CORRECTION

Correction to: Low-Grade Inflammation Aggravates Rotenone Neurotoxicity and Disrupts Circadian Clock Gene Expression in Rats

Huan Li^{1,2} • Sheng Song³ • Yuan Wang¹ • Chun Huang¹ • Feng Zhang¹ • Jie Liu^{1,3} • Jau-Shyong Hong³

Published online: 21 November 2018 © Springer Science+Business Media, LLC, part of Springer Nature 2018

Correction to: Neurotoxicity Research https://doi.org/10.1007/s12640-018-9968-1

The original version of this article contained mistakes, and the authors would like to correct them. Some parts of the image in Figure 5 were missing. The correct Figure 5 is shown at the next page.

The original article has been corrected.

The online version of the original article can be found at https://doi.org/10.1007/s12640-018-9968-1

Jie Liu Jie@liuonline.com

- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- ² Life Sciences and Technology Institute, China Pharmaceutical University, Nanjing 210023, China
- ³ National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA

Fig. 5 Effects of LPS and ROT on the expressions of circadian clock feedback gene Per1, Per2, Cry1, and Cry2. Rats were given LPS (5 mg/kg, i.p. ×1), and 7 months later 20 injections of rotenone (0.5 mg/kg, s.c., 5 times/ week for 4 weeks). Two weeks after the last ROT treatment, rats

were sacrificed and cortex was collected for analysis. Values are mean \pm SEM (n = 6-9). *Significantly different from the control group, # Significantly different from the LPS group, p < 0.05