
Vol.:(0123456789)1 3

Journal of Ambient Intelligence and Humanized Computing (2019) 10:1927–1936
https://doi.org/10.1007/s12652-018-0784-5

ORIGINAL RESEARCH

Q-Rapids framework for advanced data analysis to improve rapid
software development

Rafał Kozik1 · Michał Choraś1,2 · Damian Puchalski2 · Rafał Renk2

Received: 10 November 2017 / Accepted: 30 March 2018 / Published online: 10 April 2018
© The Author(s) 2018

Abstract
The quality of software, in particular developed rapidly, is quite a challenge for businesses and IT-dependent societies.
Therefore, the H2020 Q-Rapids project consortium develops processes and tools to meet this challenge and improve the
quality of the software to meet end-users requirements and needs. In this paper, we focus on data analytics that helps software
development companies evaluate the quality of the software. In fact, most software development teams use tools such as
GitLab, SonarQube or JIRA (among others) to assess the basic characteristics and metrics of the developed software. In this
paper, we propose the framework that gathers basic data from the mentioned tools, and processes the data further (e.g. using
Apache Kafka, Kibana and Spark) to calculate more advanced metrics, product factors, indicators, and to find correlations
between them. In this paper, we present the concept, the technical details, and the initial results of the advanced data analysis
methodology. Furthermore, we provide discussion on how to use the system and show the future development directions.
We have already implemented the system at software development SME and managed to find interesting characteristics and
correlations about the software quality. The results, based on the real data, were interesting to the company product owners
and team leaders, and more importantly helped them improve the software quality development process.

1 Introduction

1.1 The context

In the current IT ecosystems, where entities and organi-
zations are highly interconnected and relying on software
components, challenges such as optimization of the soft-
ware code development process, minimization of the risk of
software failures and code testing/debugging are critical for
business, service providers, and societies.

More and more software is developed worldwide and
software development projects are increasingly complex.
One of examples of code complexity is popular graphics edi-
tor—Photoshop, developed by Adobe. An early version of
the tool (v1.0, 1990) included approximately 100 thousands
of code lines, while the version from 2012 (CS6) had more
than 4 million of code lines (increased by 3730%) (Visual

2015). Another estimation of the code complexity shows that
all the online Google services are based on about 2 billion
of code lines (Visual 2015). That abovementioned numbers
and the observed trends, such as IoT, where software compo-
nents are present in microdevices, cars, smart home systems
shift software source code analysis into a challenge related
to big data exploration.

However, the problems of ensuring software quality, its
assessment and testing are multidimensional. Software fail-
ures happening after the product release impact the product
vendors’ competitiveness, reputation and market position.
Moreover, software flaws generate financial losses. As esti-
mated software bugs can decline product stock price with
average of 4–6% (for companies experiencing multiple soft-
ware failures), and further generate almost 3 billion dol-
lars of market losses (QASymphony 2016). In addition, low
quality of code significantly impacts the overall cost of the
software development, deployment and further maintenance
(Jones and Bonsignour 2011). According to QASymphony
data (2016), the process of debugging software during its
design phase costs 4–5 times less than fixing bugs after its
release. Another dimension of software quality is its relation
to the level of security. Software flaws and bugs can impact
not only its usability, functional value and user experience,

 * Rafał Kozik
 rkozik@utp.edu.pl

1 Institute of Telecommunications and Computer Science,
UTP University of Science and Technology, Bydgoszcz,
Poland

2 ITTI Sp. z o.o., Poznan, Poland

http://orcid.org/0000-0001-7122-3306
http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-018-0784-5&domain=pdf

1928 R. Kozik et al.

1 3

but also security of users, due to the fact that bugs in the
design or implementation phase can be exploited by cyber
criminals (Choraś and Kozik 2015). According to the article
presented by Tovey (2015), consequences of cyber attacks
cost about £18 billion per year to British companies in terms
of lost revenues.

One of the mechanisms implemented in the software
engineering is software testing, with the objective to detect
bugs and flaws in the code, and then to address them before
the product deployment. However, the costs of the qual-
ity assurance and testing in IT are growing from year to
year. Currently, IT organizations spent approximately 1/3 of
their budgets on quality assurance with the trend of raising
this value to approx. 40% in next 3 years (Jorgensen 2016;
Capgemini 2017). Although the process of debugging soft-
ware during its design phase costs 4–5 times less than fixing
bugs after its release (Jones and Bonsignour 2011), it is a
non-trivial task that consumes a significant part of budgets
and effort. It could be less impactful for a big companies
and software houses, however SMEs operating often with
limited budgets and resources (Felderer and Ramler 2016)
are becoming more and more focused on techniques allow-
ing automation and adequacy of the testing process, to be
competitive in relation to big players in the market in terms
of software quality, optimization of the development cost
and time to market.

1.2 Related work

In the H2020 Q-Rapids project (Q-Rapids 2017; Franch
et al. 2017; Guzmán et al. 2017), the concept of quality-
aware decision making based on key strategic indicators is
proposed.

The overall goal of the project is to support strategic
decision-making processes by providing strategic indica-
tors in the context of quality requirements in agile and rapid
software development. For the purposes of the project, a
strategic indicator is defined as a specific aspect that a soft-
ware development company has to consider as crucial for the
decision making process during the software development.
Aspects such as e.g. time-to-market, maintenance cost, cus-
tomer satisfaction, etc. can be considered as strategic indica-
tors depending on the context. Those strategic indicators are
built on top of the measurements and factors calculated on
the basis of the software development related data, stored in
the management tools such as GitLab or SonarQube.

The Q-Rapids project and the concept of measuring quality
of software products and processes are not the only approaches
in this field. Software metrics, their evolution, distinction
between static and dynamic measurements and retrospective
analysis of various approaches have been gathered by Voas and
Kuhn (2017). Another approach to monitor software develop-
ment with the use of metrics has been presented by Mäkiaho

et al. (2017). Their tool, called MMT was developed to observe
and visualize project metrics, to help project managers in
reporting, and to ensure awareness of the project status among
the team members. Vytovtov and Markov (2017) have pre-
sented their approach to source code quality estimation based
on software metrics with the use of LLVM compiler, which
can assess the code at compile time to provide a programmer
information about its current quality.

In addition, there are other related works partially related to
our approach, for example where the analysed software code
is limited to a specific programming language. Singh et al.
(2013), considered the generation of quality metrics for C#
code, while Winter et al. (2013) presented the tool for specifi-
cation and visualization of Java-based source code. Moreover,
the authors of several articles focused only on the selected
group or type of software metrics, limiting considerations to
e.g. analysis of the software maintainability (Hira and Boehm
2016), or software cost estimation (Menzies et al. 2017).

Moreover, numerous works present results and
approaches for some background aspects of software
development quality, such as study on metrics correlation
(Mamun et al. 2017; Kozik et al. 2017) or the aspects of
software metrics fluctuation and instability (Arvanitou et al.
2016; Mauša and Grbac 2017).

Yet another aspect is the visualisation of the metrics,
where a number of approaches from domains other than
software engineering can be employed. For example analy-
sis and visualization of meteorological data (including its
historical evolution, similarly to our approach) with the goal
to detect and predict anomalies that can lead to critical situ-
ations has been proposed by Cipolla et al. (2017).

In this paper we present a proof-of-the-concept of the
solution that allows for synchronization and inspection of
data related to software development gathered in GitLab and
SonarQube tools. Moreover, in the paper we presented pre-
liminary results of tests of our solution in one of the SME
companies that run software development projects and com-
mercially develops tools for e.g. healthcare domain.

The rest of paper is structured as follows: in Sect. 2 the
proposed system architecture is presented and system use
cases, actors and information flow are discussed; Sect. 3
presents an overview on our experiments; Sect. 4 presents
experimental results—including code metrics and more
advanced correlation results. The applicability of the results
and the future work is also presented in Sect. 4. Section 5
concludes the paper and discusses the results.

2 The proposed system architecture

In this section, the architecture of the proposed system is
presented. First, we demonstrate the concept of the infor-
mation flow used for the data analysis. Afterwards, the

1929Q-Rapids framework for advanced data analysis to improve rapid software development

1 3

information data sources (also called data producers) and
key system elements are briefly presented.

2.1 The system use cases and actors

The presented system could be devoted to middle-level roles
in the organization, such as product owners, SW team lead-
ers, scrum masters etc.

To keep this paper self-containing we introduce following
terms that are further used in the paper, namely:

• Issue—as an unit of programming work needed to
accomplish some defined progress of software develop-
ment (e.g. performing test, implementing given feature,
fixing bug, etc.).

• Task—is the small (undividable) portion of program-
mer’s work that leads to solve certain development prob-
lem.

• Sprint—is the period of time in which programmer’s
team has to complete specific tasks, after the sprint com-
pletion the results have to be ready to review. Each sprint
starts with the sprint planning.

• Code quality metrics—are measurable values referred to
the certain aspect of developed code (e.g. code complex-
ity, code repetition).

• Strategic indicators—are aggregated information for the
decision makers estimated based on the quality metrics
and related to the quality requirements.

2.2 The information flow

The conceptual architecture of the system is presented in
Fig. 1.

We use several data sources (data producers) to measure
the statistics (we call those metrics) related to the project.

Those metrics are retrieved from GitLab1 and SonarQube2
project management tools. In the future we plan to extend
this list, since in different organizations and software houses,
different tools are used (e.g. some teams/organizations may
use Jenkins and some GitLab CI instead). However, in many
cases it is just a matter of having the right connector between
a project management tool and our prototype. Some exam-
ples of the used metrics are included in Table 1.

It must be mentioned that the first and the second cat-
egory of metrics can be obtained from GitLab and Sonar-
Qube (from where we currently gather the data). The third
category is the plan for the near future.

The collected data is stored in our system for further pro-
cessing. For example, the project manager has the ability to
access a variety of data in one place and use additional func-
tionalities such as visualization, correlation analysis (both
presented in the Sect. 3), and prediction of quality metrics.

However, in this paper we particularly focused on a corre-
lation analysis to find relevant relations between the metrics
and prove some of our research hypotheses.

Fig. 1 The conceptual architec-
ture of the proposed solution.
Currently, we use the following
types of the data sources for our
analysis: source code, develop-
ment process data, and data col-
lected from running application

1 https ://gitla b.com/.
2 https ://www.sonar qube.org/.

https://gitlab.com/
https://www.sonarqube.org/

1930 R. Kozik et al.

1 3

2.3 The architecture of the system

The current architecture and deployment model is presented
in Fig. 2.

There are three key elements namely: our proxy, Apache
Kafka,3 and Apache Spark.4 Of course, other platforms, e.g.
such as Kibana5 can be also used.

The proxy implements the interface to the external project
management tools (currently GitLab and SonarQube). It is
responsible for connecting (e.g. via VPN), downloading the
data, preliminary pre-processing, and removing sensitive
data. The proxy also provides graphical user interface (GUI)
for data visualization and system configuration.

The Apache Kafka publish-subscribe system is used to
communicate with Apache Spark. In particular, the preproc-
essed data is published at a specific Kafka topic and further
consumed by the Apache Spark framework, where complex
and more sophisticated data processing patterns can be used.

Such approach allows for big data processing that will
be useful and required to analyze large projects at large
organizations.

The proxy design pattern for data gathering has been
used in the proposed architecture due to the privacy rea-
sons. When we consulted this architecture with our possible

Table 1 Categorization of the metrics used for the data analysis

Category Type Metric or information

Source code Code history Commits—number, date, detailed description
Developers—number, names, and involvement
Branches—names, commits, changes history

Code quality Complexity of classes, functions, and files
Number of duplicated lines and its density
Comments density and its number

Development process Testing Testing time—maximum, minimum, and average
Passed failed tests indicated for specific functionality, feature or improvement

Backlog Features and task planned for sprint backlog
Time spent to implement specific feature or functionality

Issues Number of issues currently opened and recently closed
Open issues—these bugs, tasks and features that remain unsolved
Re-open issues—those which has be opened back due to some improvements

of modifications
Bugs Number of bugs reported to specific functionality or feature

Bugs criticality
Time to fix a specific bug

Running application Usage Time spent on using particular features (average, max, and min)
Used features—list of most frequently used functionalities

Security Vulnerabilities indicated in the code
Exploits that have been reported
Criticality of security flaws

User feedback Rates given by users to evaluate usefulness of the application

Fig. 2 The conceptual architecture of the proposed solution. The
project-related data is collected via VPN (1) at the proxy instance
(2) where basic data preprocessing, analysis and anonymisation
take place. Computationally expensive operations, data mining and
machine learning take place in the Apache Spark cluster (3)

3 https ://kafka .apach e.org/.
4 https ://spark .apach e.org/.
5 https ://www.elast ic.co/produ cts/kiban a.

https://kafka.apache.org/
https://spark.apache.org/
https://www.elastic.co/products/kibana

1931Q-Rapids framework for advanced data analysis to improve rapid software development

1 3

end-users, we learned that customers usually want to have
control over the data pushed to a cluster or a cloud.

The described architecture was deployed and used in the
experiments (based on real-life data from software develop-
ment company) described in Sect. 3.

3 Experiments

To execute the experiments, firstly we have gathered, used
and analyzed the real-life data collected while developing
the real commercial products for customers at SME com-
pany that develops software and shared their data with us.

The developed product is a dedicated web-based system
for company resources management. The considered devel-
opment process took almost 5 months and is divided roughly
into ten sprints.

The company used GitLab tool to manage the project-
related data, namely issues (backlog, user stories, features,
tasks, and bugs), source code repository, and continuous
integration (CI). To control the quality of the produced code
the company has used SonarQube.

The goal of our experiments was to validate the correct-
ness of the architectural assumptions of the Q-Rapids frame-
work, to verify the research hypotheses related to correlation
of software quality metrics with the process management
characteristics, and to assess the usefulness of the provided
functionalities. Also we provided results obtained during
the validation of our system to the company representatives.

The data from GitLab and SonarQube tools was collected
incrementally as received. The details on the collected data
and tentative results have been presented in the next section.

The procedure of data acquisition is presented in the
Fig. 3.

As depicted above, the real-project data was obtained
from the Git via our proxy and then, SonarQube tool was
fed with the data to calculate the code quality metrics.

4 Results

In this section we have presented the results obtained for the
proposed system. First, we demonstrate the measurements
of two selected metrics—data complexity and a number of
code comments.

Afterwards, we present tentative results of the advanced
metrics correlation. Finally, we presented the impact of the
measured metrics on strategic indicators affecting high-level
decision making.

4.1 Code metrics

For the purpose of our use-case and the validation of our
solution we focused on two groups of metrics: (a) related to
the code complexity (Figs. 4, 5) and (b) related to the code
comments density (Fig. 6).

The total number of lines of code in the inspected project
is presented in the Fig. 7.

As presented in the figures above, cognitive complexity
and duplication of lines of code increase with the increase
of a total number of code lines in the project. In the same
time, the overall ratio of commented lines to a total number
of lines decreases with the progress of development, and
reaches only about 3% in the end.

Fig. 3 Procedure of the data
acquisition in the process of
code metrics calculation

1932 R. Kozik et al.

1 3

Comparing increment of total number of code lines and
comment lines density at the same phases of project, it
can be noticed that absolute number of commented lines
increased slowly, when code complexity and duplication of
lines were significantly raising.

The lessons learnt for this use case is that it could be a
serious problem for the further code maintenance and its
possible reuse.

4.2 Results of correlation of quality metrics

In our experiments we used gathered data from ongo-
ing software development process to verify the following
hypotheses:

1. increasing size of sprint backlog correlates with the
increasing cognitive complexity and amount of dupli-

Fig. 4 Cognitive complexity
metric

Fig. 5 Total number of dupli-
cated lines in the code

Fig. 6 Density of comments in
the code (percentage)

1933Q-Rapids framework for advanced data analysis to improve rapid software development

1 3

cated lines (e.g. as the result of work under the time
pressure),

2. increasing amount of duplicated code correlates with the
increasing number of defects (bugs).

3. increasing complexity of code correlates with the
increasing number of defects (bugs), and

To verify those hypotheses, we have used estimates
obtained from cross-correlation function of two time series.

The results verifying the two first hypotheses are shown
in Fig. 8.

It can be noted that there exist statistically significant
correlation between the size of the sprint backlog and the
cognitive complexity of code as well as the number of the
duplicated lines. For both of these metrics we have observed
higher correlations for negative lags.

It means that the decreased code quality in the future
could be the future result of the currently potentially over-
sized backlog. This turned out to be the valuable informa-
tion for the product manager/owner, which can help plan
the future work.

The estimates of cross-correlation function for the third
hypothesis are included in Fig. 9.

It can be noted that these values are high and statistically
significant.

However, this relation is not surprising, since usually
complex code is prone to errors, in particular when time
pressure is presented in the development process.

4.3 Discussion of the results and their context

Adopting the Q-Rapids project approach and Quamoco
approach (Wagner et al. 2015) to the problem of modeling
of code quality, we assumed the following hierarchy (from
the low level to the high-level of the model):

1. Software quality metrics, derived directly from the
source code.

2. Product factors, calculated based on the gathered metrics
with the defined weights.

3. Quality factors, calculated based on the aggregated and
interpreted product factors.

This approach is shown in the Fig. 10.
On the basis of those assumptions, we concluded that:

Fig. 7 Total number of code
lines

Fig. 8 The correlation (ACF)
between the backlog size
and the cognitive complexity
for varying lag (left) and the
backlog size and the number
of duplicated lines (right).
The dashed lines represent an
approximate confidence interval
(95%)

1934 R. Kozik et al.

1 3

• Cognitive complexity and a number of duplicated code
lines (code metrics) impact analyzability of code (prod-
uct factor).

• Cognitive complexity (code metric) impacts adaptability
of code (product factor).

and that:

• Adaptability of code and analyzability of code (product
factors) impacts maintainability of code, what is impor-
tant quality factor for the company involved in our use
case.

On the basis of the measured code metrics, coming
from the real data sources used in the commercial software
development project, we concluded that the source code is
characterized by the relatively high level of duplication and
cognitive complexity (as shown in the Sect. 4.1).

On the other hand, the number of commented lines is
low (below 4% in relation to the total number of code lines).

Those metrics negatively impact (decreases) product fac-
tors, namely code analyzability and adaptability, what can
be significant limitation in case of further reuse of code,
decreasing the level of code maintainability. In this case, the
maintainability was expressed as quality factor, that deter-
mines high-level strategic decision making in the inspected
project.

Results of our experiment have been provided to the prod-
uct owner and top management of the company responsible
for the software development.

Therefore, after deploying our solution and our initial
findings, the corrective actions were taken in relation to the
software development processes in the company.

Our concept and implementation now evolves towards
the advanced system that will use the calculated metrics in
order to help in meeting quality requirements, better plan
tasks and issues, better assign tasks to particular develop-
ers, and finally, meet strategic indicators of the product and
organization (such as time to market, etc.).

The challenge and the need expressed by senior staff and
product owners is the ability to plan and assign tasks and
sprints. Indeed, looking at the proposed and calculated met-
rics allows for taking such decisions with more knowledge
and situational awareness, also showing the hidden correla-
tions between various aspects in the projects.

It is worth to mention, that some of the metrics should
have high values (in other words high values are desirable),
while some other metrics should have lower values (in other
words lower values or zeros are desirable) and the proposed
solution takes it into account and normalizes the results or
adjusts visualization.

Furthermore, the consortium works on the module for
generation the quality requirements and matching them to
the project status expressed in the calculated metrics. Those
automatically generated requirements (quality requirements

Fig. 9 The correlation (ACF)
between the cognitive complex-
ity and number of bugs (left)
and the number of duplicated
lines with number of bugs
(right). The dashed lines repre-
sent an approximate confidence
interval (95%)

Fig. 10 The quality model concept (Wagner et al. 2015)

1935Q-Rapids framework for advanced data analysis to improve rapid software development

1 3

for the code) will support the decisions taken by product
owners.

Moreover, the what-if analysis could be used to simulate
and show the different courses of taken actions [similarly as
for example in the critical infrastructures protection services
(Kozik et al. 2015)].

5 Conclusions

In this paper, we presented the Q-Rapids framework archi-
tecture for advanced analysis of the software quality related
data. We presented the concept, architecture, practical
deployment at external software development company as
well as the initial results. The goal is to support rapid soft-
ware development process to meet quality requirements and
customer needs.

Our initial results prove that after such data analysis the
valuable lessons learnt and software development metrics
are provided to relevant roles in the company. Our future
work is devoted to enlarging the set of the analyzed data
sources (e.g. JIRA etc.), calculation of more metrics, product
factors and strategic indicators, using the logs from the run-
ning products, and last but not least, to provide mechanism
prediction based on advanced machine learning techniques
(Andrysiak et al. 2014).

Of course, we are continuously in the process of vali-
dating our solution at more use-cases internal and exter-
nal to the project (large and small software development
companies).

Acknowledgements This work has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under
Grant agreement no. 732253. We would like to thank all the members
of the Q-Rapids H2020 project consortium.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

Andrysiak T, Saganowski L, Choraś M, Kozik R (2014) Network traffic
prediction and anomaly detection based on ARFIMA model. In:
Proceedings of SOCO-CISIS-ICEUTE conference. Springer, pp
545–554

Arvanitou EM, Ampatzoglou A, Chatzigeorgiou A, Avgeriou P (2016)
Software metrics fluctuation: a property for assisting the metric
selection process. Inf Softw Technol 72:110–124

Capgemini (2017) World quality report 2016–17, 8th edition. https ://
www.capge mini.com/world -quali ty-repor t-2016-17/. Accessed 9
Oct 2017

Choraś M, Kozik R (2015) Machine learning techniques applied to detect
cyber attacks on web applications. Log J IGPL 23(1):45–56

Cipolla E, Maniscalco U, Rizzo R, Stabile D, Vella F (2017) Analysis
and visualization of meteorological emergencies. J Ambient Intell
Humaniz Comput 8(1):57–68

Felderer M, Ramler R (2016) Risk orientation in software testing pro-
cesses of small and medium enterprises: an exploratory and com-
parative study. Softw Qual J 24(3):519–548

Franch X, Raty T, Rytivaara V, Ayala C, Lopez L, Martinez-Fernandez
S, Partanen J (2017) Data-driven requirements engineering in agile
projects: the Q-Rapids approach. In: 2017 IEEE 25th international
requirements engineering conference workshops (REW). IEEE, pp
411–414

Guzmán L, Oriol M, Rodríguez P, Franch X, Jedlitschka A, Oivo M
(2017) How can quality awareness support rapid software develop-
ment? A research preview. In: International working conference on
requirements engineering: foundation for software quality. Springer,
Cham, pp 167–173

Hira A, Boehm B (2016) Function point analysis for software mainte-
nance. In: Proceedings of the 10th ACM/IEEE international sym-
posium on empirical software engineering and measurement. ACM,
p 48

Jones C, Bonsignour O (2011) The economics of software quality. Addi-
son-Wesley Professional, Reading

Jorgensen PC (2016) Software testing: a craftsman’s approach. CRC
Press, Boca Raton

Kozik R, Choraś M, Flizikowski A, Theocharidou M, Rosato V, Rome
E (2015) Advanced services for critical infrastructures protection. J
Ambient Intell Hum Comput 6(6):783–795

Kozik R, Choraś M, Puchalski D, Renk R (2017) Data analysis tool sup-
porting software analysis process. In: Proceedings of 14th IEEE
international scientific conference on informatics. IEEE, pp 179–184

Mäkiaho P, Vartiainen K, Poranen T (2017) MMT: a tool for observ-
ing metrics in software projects. Int J Hum Cap Inf Technol Prof
(IJHCITP) 8(4):27–37

Mamun MAA, Berger C, Hansson J (2017) Correlations of software code
metrics: an empirical study. In: Proceedings of the 27th interna-
tional workshop on software measurement and 12th international
conference on software process and product measurement. ACM,
pp 255–266

Mauša G, Grbac TG (2017) The stability of threshold values for software
metrics in software defect prediction. In: International conference on
model and data engineering. Springer, Cham, pp 81–95

Menzies T, Yang Y, Mathew G, Boehm B, Hihn J (2017) Negative results
for software effort estimation. Empir Softw Eng 22(5):2658–2683

QASymphony (2016) The cost of poor software quality https ://www.
qasym phony .com/blog/cost-poor-softw are-quali ty/. Accessed 9 Oct
2017

Q-Rapids (2017) EU H2020 project. http://www.q-rapid s.eu/. Accessed
9 Oct 2017

Singh P, Singh S, Kaur J (2013) Tool for generating code metrics for C#
source code using abstract syntax tree technique. ACM SIGSOFT
Softw Eng Notes 38(5):1–6

Tovey A (2015) Cyber attacks cost British industry £34bn a year. http://
www.teleg raph.co.uk/finan ce/newsb ysect or/indus try/defen ce/11663
761/Cyber -attac ks-cost-Briti sh-indus try-34bn-a-year.html. Accessed
9 Oct 2017

Voas J, Kuhn R (2017) What happened to software metrics? Computer
50(5):88

Vytovtov P, Markov E (2017) Source code quality classification based
on software metrics. In: 2017 20th conference of open innovations
association (FRUCT). IEEE, pp 505–511

Wagner S, Goeb A, Heinemann L, Kläs M, Lampasona C, Lochmann K,
Trendowicz A (2015) Operationalised product quality models and
assessment: the Quamoco approach. Inf Softw Technol 62:101–123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.capgemini.com/world-quality-report-2016-17/
https://www.capgemini.com/world-quality-report-2016-17/
https://www.qasymphony.com/blog/cost-poor-software-quality/
https://www.qasymphony.com/blog/cost-poor-software-quality/
http://www.q-rapids.eu/
http://www.telegraph.co.uk/finance/newsbysector/industry/defence/11663761/Cyber-attacks-cost-British-industry-34bn-a-year.html
http://www.telegraph.co.uk/finance/newsbysector/industry/defence/11663761/Cyber-attacks-cost-British-industry-34bn-a-year.html
http://www.telegraph.co.uk/finance/newsbysector/industry/defence/11663761/Cyber-attacks-cost-British-industry-34bn-a-year.html

1936 R. Kozik et al.

1 3

Winter V, Reinke C, Guerrero J (2013) Sextant: a tool to specify and
visualize software metrics for Java source-code. In: 2013 4th

international workshop on emerging trends in software metrics
(WETSoM). IEEE, pp 49–55

	Q-Rapids framework for advanced data analysis to improve rapid software development
	Abstract
	1 Introduction
	1.1 The context
	1.2 Related work

	2 The proposed system architecture
	2.1 The system use cases and actors
	2.2 The information flow
	2.3 The architecture of the system

	3 Experiments
	4 Results
	4.1 Code metrics
	4.2 Results of correlation of quality metrics
	4.3 Discussion of the results and their context

	5 Conclusions
	Acknowledgements
	References

