < β1 < β2.

Let S(x; h1, h2) := S(x; h1) + S(x; h2) and L(h1, h2) := L′
δ(S(x; h1, h2)) =

δ2�+F ′(S(x; h1, h2)). Taking the tubular coordinate (l, μ) defined by s = 
(x), z =
Z(x) and δl := s − h1(t), δμ := z and letting S(l, μ) := S(r) with r := √

l2 + μ2,

we have S(x; h1, h2) = S(l, μ) + S(l − h/δ, μ) =: S(l, μ; h) and

L(h1, h2)U = D

{
Uμμ − δκ

1 − δμκ
Uμ + 1

1 − δμκ

(
1

1 − δμκ
Ul

)
l

}

+F ′(S(l, μ; h))U

= D�l,μU + F ′(S(l, μ; h))U + δK δ(l, μ)U (5.1)

in �1, where κ = κ(h1 + δl). The inequality β1δ| log δ| ≤ h = h2 − h1 ≤ β2δ| log δ|
leads to β1| log δ| ≤ h/δ ≤ β2| log δ|.

On the other hand, L(h1, h2) = L0 + O(e−c/
√

δ) in �0. Then in quite a similar
manner to the proof of Lemma 4.1, we can show

Lemma 5.1 The spectral set, say I (h1, h2) of L(h1, h2), is given by I (h1, h2) =
I0(h1, h2) ∪ I1(h1, h2), where I0(h1, h2) ⊂ {|λ| ≤ c 4

√
δ} and I1(h1, h2) ⊂ {Reλ <

−γ1} for positive constants c and γ1.

The rest of the proof is completed by combining the proofs of Theorem 2.1 [6,8].
In fact, we can show the existence of an exponentially attractive local invariant man-
ifold M := {S(x; h1, h2) + σ ∗(h1, h2)(x); c1 < h1 < h2 < s0 − c1, c2|δ log δ| <

h2 − h1 < 1
2 c1} with ‖σ ∗(h1, h2)‖ω ≤ O(δ).

5.2 Proof of Corollary 2.2

We omit the details here, but the proof is quite similar to the proof of Corollary 2.1.
We substitute S(x; h1, h2) + σ ∗(h1, h2)(x) into the equations ∂t h1 and ∂t h2 and use
the implicit function theorem.
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5.3 Proof of Corollary 2.3

The positivity of the constant M1 was proved in [8]. Now we calculate the value of
the constant M0.

Under the assumptions of the corollary, there exists a spike solution S of (1.5) of
the form S(r) = (U (r/ε), V (r)) in R2+, where r := √

l2 + μ2, and functions U (ζ )

and V (r) are exponentially decaying positive functions. The function �∗(r) in the
definition of the constant M0 is given by

�∗(r) = 1∫ ∞
0 ρ(Uρ)2dρ

(U (r/ε), 0) + o(1)

as ε ↓ 0 by the result of [8]. Hence the approximate value of M0 is calculated as

M0 = 8

15π
ε

(
5
∫ ∞

0 ρ2(Uρ)2dρ

2
∫ ∞

0 ρ(Uρ)2dρ
+ o(1)

)
> 0.

Assumptions (H1)–(H3) are also discussed in [8], but on the whole R2 space.
Then (H1)–(H3) in this paper are easily checked by the restriction to R2+. In fact, the
semisimpleness of the 0 eigenvalue in R2 [8] directly leads to (H2) and (H3).

6 Analysis of ODE (2.3)

In this section, we give the proof of the following theorem.

Theorem 6.1 Equation (2.3) has a linearly stable unique equilibrium, say
P = (p1, p2), if both M0 and M1 are positive.

Proof With the loss of generality, we may assume �(0) ∈ ∂� is a point of maximal
curvature. Equilibria of (2.3) satisfy

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 = M0δ
3 dκ

ds
(p1) − M1

√
δ

p
e−αp/δ,

0 = M0δ
3 dκ

ds
(p2) + M1

√
δ

p
e−αp/δ,

(6.1)

where p = p2 − p1. Equation (6.1) leads to

dκ

ds
(p1) + dκ

ds
(p2) = 0. (6.2)
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Since p1, p2 are small, we can expand κs(p1) and κs(p2) as

⎧⎪⎪⎨
⎪⎪⎩

dκ

ds
(p1) = dκ

ds
(0) + p1

d2κ

ds2 (0) + 1

2
p2

1
d3κ

ds3 (0) + O(p3
1),

dκ

ds
(p2) = dκ

ds
(0) + p2

d2κ

ds2 (0) + 1

2
p2

2
d3κ

ds3 (0) + O(p3
2).

(6.3)

Since p is also small, p1 and p2 can be expanded respectively as p1 = (a1 − 1)p +
a2 p2 + O(p3), p2 = a1 p + a2 p2 + O(p3), for some constants a1 and a2. Therefore
(6.3) is rewritten as

⎧⎪⎪⎨
⎪⎪⎩

dκ

ds
(p1) = κ

(2)
0 {(a1 − 1)p + a2 p2} + 1

2κ
(3)
0 (a1 − 1)2 p2 + O(p3),

dκ

ds
(p2) = κ

(2)
0 {a1 p + a2 p2} + 1

2κ
(3)
0 a2

1 p2 + O(p3),

where

dκ

ds
(0) = 0, κ

(2)
0 := d2κ

ds2 (0) < 0, κ
(3)
0 := d3κ

ds3 (0).

Thus (6.2) is rewritten as

(
2κ

(2)
0 a1 − κ

(2)
0

)
p +

(
2κ

(2)
0 a2 + κ

(3)
0 a2

1 − κ
(3)
0 a1 + 1

2
κ

(3)
0

)
p2 + O(p3) = 0.

Then a1 and a2 are determined by

2κ
(2)
0

(
a1 − 1

2

)
= 0, 2κ

(2)
0 a2 + κ

(3)
0

(
a2

1 − a1 + 1

2

)
= 0,

and hence

a1 = 1

2
, a2 = −1

8

κ
(3)
0

κ
(2)
0

and

p2 = 1

2
p − 1

8

κ
(3)
0

κ
(2)
0

p2 + O(p3). (6.4)

Here,

M0δ
3
(

κ
(2)
0 p2 + 1

2
κ

(3)
0 p2

2

)
+ M1

√
δ

p
e−αp/δ + O

(
δ3 p3

2

)
= 0 (6.5)
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holds by (6.1) and (6.3). Substituting (6.4) into (6.5), it follows that

M0δ
3

{
κ

(2)
0

(
1

2
p − 1

8

κ
(3)
0

κ
(2)
0

p2

)
+ 1

2
κ

(3)
0

(
1

2
p

)2
}

+ M1

√
δ

p
e−αp/δ + O(δ3 p3) = 0,

and hence

1

2
M0δ

3κ
(2)
0 p + M1

√
δ

p
e−αp/δ + O(δ3 p3) = 0. (6.6)

Specially, the lowest-order part of (6.6) is

1

2
M0δ

3κ
(2)
0 p + M1

√
δ

p
e−αp/δ = 0. (6.7)

Proposition 6.1 Equation (6.7) has a unique solution.

Proof Equation (6.7) can be rewritten as

1

2
M0δ

4κ
(2)
0

p

δ
= −M1

√
1
p
δ

e−αp/δ.

Define f (x) := 1
2 M0δ

4κ
(2)
0 x, g(x) := −M1x−1/2e−αx for x > 0. Then κ

(2)
0 < 0

yields a monotone decrease of f (x). On the other hand, g′(x) = M1x−3/2e−αx
( 1

2+
αx) > 0 leads to the monotone increase of g(x). Since limx→0 f (x) =
0, limx→∞ f (x) = −∞, limx→0 g(x) = −∞, and limx→∞ g(x) = 0, we use
the intermediate value theorem to show that there is only one intersection of f (x) and
g(x). Thus (6.7) has a unique solution. ��
Proposition 6.2 p = O(δ log δ).

Proof Putting p̃ = p/δ, we have

− 1

2
M0δ

4κ
(2)
0 p̃ = M1

√
1

p̃
e−α p̃(> 0) (6.8)

by (6.7). Suppose limδ→0 p̃ = 0. Then the right hand side of (6.8) goes to ∞ as
δ → 0. But this means that limδ→0 δ4 p̃ = ∞, which leads to the contraction. There-
fore limδ→0 p̃ �= 0. That is, there is a positive constant C > 0 such that p̃ ≥ C
and

−1

2
M0δ

4κ
(2)
0 C ≤ −1

2
M0δ

4κ
(2)
0 p̃ = M1

√
1

p̃
e−α p̃ ≤ M1

√
1

C
e−α p̃.
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Setting C1 := − 1
2

M0
M1

κ
(2)
0 C

√
C(> 0), we have C1δ

4 ≤ e−α p̃ and

p̃ ≤ − 1

α
log C1 + 4

α
| log δ| ≤ C2| log δ| (6.9)

for a constant C2 > 0. Noting

e−2α p̃ ≤
√

1

p̃
e−α p̃

by the inequality e−αx ≤ √
1/x (x > 0), we have

e−2α p̃ ≤
√

1

p̃
e−α p̃ = −1

2

M0

M1
κ

(2)
0 p̃δ4 ≤ −1

2

M0

M1
κ

(2)
0 C2δ

3(δ| log δ|).

Setting C3 := − 1
2

M0
M1

κ
(2)
0 C2(> 0), we also have e−2α p̃ ≤ C3δ

3 and

p̃ ≥ − 1

2α
log C3 + 3

2α
| log δ|. (6.10)

Equations (6.9) and (6.10) complete the proof. ��
Proposition 6.3 P = (p1, p2) is stable in the linearized sense.

Proof We define the right-hand side of (2.3) by G(h1, h2), H(h1, h2) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H(h1, h2) := M0δ
3 dκ

ds
(h1) − M1

√
δ

h
e−αh/δ,

G(h1, h2) := M0δ
3 dκ

ds
(h2) + M1

√
δ

h
e−αh/δ.

Then, the linearized operator L p of (2.3) with respect to P = (p1, p2) can be repre-
sented as

L p =

⎛
⎜⎜⎝

∂ H

∂h1

∣∣∣∣
(h1,h2)=(p1,p2)

∂ H

∂h2

∣∣∣∣
(h1,h2)=(p1,p2)

∂G

∂h1

∣∣∣∣
(h1,h2)=(p1,p2)

∂G

∂h2

∣∣∣∣
(h1,h2)=(p1,p2)

⎞
⎟⎟⎠ =

(
α̃ − γ̃ γ̃

γ̃ β̃ − γ̃

)
,

where
⎧⎪⎪⎨
⎪⎪⎩

α̃ := M0δ
3 d2κ

ds2 (p1) (< 0),

β̃ := M0δ
3 d2κ

ds2 (p2) (< 0),

γ̃ := M1

√
δ
p e−αp/δ

(
1

2p + α
δ

)
(> 0).
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Thus, it follows trL p = (α̃ + β̃) − 2γ̃ < 0 and detL p = α̃β̃ − (α̃ + β̃)γ̃ > 0. Thus
P = (p1, p2) is stable in the linearized sense. ��
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7 Appendices

In this section, we give the proofs of Propositions 4.2 and (4.4).

7.1 Proof of Proposition 4.2

In this proof, we use the symbols c, c′, c′′, · · · as general positive constants independent
of small δ > 0.

Let �1/2 := �( 1
2 N1

√
δ) and �′′

0 := �\�1/2. For any x0 ∈ �2, we define two balls
Bδr0(x0) ⊂ B√

δr1
(x0) ⊂ �′′

0 for r0, r1 > 0, where Br (x0) := {x ∈ �1; |x − x0| <

r}. Since |S(x; h)| ≤ O(e−c/
√

δ) in �′′
0 for c > 0, L1(h) can be expressed as L1(h) =

L0 +C1(h) with |C1(h)| ≤ ce−c′/
√

δ in �′′
0 for c, c′ > 0. Then (λ− L0)(U1 −U0) =

C1(h)U1 in B√
δr1

(x0) ⊂ �′′
0. Taking the stretched coordinate ξ := (x − x0)/δ, we

see that the equation (λ − L0)(U1 − U0) = C1(h)U1 in B√
δr1

(x0) becomes

(λ − A0)(U1 − U0) = C2(h)U1, ξ ∈ B∗
1 , (7.1)

where A0 := D�ξ + F ′(0), B∗
1 := Br1/

√
δ(0) and C2(h) satisfies |C2(h)| ≤ ce−c′/

√
δ

for c, c′ > 0.

Since δ is sufficiently small, B∗
1 is nearly R2 and the assumption (H2)’ says that

(λ − A0) is also invertible in X0 := Cuni f (R2) by taking λ in the resolvent set of
A0. Here we note that the spectral set I (A0) is the same even if we consider that
A0 is in the whole space R2. Now we may extend C2(h), U0, and U1 to R2 with
similar estimates |C2(h)| ≤ ce−c′/

√
δ, ‖U0‖X0 ≤ ‖U0‖C0(B∗

1 ) ≤ ‖U0‖C0(�3)
, and

‖U1‖X0 ≤ ‖U1‖C0(B∗
1 ) ≤ ‖U1‖C0(�3)

, respectively, for c, c′ > 0. Since (λ − A0) is

invertible in X0, there exist unique W ∈ X0 satisfying (λ− A0)W = C2(h)U1 in R2.

Subtracting this equation from (7.1) on both sides, we have

(λ − A0)(U1 − U0 − W ) = 0, ξ ∈ B∗
1 . (7.2)

Since Reλ > −γ1, dist{λ, I (A0)} > γ2 for γ2 > 0. Hence we have W =
(λ − A0)

−1C2(h)U1 and

‖W‖
C2(R2

)
≤ ce−c′/

√
δ‖U1‖X0 ≤ ce−c′/

√
δ‖U1‖C0(�3)
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for c, c′ > 0, and it suffices to show that

‖U1 − U0 − W‖C2(B∗
0 ) ≤ O

(
e−c′/

√
δ
)

‖U1 − U0 − W‖C0(B∗
1 ), (7.3)

where B∗
0 := Br0(0).

Let V := U1 − U0 − W, and consider the equation

(λ − A0)V = 0, ξ ∈ B∗
1 (7.4)

for λ ∈ C with Reλ > −γ1.

First consider (7.4) in the interval I ∗
1 := (−r1/

√
δ, r1/

√
δ) ⊂ R1. Then (7.4)

corresponds to

λV − DV ′′ − F0V = 0,

where F0 := F ′(0). If V (ξ) = eμξ b, then

(μ2 D + F0 − λ)b = 0, (7.5)

that is,

det (μ2 D + F0 − λ) = 0. (7.6)

Lemma 7.1 μ in (7.6) satisfies |Reμ| ≥ γ3 for γ3 > 0 independent of Reλ > −γ1.

Proof Define �(τ) := −τ D + F0, and let I (τ ) be the set of eigenvalues of �(τ).

Then by using a Fourier transform, we see that the spectral set I (A0) is given by
I (A0) = ∪τ≥0 I (τ ).

Putting μ2 = a + ib(a, b ∈ R, i := √−1) and substituting it into the eigenvalue
equation (7.5), we have

{I + ib(aD + F0 − λ)−1 D}b = 0 (7.7)

if (aD + F0 − λ)−1 exists. Let E(λ) := {I + ib(aD + F0 − λ)−1 D}.
First, we consider the case a ≤ 0. Put a = −τ(τ ≥ 0). In this case,

c

|λ| ≤ |(−τ D + F0 − λ)−1| ≤ c′

for c, c′ > 0 because of dist{λ, I (A0)} > γ2. Hence if |b| is sufficiently small, E(λ)

is invertible and b must be zero vector in (7.7). This contradicts (7.6). Thus, |b| ≥ γ4
for γ4 > 0.

On the other hand, it follows that dist (λ, I (τ )) → ∞ as τ → ∞ uniformly for
Reλ > −γ1 and hence

(−τ D + F0 − λ)−1 → 0
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as τ → ∞ uniformly for Reλ > −γ1, which means E(λ) is invertible. Thus, τ must
be τ ≤ γ5 for γ5 > 0. Since Reμ is given by

|Reμ|2 = b2

2τ + √
τ 2 + b2

,

the estimates |b| ≥ γ4 and 0 ≤ τ ≤ γ5 imply |Reμ| ≥ γ3 for γ3 > 0.

Next we consider the case a > 0. In this case, |Reμ| is given by

|Reμ|2 = a + √
a2 + b2

2
≥ 1

2
(a + |b|).

Therefore, it suffices to show (a + |b|) > γ6 for γ6 > 0.

Since dist{λ, I (A0)} > γ2 for Reλ > −γ1, we have dist{λ, I ′(A0)} > γ ′
2, where

I ′(A0) := ∪τ≥−γ7 I (τ ) for γ ′
2, γ7 > 0. Hence, (aD+F0−λ)−1 is uniformly bounded

for 0 ≤ a ≤ γ7 and Reλ > −γ1. If |b| is arbitrarily small, (7.7) leads to the invertibil-
ity of E(λ). That is, if 0 ≤ a ≤ γ7 and |b| ≤ γ8 for γ8 > 0, then E(λ) is invertible,
which contradicts (7.6). Thus, either |b| > γ8 or a > γ7. Then we have (a +|b|) > γ6
for γ6 > 0. ��

Finally, we consider (7.4) in B∗
1 . Let V = V (r, θ) = ∑∞

n=−∞ bn(r)einθ and
g(θ) := V |∂ B∗

1 , where (r, θ) is the polar coordinate of B∗
1 and bn(r) ∈ RN . Then

(7.4) becomes

{
(b′′

n + 1
r b′

n − n2

r2 bn) + D−1(F0 − λ)bn = 0,

b′
n(0) = 0, bn(r1/

√
δ) = gn,

(7.8)

where g(θ) = ∑∞
n=−∞ gneinθ .

Let {e j } be the bases of RN consisting of the eigenvectors of D−1(F0 − λ). That
is, D−1(K0 − λ)e j = −μ2

j e j are satisfied. Note that |Reμ j | ≥ γ3 for any j ∈ N by

Lemma 7.1. Representing each bn(r) as bn(r) = ∑N
j=1 β j (r)e j and substituting into

(7.8), we have

β ′′
j + 1

r
β ′

j − n2

r2 β j − μ2
jβ j = 0 (7.9)

for each bn . Solutions of (7.9) are given by the Bessel functions Zn(μ j r), where Zn(s)
is a solution of modified Bessel’s differential equation

Z ′′
n + 1

s
Z ′

n −
(

1 + n2

s2

)
Zn = 0.

Since Zn(s) has an asymptotic profile O( 1√
s
e±s) and |Reμ j | ≥ γ3, β j (r)

also has an asymptotic profile O( 1√
r
e±cr ) for c > 0. Therefore, |β j (r)| ≤
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O(e−c′/
√

δ)|β j (r1/
√

δ) in r ∈ [0, r0] for c′ > 0, and consequently we have

‖V (r, θ)‖C2(B∗
0 ) ≤ O(e−c′/

√
δ)‖V (r1/

√
δ, θ)‖∞ ≤ O(e−c′/

√
δ)‖V ‖C0(B∗

1 ). (7.10)

This concludes the proof of (7.3).

7.2 Proof of (4.4)

In this subsection, we construct the map �(h) : E⊥(h0) → E⊥(h) satisfying (4.4).
When we consider L(h) in the domain �′

1 := �\�0, L(h) is written as

L(h) = δ2� + F ′(S(r/δ))

for 0 ≤ s ≤ s0 and 0 ≤ z ≤ N1
√

δ, where r = r(x; h). Let U ∈ E⊥(h0).U is
expressed as U = U (s, z) in �′

1. Hence we define the map �̂(h) by

(�̂(h)U )(s, z) = U (s − h, z)

in �′
1, and define in �0

(�̂(h)U )(x) = U (x) + V (h)(x),

where V = V (h)(x) is a function satisfying

L0V = 0, x ∈ �0, V = U (s − h, z) − U (s, z), x ∈ ∂�0. (7.11)

Note that the function V satisfying (7.11) is uniquely determined because of the in-
vertibility of L0. Finally, we give the map �(h) : E⊥(h0) → E⊥(h) by �(h) :=
R(h)�̂(h). By this construction, (4.4) obviously holds. ��
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