
https://doi.org/10.1007/s12559-019-09634-2

Interpreting Recurrent Neural Networks Behaviour via Excitable
Network Attractors

Andrea Ceni1 · Peter Ashwin2 · Lorenzo Livi1,3

Received: 3 August 2018 / Accepted: 5 March 2019
© The Author(s) 2019

Abstract
Machine learning provides fundamental tools both for scientific research and for the development of technologies with
significant impact on society. It provides methods that facilitate the discovery of regularities in data and that give predictions
without explicit knowledge of the rules governing a system. However, a price is paid for exploiting such flexibility: machine
learning methods are typically black boxes where it is difficult to fully understand what the machine is doing or how it
is operating. This poses constraints on the applicability and explainability of such methods. Our research aims to open
the black box of recurrent neural networks, an important family of neural networks used for processing sequential data.
We propose a novel methodology that provides a mechanistic interpretation of behaviour when solving a computational
task. Our methodology uses mathematical constructs called excitable network attractors, which are invariant sets in phase
space composed of stable attractors and excitable connections between them. As the behaviour of recurrent neural networks
depends both on training and on inputs to the system, we introduce an algorithm to extract network attractors directly
from the trajectory of a neural network while solving tasks. Simulations conducted on a controlled benchmark task confirm
the relevance of these attractors for interpreting the behaviour of recurrent neural networks, at least for tasks that involve
learning a finite number of stable states and transitions between them.

Keywords Recurrent neural networks · Dynamical systems · Network attractors · Bifurcations

Introduction

Artificial recurrent neural networks (RNNs) are widely used
to solve tasks involving temporal data, e.g. speech [18] and
handwriting recognition [44], audio classification [26, 52]

� Lorenzo Livi
lorenz.livi@gmail.com

Andrea Ceni
ac860@exeter.ac.uk

Peter Ashwin
p.ashwin@exeter.ac.uk

1 Department of Computer Science, University of Exeter,
Exeter EX4 4QF, UK

2 Department of Mathematics, University of Exeter,
Exeter EX4 4QF, UK

3 Departments of Computer Science and Mathematics,
University of Manitoba, Winnipeg, MB R3T 2N2, Canada

or time series forecasting [8]. RNNs are characterised by the
presence of feedback connections in a hidden layer, which
allows generating a state–space representation that equips
the network with short-term memory capability. RNNs are
universal approximators of dynamical systems [14, 19],
meaning that, given enough neurons in the hidden layer, it is
possible to fine-tune the weights to achieve any desired level
of accuracy. Nevertheless, training via back-propagation
through time is difficult due to the vanishing/exploding
gradient problem [23, 43]. This has led to the development
of new and faster techniques for training RNNs, including a
different paradigm known as reservoir computing [32, 33].
Echo state networks (ESNs) [21, 30] constitute an important
example of reservoir computing, where a recurrent layer
(called a reservoir) is composed of a large number of
neurons with randomly initialised connections that are
not fine-tuned via gradient-based optimisation mechanisms.
The main idea behind ESNs is to exploit the rich dynamics
generated by the reservoir with an output layer, the read-out
that is optimised to solve a specific task.

Cognitive Computation (2020) 12:330–356

/ Published online: 23 March 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-019-09634-2&domain=pdf
http://orcid.org/0000-0001-6384-4743
mailto: lorenz.livi@gmail.com
mailto: ac860@exeter.ac.uk
mailto: p.ashwin@exeter.ac.uk

Problem Statement and Research Hypothesis

The high-dimensional and non-linear nature of RNNs
complicates interpretability of their internal dynamics,
which are characterised by complex, input-dependent
spatio-temporal patterns of activity [47, 55]. This poses
constraints on understanding the behaviour of RNNs:
they are usually viewed as black boxes from which it
is hard to extract useful knowledge about their inner
workings. As highlighted by recent research efforts [10,
24, 40], similar interpretability issues affect many other
machine learning methods. Furthermore, an increasing
societal need to develop accountability and explainability
of decision making by AI [17] is driving the development
of methodologies for explaining the behaviour of such
methods.

Our aim in this paper is to develop effective models
that capture the essential dynamical behaviour of RNNs
on computational tasks as input-driven responses of a
dynamical system, while neglecting microscopic details of
the RNN dynamics in phase space (i.e. the space of all
possible neuron activations). To this end, we hypothesise
that RNNs can undertake computations by exploiting (i)
transient dynamical regimes and (ii) excitable connections
to switch between different stable attractors, depending
on input and current state. The RNN behaviour depends
on the task at hand: for example, long transients are
mostly exploited in time series forecasting problems,
while switching between attractors is mostly exploited in
classification problems or tasks requiring to learn a finite
set of memory states. These mechanisms are not mutually
exclusive and can be exploited synergistically to realise
more complex computations.

Contribution and Paper Organisation

In order to test our hypothesis, we develop a theoretical
framework based on network attractors of dynamical
systems. An attractor is a subset of the state space of
a dynamical system (i.e., the phase space), where the
state will asymptotically converge for “usual” choices of
initial conditions. Network attractors are special kinds of
attractor which can be thought of as directed graphs,
where nodes correspond to local attractors and directed
edges correspond to particular trajectories that connect (or
almost connect) those local attractors. Since for this paper,
the local attractors of interest are all stable fixed points,
we will use the term local attractor synonymously with
stable fixed point. A stable fixed point is the simplest
possible attractors: this is a point in phase space where
all variables of the dynamical system assume constant
values, and all close enough initial conditions converge to
this point. However, fixed points need not be stable: they

can be partially stable (saddle points) or totally unstable
(repellers). According to the nature of the trajectories
connecting local attractors, it is possible to consider both
heteroclinic network attractors composed of heteroclinic
connections between saddles (i.e. partially stable fixed
points) and excitable network attractors (ENAs) composed
by connections that are excitable, i.e. that require a small
initial perturbation to move between stable attractors [5, 60].

Heteroclinic network attractors have already been sug-
gested as models to describe transient computation [45, 46];
here, conversely, we focus attention on ENAs which have
the advantage of being more robust to perturbations. We
focus particularly on ENAs between stable fixed points [5],
although ENAs can be theoretically conceived between any
kinds of local attractor: limit cycles, limit tori or strange
attractors. More precisely, we show how to construct ENAs
describing RNN behaviour for tasks that involve switch-
ing between a finite set of attractors. Interestingly, from a
directed graph (representing the underlying network attrac-
tor of a dynamical system), it is possible to reverse engineer
[4] a set of ordinary differential equations ruling, in our
case, the RNN behaviour. This, in turn, opens the way to
a more analytic description of how RNNs solve computa-
tional tasks.

In this paper, we focus on the flip-flop task with two bits
[55], since it provides a controlled workbench to test our
hypothesis. The input to discrete-time RNN is assumed to be
a discrete temporal sequence with values from {+1, 0, −1}.
In general, we consider discrete time k varying input,
denoted as u[k], and output, denoted as z[k], of a system
related by

(x[k], z[k]) = R(u[k], x[k − 1]), (1)

where R represents an RNN with evolving internal state,
namely x[k], and connection weights that are optimised
during the training phase. We consider response to inputs
where, independently for any k, u[k] is (0, 0) with
probability 1 − p or otherwise chosen to be one of the
four inputs (±1, 0) or (0, ±1) with equal probability. This
generates a sequence of inputs that remain at (0, 0) for an
exponentially distributed period of time, but occasionally
takes one of the four values (0, ±1), (±1, 0). The target
output to be learned by the RNN is a two-dimensional
vector z[k] that can assume four possible configurations:
(1, 1), (1, −1), (−1, 1) and (−1, −1). The system (1)
is considered to successfully accomplish the task if the
network is able to reliably and accurately reproduce all 20
possible actions described in Table 1.

We use RNNs that are ESNs subjected to supervised
training with a perturbation matrix obtained by injecting the
output into the ESN dynamics. This choice does not limit
the validity of our hypothesis: we claim that our results
are general and can be used to describe the behaviour

Cogn Comput (2020) 12:330–356 331

Table 1 The two-bit flip-flop task. Depending on the output z[k − 1] and input u[k], we expect the output z[k] to become as given in the table,
where N.C. indicates “no change” from the current output value

Outputs\ Inputs (0, 0) (1, 0) (−1, 0) (0, 1) (0, −1)

(1, 1) N.C. N.C. (−1, 1) N.C. (1, −1)

(1, −1) N.C. N.C. (−1, −1) (1, 1) N.C.

(−1, 1) N.C. (1, 1) N.C. N.C. (−1, −1)

(−1, −1) N.C. (1, −1) N.C. (−1, 1) N.C.

of more general discrete-time, input-driven RNNs. The
contributions of this paper can be summarised as follows:

• We provide a theoretical framework to describe the
behaviour of RNNs by means of ENAs. The proposed
theoretical framework is general and covers several
types of computational tasks. We present a specific
instance of such a framework applied to describe RNN
behaviour on tasks requiring to learn a finite set of
memory states;

• We use bifurcation analysis to manually design (low-
dimensional) ESNs that give rise to ENAs able to solve
the flip-flop task with any number of bits. This allows
us to justify our choice of modelling framework and
suggests its validity in the context of RNNs;

• As ESNs are driven by inputs and subject to training
via perturbation matrices, bifurcation analysis alone is
not sufficient to explain changes to their behaviour. In
fact, inputs and perturbation matrices can affect ESN
behaviour in a non-trivial way. To this end, we introduce
an algorithm to extract the ENA describing the ESN
behaviour for the task at hand. The algorithm analyses
an ESN trajectory and constructs a directed graph
encoding the underlying ENA on which the dynamics
takes place. The vertices (nodes) of such a graph
are associated with the fixed points of the dynamics
and directed edges describe excitable connections
between them. We apply this algorithm to an ESN
that is trained to solve the flip-flop task and show
that the resulting ENA is able to explain how ESNs
perform computations in a detailed and mechanistic
way;

• We define a notion of excitability threshold for this
high-dimensional, non-linear dynamical system driven
by inputs. We propose a method for computing this
excitability threshold that accounts for inputs and can
directly be applied to trajectories generated by a neural
network while solving a task;

• Our simulations suggest three important findings. First,
as already noted by recent research [1, 55], the dynam-
ics of high-dimensional RNNs takes place in a much
lower-dimensional phase space region that is deter-
mined by the structure introduced with training and

inputs. Here, we observe that the dynamics is indeed
low-dimensional, but highlight the fact that additional
dimensions are used occasionally to switch between
stable states according to control inputs. This suggests
that, for example, a simplistic use of methods based on
explained variance to reduce dimensions needs to be
avoided. Second, we show how ENA models describing
RNN behaviour can be exploited to provide a mech-
anistic interpretation of errors occurring during the
computation undertaken by RNNs. Finally, we show
how excitability thresholds of the extracted ENAs allow
us to assess the robustness of RNNs to noise-induced
perturbations.

The remainder of this paper is organised as follows. The
section “Background” introduces the essential background
material needed in this paper. The section “Designing
Low-Dimensional ESNs to Solve Flip-Flop Tasks” shows
how to design low-dimensional ESN models that give rise
to ENAs able to solve the flip-flop task. In “Extracting
ENAs from the ESN Trajectory”, we propose an algorithm
for automatically extracting ENAs directly from an ESN
trajectory generated while solving a task. In “Simulations”,
we present and discuss results of the simulations. Finally,
the section “Conclusions” draws conclusions and points to
future research directions. We include three appendices:
Appendix A reviews notions of linear stability used
throughout the paper. Appendix B discuss bifurcations of
fixed points for low-dimensional ESN maps. Appendix C
provides details of the procedure used to determine fixed
points.

Background

Echo State Networks

We consider a specific system of the form (1), corre-
sponding to a discrete-time ESN state-update and related
output:

x[k] = φ(Wrx[k − 1] + Winu[k]), (2)

z[k] = Wox[k]. (3)

Cogn Comput (2020) 12:330–356332

x[k] ∈ R
Nr is the state, u[k] ∈ R

Ni and z[k] ∈ R
No denote

input and output, respectively. The activation function φ(·)
is applied component-wise; without loss of generality, we
consider φ = tanh : R −→ (−1, 1). It is worth mentioning
[43] that Eq. 2 is often written x[k] = Wrφ(x[k − 1]) +
Winu[k]. However, [37] proved that the two formulations
are equivalent up to a change of coordinates; they produce
the same discrete-time dynamics. In this paper, we build
on Eq. 2 and consider a network of discrete-time leaky-
integrator neurons [22] of the form:

x[k] = (1−α)x[k−1]+αφ(Wrx[k−1]+Winu[k]+ε). (4)

Here, α ∈ (0, 1] is called a leak rate and explicitly sets the
timescale of the ESN [56]. The ε term represents additive
white Gaussian noise with spherical covariance matrix and
unit standard deviation.

The reservoir Wr ∈ R
Nr×Nr and input Win ∈

R
Nr×Ni matrices are usually random with i.i.d. entries

drawn from uniform or Gaussian distributions [31, 32].
However, in the literature, it is possible to find reservoirs
with different connection patterns, including deterministic
topologies [50] and those exploiting the norm-preserving
property of orthogonal matrices [36]. In our case, the
read-out matrix Wo ∈ R

No×Nr is optimised for the task
at hand. Relevant hyperparameters directly affecting ESN
performance include the number of neurons and sparseness
of their connections, the spectral radius of the reservoir
matrix, and leak rate α [9, 29]. The so-called echo-state
property (ESP) [15, 34, 62] guarantees the existence and
uniqueness of a global attracting trajectory for any input
sequence in a compact set. The ESP, although useful in
some tasks like forecasting tasks, is in practice difficult to
verify and it is usually formulated only for ESNs with state-
update of the form shown in Eqs. 2 and 4. Therefore, it is
not suitable to ESN models and tasks we discuss here (see
the following subsection).

Training ESNs with Low-Rank PerturbationMatrices

Training of RNNs is typically implemented by means of
stochastic gradient descent or variations of thereof [51].
Learning long-term dependencies in RNNs with gradient
descent is known to be problematic, as a consequence of
the so-called vanishing/exploding gradient problem [43].
To this end, different approaches have been proposed that
can be summarised in two categories: (i) methods using
gating mechanisms (such as Long Short-Term Memory [20]
and Gated Recurrent Unit [12] networks) and (ii) those
based on unitary matrices and constant-slope activations
[3]. On the other hand, training of the recurrent layer
in ESNs is typically realised by perturbing a randomly
initialised reservoir with a low-rank, deterministic matrix.
This is conventionally accomplished by feeding back the

ESN output to the recurrent layer [27, 48, 49, 59, 61] or, as
[35] recently proposed, by designing the reservoir directly
as Wr = X + D, where X is a random matrix and D is a
deterministic, low-rank matrix encoding the task of interest.

In this paper, we use a supervised learning algorithm
which exploits the feedback of the ESN output as a
mechanism for training the recurrent layer. The state-update
(4) takes the following form:

x[k] = (1−α)x[k−1]+αφ(Wrx[k−1]+Winu[k]+Wf by[k−1]+ε),

(5)

where Wf b ∈ R
Nr×No is a matrix with i.i.d. random

coefficients usually drawn from a uniform or Gaussian
distribution. Depending on whether training is performed
batch or online y[k − 1] in Eq. 5 takes the form of either
the target signal or the output produced by the ESN (3),
respectively. In batch mode, it is possible to distinguish
two main phases (see Fig. 1 for an illustration). First, the
reservoir is fed with an auxiliary input, i.e. the target signal
y. We construct a matrix X ∈ R

N×Nr containing the
states x[k] of the ESN generated in response to target and
input signals. Finally, the weights Wo of the read-out are
determined by solving a regularised least-squares problem,

Wo =
((
X�X + λ2I

)−1
X�y

)�
, where I is an Nr × Nr

identity matrix and λ ≥ 0 is a regularisation parameter.
Successively, the target signal is replaced by the generated
output z; this “closed-loop phase” corresponds to the test
phase of the trained ESN. An analysis of the stability of the
transition from open- to closed-loop can be found in [49].

Definition 1 We call the trained reservoir the following
matrix

M := Wr + Wf bWo. (6)

Once the read-out matrix Wo is optimised, by imposing
y[k] = z[k] and expanding in Eq. 5 with Eq. 3, we obtain:

x[k] = (1 − α)x[k − 1] + αφ(Wrx[k − 1] + Winu[k]
+Wf bWox[k − 1] + ε)(1 − α)x[k − 1]
+αφ(Mx[k − 1] + Winu[k] + ε). (7)

Remark The trained reservoir (6) is obtained by adding a
matrix Wf bWo ∈ R

Nr×Nr , which is low-rank No � Nr

relative to the randomly initialised reservoir matrix Wr .
Therefore, the reservoir is in some sense trained using
output feedback connections.

Inputs u[k] in Eq. 7 play the role of control inputs and
are typically constant or impulsive signals. The ESN read-
out matrix Wo is conventionally determined by solving

Cogn Comput (2020) 12:330–356 333

Fig. 1 Left Illustration of a ESN in the open-loop (training) phase (5).
Training is supervised by means of the target signal y. Right Illus-
tration of an ESN (7) after the optimisation of the read-out matrix.

Feeding back the output signal into the reservoir gives the closed-loop
(trained) system which self-sustains the dynamics driven by the input
signal

a regularised least-squares problem. Nonetheless, we note
that also online training schemes have been developed,
e.g. the FORCE learning algorithm originally introduced in
[54] and further extended by [13]. During the test phase,
regardless of the adopted training mechanism, the state-
update of ESNs is described by Eq. 7. In this paper, we
consider batch training via ridge regression and analyse the
trajectory generated by Eq. 7 during the test phase.

It is worth noting that our theoretical framework does
not rely on a particular training method or a particular
RNN architecture. We note that complicated (trained) RNN
models may be described using a noisy nonautonomous
dynamical system, which in our system is represented by
Eq. 7. We focus on ESNs as they are the simplest RNN
models to test our hypothesis. For this reason, the terms
ESN and RNN are used interchangeably.

Network Attractors

Many common dynamical systems encountered in nature
are dissipative [11, 53]. In such systems, the absence
of any conservation law means that typically the system
evolves towards an attracting set of dimension strictly less
than the original phase space dimension; such a set (or a
particular subset of it) is commonly called an attractor:
formal definitions are discussed for example in [39]. The
basin of attraction of an attractor is the set of all initial
conditions from which the system evolves toward the
attractor. Attractors convey crucial information about the
behaviour of the dynamical systems which have generated
them.

Here, we consider the following noise-free discrete-time
dynamical system with inputs:

x[k] = G(x[k − 1],u[k]), (8)

where G : RNr ×R
Ni −→ R

Nr is related to Eq. 7 as follows:

G(x,u)=

⎛
⎜⎜⎜⎝

(1−α)x1+αφ
(
M(1) · x + (Win)(1) · u)

(1−α)x2+αφ
(
M(2) · x + (Win)(2) · u)

...
(1−α)xNr +αφ

(
M(Nr) · x + (Win)(Nr) · u)

⎞
⎟⎟⎟⎠ ,

(9)

where M is the trained reservoir matrix (6), the subscript (i)

denotes the ith rows of a matrix and · the usual dot product.
As mentioned before, the input signal for the flip-flop task
is null most of the time, at which point it is governed by the
autonomous dynamics of

x[k] = F(x[k − 1]) = G(x[k − 1], 0). (10)

Fixed points p ∈ R
Nr are solutions of F(p) = p. Related to

the notion of attractor is the notion of limit set [11], thus we
introduce the following

Definition 2 The ω-limit set of a point x0 under the iterated
map (10) is defined by

ωF(x0) :=
⋂
n∈N

{Fh(x0) | h > n}. (11)

Remark The ω-limit set of a point x0 is the set of limit
points of the forward trajectory {Fh(x0)}h∈N. For a given
fixed point p, its basin of attraction is formed by all points
x ∈ R

Nr such that ωF(x) = {p}. If such a fixed point is
stable, then there exists a neighbourhood of p whose ω-limit
set corresponds to this fixed point.

More complex attractors consisting of networks of
invariant sets in phase space have been proposed in the
literature [41, 60]. Such models found renewed interest in
neuroscience [38, 58] and other fields of research, as they

Cogn Comput (2020) 12:330–356334

provide a fundamental tool to describe dynamic processes
occurring on transients that explore excitable connections.
More relevant to our paper, we focus on networks of stable
fixed points that are connected by excitable connections.
Following [5, 6], we say that there exists an excitable
connection for amplitude δ > 0 from stable fixed point pi

to pj whenever

Bδ(pi) ∩ Ws(pj) �= ∅, (12)

where Bδ(pi) stands for the closed ball centred on pi with
radius δ > 0 and Ws(pj) = {

x ∈ R
Nr | ωF(x) = {pj }

}
denotes the basin of attraction1 of the fixed point pj .

Definition 3 We define excitability threshold [5] (or just
threshold) of the excitable connection from pi to pj , and
denote it as δth(pi ,pj), the following nonnegative real
number:

δth(pi ,pj) := inf{δ > 0 : Bδ(pi) ∩ Ws(pj) �= ∅}. (13)

Remark The quantity (13) can be informally interpreted as
the fact that the fixed point pi is δth(pi ,pj) away from the
basin of pj (see Fig. 2 for a visual explanation).

Definition 4 A set Xexc ⊂ R
Nr is called an excitable

network attractor (ENA) for amplitude δ > 0 if there exists
a collection of fixed points {pi}Mi=1, such that

Xexc({pi}Mi=1, δ) :=
M⋃

i,j=1
i �=j

{
Fh(Bδ(pi))

}
h≥0

∩ Ws(pj),

(14)

where F(Bδ(pi)) := {F(x) | x ∈ Bδ(pi)} is based on Eq. 10
(see [5, 6]).

The autonomous dynamics on such a set converges to
one of the stable fixed points; hence, external inputs are
necessary to get interesting dynamics. If the external input
is large enough, then the state will escape from the current
basin of attraction and switch to a different one, until
another sufficiently large input will lead to another change
of basin.

The excitability threshold (13) is defined as the
(Euclidean) distance between a given stable fixed point,
pi , and the basin of attraction of another fixed point, say
pj . Such a quantity measures the minimum distance in
phase space necessary to escape from the basin of pi and
converge towards pj . Nevertheless, if the dynamical system
is high dimensional, then there will be a large number
of possible escaping directions that could be exploited by

1The basin of attraction corresponds to the stable manifold whenever
pj is hyperbolic. This has interior if pj is an attractor.

inputs. Therefore, excitability thresholds (13) alone may
not be representative of nonautonomous systems driven
by inputs. For this purpose, in order to take into account
the action of inputs on the dynamics, we introduce the
notion of input-driven excitability threshold of an excitable
connection. Considering K as a compact subspace of RNi ,
we define G(x0; K) := ⋃

u∈K G(x0,u), where G is the
function in Eq. 9 defining the nonautonomous dynamical
system which describes the trained neural network. The set
G(x0; K) contains all states reachable from x0 under the
action of input values u ∈ K . Importantly, the presence of
noise has the effect to perturb away the internal state from
the exact location of the stable point in the deterministic
counterpart of the dynamics. Therefore, instead of G(pi; K),
we rather observe the following set.

Definition 5 We call local input response set of the stable
point pi the subset of phase space defined by:

G(Br(pi); K) :=
⋃

x∈Br(pi)

G(x; K), (15)

where the radius r can be shrunk according to the amplitude
of the noise and K is a subset of admissible input values for
the task at hand.

Remark Continuity of G implies that, if r → 0+,
then the monotonically decreasing sequence of sets
{G(Br(pi); K)}r≥0 converges to G(pi; K) regardless of
K ⊂ R

Ni . Furthermore, we note that G(Br(pi); K), as a
subspace of RNr , is compact if K ⊂ R

Ni is compact.

If K represents all possible inputs of a particular task2,
then we can drop it and denote (15) simply as G(Br(pi)).
Therefore, the subregion of the phase space represented by
the local input response set G(Br(pi)) encodes the action
exercised by the input when the internal state of the RNN is
nearby the stable point pi .

Definition 6 We define input-driven excitability threshold
of the excitable connection from pi to pj , and denote it as
δinp(pi ,pj), the following nonnegative real number:

δinp(pi ,pj) := inf{δ > 0 : G(pi)∩Bδ(pi)∩Ws(pj) �= ∅}.
(16)

Remark The excitability threshold in Eq. 16 has a similar
meaning to the one defined in Eq. 13, although it considers
only the subspace exploited by the action of inputs nearby
pi , where the excitable connection starts from (see Fig. 2).

2For example, in the flip-flop task, we have K = {(0, 0), (1, 0),

(−1, 0), (0, 1), (0, −1)}.

Cogn Comput (2020) 12:330–356 335

Fig. 2 Left Depiction of an excitable connection from pi to pj . The
red area is a closed ball centred on pi of radius δ. The blue area rep-
resents the stable manifold of pj , i.e. its basin of attraction. The open
circle represents a saddle whose stable manifold (blue curves) denotes
the boundary of the basin of attraction of pj . Some points of Bδ(pi)

converge to pi itself, while those points beyond the basin boundary
converge towards pj , as suggested by the black arrows. Right Repre-
sentation of the activation of an excitable connection through the action
of the input which allows accomplishing the switch from the stable
point pi to the stable point pj . Firstly, the internal state of the RNN
stands nearby the stable point pi , in the neighbourhood Br(pi). Then,

a control input u[k+1] ∈ K drives the current internal state x[k] to the
next state x[k + 1] inside the local input response set, represented as
the green subregion. Finally, if the state falls beyond the basin bound-
ary, then the internal state converges to the stable point pj . Excitability
threshold δth(pi ,pj), in Eq. 13, is computed along the direction where
the distance is shortest in order to escape from the basin of attraction
of pi and converge to pj . Nevertheless, input can potentially drive the
dynamics towards alternative dimensions for the purpose of achiev-
ing the switch from pi to pj . The input-driven excitability threshold
δinp(pi ,pj), in Eq. 16, is computed considering the subspace exploited
by the input to solve the task

Finally, from the fact that G(pi) ∩ Bδ(pi) ∩ Ws(pj) ⊆
Bδ(pi) ∩ Ws(pj), it follows that δth(pi ,pj) ≤ δinp(pi ,pj)

holds for all pairs of fixed points.

Designing Low-Dimensional ESNs to Solve
Flip-Flop Tasks

In this section, starting from ESN models, we show how
to manually design ENAs that realise computations needed
for the flip-flop task. This step allows us to justify the
choice of the modelling framework adopted here and its
validity in the context of RNNs. For this purpose, we rely
on the bifurcation theory (see Appendix B for technical
notions). A bifurcation [28] is a qualitative change in the
solution set (phase space topology) on changing a parameter
of a dynamical system. On varying the parameters of the
model, if such qualitative changes appear, then we say the
system has undergone a bifurcation. For this reason, the
notion of bifurcation plays an important role in training
RNNs and in describing their behaviour. Training the
recurrent layer of RNNs corresponds to shaping their phase
space topology, possibly inducing bifurcations that lead to
a qualitative change in behaviour. We argue that adding
a low-rank perturbation matrix to the reservoir (6) can
induce bifurcations that lead to the creation of attracting
regions in ESN phase space useful to solve the task at
hand. Clearly, this can also happen with more sophisticated
training algorithms. Let us assume the origin as the only
global attractor for the autonomous system x[k] = (1 −
α)x[k−1]+αφ(Wrx[k−1]) associated with Eq. 5. Then, the
bifurcation induced by Eq. 6 leads to a transition from such

a trivial dynamic to one where the origin becomes unstable3

and repels trajectories towards other attracting regions in
phase space, where the nonautonomous dynamics actually
takes place.

In “A Minimal-Dimension Example to Solve the Two-Bit
Flip-Flop Task”, we provide a low-dimensional example of
an ESN that is able to solve the flip-flop task; the reservoir of
such ESN is formed by two neurons. In “A 2k-Dimensional
Model for k-Bit Flip-Flop Tasks”, instead, we design an ESN
model with a reservoir formed by 2k neurons which is able
to solve the flip-flop task with k bits. For both examples, we
show there is an underlying ENA that explains their dynamics.

AMinimal-Dimension Example to Solve the Two-Bit
Flip-Flop Task

In order to solve the k-bit flip-flop task, one needs to
learn 2k memory states (stable fixed points) and the related
switching patterns dictated by control inputs. Here, we show
how to design an ESN with two neurons in the recurrent
layer, giving rise to an ENA able to solve the flip-flop task
with k = 2 bits. According to the analysis of Appendix B,
we know that it is possible to obtain, with k neurons, up
to 3k fixed points, 2k of which are stable, 3k − 2k − 1 are
saddles and 1 (the origin) is a repeller. Therefore, we set the
trained reservoir weights (6) according to condition (43). In
in particular,

M(b) := ωr

[
1 b

b 1

]
(17)

3The origin could in principle remain stable and other attractors appear
elsewhere: an example can be found in [62].

Cogn Comput (2020) 12:330–356336

Fig. 3 Basins of attraction, nullclines, fixed points and correspond-
ing eigenvectors of the linearised two-dimensional system (17), with
b = 0.2. Black curves represent the nullclines (see Appendix B) whose
reciprocal intersections determine fixed points (black squares). Red
segments indicate eigenvectors of the linearised system for real eigen-
values larger than 1. Blue line segments represent eigenvectors of real
eigenvalues in (0, 1). Particularly important are blue lines of saddles,
which represent local linear approximations of the boundary of the

basins of attraction. The whole phase space is divided into four basins
of attraction associated to the four stable points and their boundaries.
These boundaries between these basins coincide with the stable mani-
folds of the saddles. The legend shows output values produced at every
attractor, which, in this specific example, correspond with the inter-
nal state, i.e. the phase space coordinates of the attractors. Points on
the plane have been coloured according to the attractor to which they
apparently converged to after 100 steps

with ωr = 3 scaling the reservoir weights, and b acting as
tuning parameter. As shown in Fig. 3, for every 0 ≤ b <

0.47, the autonomous system x[k] = tanh (M(b)x[k − 1])
has four stable attractors located near the vertices of the
invariant square [−1, 1]2.

The input is injected into the ESN via the following
weight matrix, Win = ωinI2, i.e. a scaled 2 × 2 identity
matrix, setting the scaling factor (called a hyperparameter
in machine learning) to ωin = 6. Let us set the remaining
parameters in Eq. 7 as ε = 0 and α = 1, and let the
ESN output (3) be the identity mapping. Let us assume
that, at time k, the system is in state p = (p1, p2),
which is close to one of the four attractors, i.e. p1 ≈
(1, 1), p2 ≈ (−1, 1), p3 ≈ (−1, −1), p4 ≈ (1, −1).
The possible, non-null inputs at time-step k are u[k] ∈
{(1, 0), (0, 1), (−1, 0), (0, −1)}. The action of the input
pulse is encoded in a vector � ∈ [−1, 1]2, representing the
difference between the state before and after the occurrence
of such a pulse, whose components are

�j ≈ tanh
(
3pj + 6uj

)− tanh
(
3pj

)
, j = 1, 2, (18)

considering ωr = 3, ωin = 6 and, for the sake of
simplicity, b = 0, which corresponds to the case of
two independent neurons. Hence, the switching mechanism
between attractors is ruled by the signs of both pj and
uj ; the former encoding the position and the latter the
direction where to move. Therefore, the state changes if
and only if pj and uj assume different signs for some
j ∈ {1, 2}. In fact, if they have the same sign, then Eq. 18
is null because tanh

(
sgn(pj)[3 + 6]) ≈ tanh

(
sgn(pj)3

)
due to saturating activation functions. While, if they have
different signs, then Eq. 18 becomes close to −1 or 1,
according to sgn(pj), because tanh

(
sgn(pj)[3 − 6]) =

− tanh
(
sgn(pj)3

)
. Clearly, it is not necessary that |ωr −

ωin| = ωr holds, as in our set up. Although we assumed
b = 0 for clarity of explanation, the conclusion is the
same for each b ∈ [0, 0.47). However, when the parameter
approaches the bifurcation value b ≈ 0.47, the escaping
dynamics from certain fixed points become significantly
slower.

Given a set of stable fixed points, a δ > 0 gives rise
to a specific ENA (see definition of ENA in Eq. 14). For

Cogn Comput (2020) 12:330–356 337

instance, a large δ will potentially activate all excitable
connections between the attractors. However, in order to
properly solve the flip-flop task, some of the connections
need not to be active, namely the diagonal connections
between p1 and p3, and between p2 and p4. Due
to symmetry, there are only three different excitability
thresholds that an excitable connection can have, that
is δth(p2,p1), δth(p1,p2), δth(p1,p3). In the particular
configuration shown in Fig. 3, it holds that δth(p2,p1) <

δth(p1,p2) < δth(p1,p3). Therefore, the underlying ENA
supporting the nonautonomous ESN dynamics is defined as
Xexc({pi}4

i=1, δ), for every δth(p1,p2) < δ < δth(p1,p3).
We note that δth(p1,p3) ≈ √

2, regardless of b ∈ [0, 0.47).
We can reduce the size of the basin of attraction of p2

and p4 by increasing the value of b, which in turn reduces
the excitability threshold of the corresponding connections,
until at b ≈ 0.47 a bifurcation occurs making them
disappear4. However, the basins of attraction of the other
two stable points, p1 and p3, become bigger (δth(p1,p2) ≈
2 − δth(p2,p1)), so increasing their excitability thresholds.
Therefore, when the ESN state is close to p1 (or p3), the
input needs to be very precise to throw back the state to
the narrow basins of p2 and p4. Moreover, it must have
a large amplitude compared to what is needed to escape
from such narrow basins. Nevertheless, setting ωin large
enough and depending on b (until a value of ωin =
6, which is enough for every 0 < b < 0.47), the
system is able to reproduce the flip-flop dynamics without
errors.

Unfortunately, it does not seem to be possible to design
a two-dimensional ESN for the two-bit flip-flop where the
excitability of each attractor can be tuned by changing the
location of the nearby saddles. Nevertheless, as we will
show in the next section, this becomes possible by including
two additional dimensions in the model.

A 2k-Dimensional Model for k -Bit Flip-Flop Tasks

In this section, we propose a 2k-dimensional model able
to solve k-bit flip-flop tasks. For the sake of clarity, but
without loss of generality, we show the k = 2 bit case.
The key insight is to model the switching dynamics between
two fixed points in a two-dimensional space and then
build a model formed by two independent systems with
two-dimensional switching dynamics.

Unlike the previous example, here we want to tune the
excitability of all connections. This can be obtained by
imposing the condition in Eq. 42 and tuning the reservoir

4A bifurcation where both saddles collide with the corresponding
stable points p2 and p4, simultaneously annihilating all six fixed
points.

weights to change the position of the saddles. Therefore, we
define

B :=
[

1.1 4
−s 4

]
, (19)

where s is a real parameter. Hence, for 0 ≤ s <

2.15, the autonomous dynamical system defined by
x[k] = tanh (Bx[k − 1]) has one repeller (the origin), two
attractors, namely p1 ≈ (1, 1), p2 ≈ (−1, −1), and two
saddles. By increasing s within the [0, 2.15) interval, we
can make the saddles closer to the respective stable points
(see Fig. 4), hence decreasing the excitability thresholds
of these attractors, until a saddle-node bifurcation occurs
approximately at s = 2.15, annihilating attractors with
saddles.

Let us define the input matrix as follows:

Win := ωin

[
0 0
1 0

]
,

where ωin is a positive real parameter. For instance, setting
s = 2 and ωin = 1, the two-dimensional dynamical system
defined by x[k] = tanh (Bx[k − 1] + Winu[k]) is able to
accomplish the switching mechanism between p1 and p2

according to inputs (1, 0), (−1, 0), and ignore other inputs,
i.e. (0, 1), (0, −1). Of course, replacing zeros in Win with
relatively small values (compared to ωin) does not change
the results.

The complete system able to solve the two-bit flip-
flop dynamics can be obtained by defining the reser-
voir as the following four-dimensional block diagonal
matrix,

M :=
[
B 0
0 B

]
, (20)

where 0 denotes a 2 × 2 matrix with all zeros. Starting from
a given initial condition, for every 0 ≤ s < 2.15, the state of
the four-dimensional autonomous dynamical system x[k] =
tanh (Mx[k − 1]) converges to one of these four attractors
(p1,p1), (p1,p2), (p2,p1), (p2,p2). In order to produce a
two-dimensional output (3) suitable for the task at hand,

we define Wo :=
(

1 0 0 0
0 0 1 0

)
, which basically corresponds

to a projection onto the first and third component, i.e.
(x1, x2, x3, x4) �−→ (x1, x3). Finally, we define the input
matrix as:

Win := ωin

⎡
⎢⎢⎣

0 0
1 0
0 0
0 1

⎤
⎥⎥⎦ .

Cogn Comput (2020) 12:330–356338

Fig. 4 Basins of attraction,
nullclines, fixed points and
eigenvectors of the linearised
two-dimensional autonomous
system having (19) as reservoir
matrix, with s = 2. Black curves
represent the nullclines (see
Appendix B) whose reciprocal
intersections determine fixed
points (black squares). Red
segments indicate real
eigenvectors associated with real
eigenvalues larger than 1. Blue
line segments represent real
eigenvectors of real eigenvalues
in (0, 1). Points of the plane
have been coloured according
with the attractor on which they
converged after 100 steps

We considered the case of a four-dimensional system
composed by two independent two-dimensional systems.
Nevertheless, the dynamics remains qualitatively the same
even if the coupling between these two-dimensional sys-
tems is weak, i.e. if the zero matrices in Eq. 20 are replaced
by matrices with relatively small (absolute) values. With
those definitions in mind and, as before, ε = 0 and α = 1,
the ESN ruled by Eqs. 7 and 3 correctly implements the
flip-flop task with two bits.

As the dynamics of systems (x1, x2) and (x3, x4) are
independent from each other, the set of fixed points of
the overall dynamics turns out to be the Cartesian product
of the set of fixed points of (x1, x2) and the fixed points
of (x3, x4) system. This gives rise to a large number of
fixed points: there are 4 stable points, 8 saddles with 1
unstable directions, 8 saddles with 2 unstable directions, 4
saddles with 3 unstable directions and 1 repeller. However,
the set of fixed points where the nonautonomous flip-
flop dynamics takes place is formed by 4 stable fixed
points and 8 saddles with only one unstable direction
(see “Evaluation on Manually Designed Low-Dimensional
ESNs” for a detailed example). Every stable fixed point is
close to a pair of saddles and, due to symmetry, they are all
at the same distance δth(p1,p2). This quantity defines the
excitability thresholds of the connections needed in the flip-
flop task, and therefore implicitly defines the ENA ruling
the behaviour of the four-dimensional ESN.

Extracting ENAs from the ESN Trajectory

In this section, we describe the proposed algorithm to
extract an ENA from an ESN trajectory. The proposed
algorithm, which is schematically illustrated in Fig. 5,
takes the trained reservoir matrix M (6) and a trajectory
of the nonautonomous ESN (7) as input and produces a
weighted directed graph, representing the ENA describing
the ESN behaviour, as output. The algorithm is composed
of two main steps. In “Finding Fixed Points of the
Dynamics”, we describe the procedure to find fixed
points of the ESN dynamics (corresponding to the
vertices of the graph). Successively, in “Determining
Excitable Connections Between Attractors”, we show
how to determine the excitable connections and related
thresholds between stable fixed points (corresponding to the
weighted directed edges).

Finding Fixed Points of the Dynamics

The optimisation algorithm we have used to find fixed
points is based on [55] (see [16] for an open-source
Tensorflow toolbox for finding fixed points in arbitrary
RNN architectures and [25] for an alternative method to
identify fixed points). The key idea is to define a scalar
function whose minima correspond to fixed points of the
ESN dynamics.

Cogn Comput (2020) 12:330–356 339

Fig. 5 The proposed method to extract ENAs from trajectories

Definition 7 We call velocity field of the autonomous
system (10) the vector field Q : RNr −→ R

Nr , defined as

Q(x) := F(x) − x, (21)

with F being the map in Eq. 10.

Therefore, the velocity field takes the following form:

Q(x) = α [tanh(M · x) − x] , (22)

where Q(x[k]) is the vector that needs to be added to the
current state x[k] to obtain the next one. In fact,

x[k + 1]=F(x[k]) ⇐⇒ x[k + 1]−x[k] = F(x[k]) − x[k]
⇐⇒ x[k + 1]=x[k] + Q(x[k]). (23)

Definition 8 We define kinetic energy of the autonomous
system (10) to be the following scalar function:

q(x) := 1

2
‖Q(x)‖2. (24)

Note that fixed points x∗ ∈ R
Nr satisfy Q(x∗) = 0 if

and only if q(x∗) = 0. Fixed points are hence identified
as the global minima of Eq. 24. We use the quasi-Newton
algorithm BFGS [42] to minimise (24). In order to speed
up the optimisation by several orders of magnitude, we
explicitly provided the gradient of Eq. 24 to BFGS, which
reads:

∇q(x0) = JQ(x0)
T Q(x0) = α

(
D(x0)M − INr

)T Q(x0),

(25)

where INr is an Nr × Nr identity matrix, JQ(x0) denotes
the Jacobian matrix of the velocity field (22) and D(x0) is

a diagonal matrix defined in Eq. 31 of Appendix A, both
evaluated on x0.

The initial conditions for minimising (24) are determined
by randomly sampling states from a trajectory of the
nonautonomous ESN (7). The convergence of the BFGS
algorithm depends on a tolerance. In fact, the algorithm
may converge to similar solutions that, depending on chosen
tolerance, are numerically different. As these solutions
represent fixed points of the dynamics, we aggregate them
in a meaningful way and return a nonredundant set of
fixed points. For this purpose, as a post-processing step,
we run a clustering algorithm on the set of all solutions
and return only cluster representatives (details provided in
Appendix C).

Determining Excitable Connections Between
Attractors

Once stable fixed points have been identified, we determine
the excitable connections between them. As discussed
before (and in more detail in Appendix B), the ESN
training (6) induces bifurcations that generate new fixed
points, and possibly also other attracting regions in phase
space that, however, are not explicitly modelled in this
work. The ESN is driven by control inputs that allow us
to correctly perform switches between stable states. As a
consequence, we first need to understand how such inputs
affect the dynamics from a geometric point of view. This
is done in “Local Switching Subspaces” by introducing the
notion of local switching subspace (LSS), which is strictly
related to the notion of local input response set, Eq. 15,
introduced in “Network Attractors”. Then, in “Estimation
of Excitability Thresholds”, we describe how we determine

Cogn Comput (2020) 12:330–356340

Fig. 6 Top In blue, the low-dimensional space containing the attrac-
tors; black arrows represent local PDVs (26) originating from the
attractor pi which in turn define the LSS of pi , sketched in red. Bottom
left Representation of the local input response set G(Br (pi)), in green,
and the grid G(pi), dashed line, in the LSS of pi , in red. Bottom right

The partition of a two-dimensional grid G(pi). Every colour repre-
sents a subset (27). Dashed black lines track the boundary of the basins
corresponding to those attractors reachable from pi through excitable
connections, which can be enabled by inputs allowing exploration of
the hypercube centred on pi

all excitable connections that are relevant for the task under
consideration and compute their excitability thresholds. The
method we propose is based on a grid of points lying in the
LSS, accounting for the input action on the dynamics. By
simulating the autonomous dynamics with initial conditions
taken from such a grid, we are able to approximate input-
driven excitability thresholds (16) and also to quantify how
likely it is that the RNN uses such connections while solving
the task.

Local Switching Subspaces

Definition 9 Let us consider an ESN trajectory (7),
x[0], x[1], x[2], . . . , x[k], . . ., obtained with inputs
u[1],u[2], . . . ,u[k + 1], Moreover, let us denote with
K := {ki}i∈N the set of indices for which u[ki] �= 0. We
define pulse difference vector (PDV) a vector containing
the difference between pre- and post-input states, namely

x[ki] − x[ki − 1], ki ∈ K. (26)

The PDVs (26) convey relevant information about the
action of inputs on ESN state and we exploit such infor-
mation to determine the excitable connections and related
thresholds.

Remark We remind the reader that the number of
nonzero inputs is controlled by the parameter p of
the exponential distribution (see (1) and related dis-
cussion in the text), which in turn determines the
(average) number of PDVs available for the following
analysis.

In order to compute only those connections that are
actually used by the ESN while solving the task, we need
to focus on the action of inputs in the neighbourhood of
each attractor. To this end, we consider an Euclidean ball
Br(p) of radius r ≥ 0 centred on an attractor p, and call
local PDVs of p the finite set of PDVs that originate inside
Br(p). Therefore, referring to Eq. 15, the local PDVs of p
is a collection of vectors originating in Br(p) and ending in
G(Br(p)).

Definition 10 Let L(p) be the vector space obtained by
means of principal components analysis of the local PDVs
(26) of the attractor p, retaining only l � Nr principal
components. We define the local switching subspace (LSS)
of p, and we denote it as p+L(p), the affine space composed
by attaching the vector space L(p) over p (see Fig. 6, top
panel).

Cogn Comput (2020) 12:330–356 341

Estimation of Excitability Thresholds

The idea is to sample the LSS of a stable point pi and
describe it as a grid of points G(pi). Then, we consider those
points on the grid as initial conditions for the autonomous
system (10), which is then iterated for a sufficiently large
number of steps to ensure convergence to nearby attractors.
Finally, tracing the evolution of these initial conditions
allows us to estimate excitability thresholds and other
relevant quantities.

The proposed algorithm for finding excitability thresh-
olds is graphically illustrated in Fig. 6. The algorithm is
based on a hypercube H(pi) centred on the attractor pi

that is contained within the LSS pi + L(pi). The length of
the hypercube is such that H(pi) contains the projection of
G(Br(pi)) on pi + L(pi). In order to estimate excitability
thresholds, we consider a mesh with a pre-defined density
of points on the hypercube H(pi), thus obtaining a grid of
points, G(pi) = {gi

j }. To simplify the notation, we use a
single index j to enumerate points of the grid. Through the
ω-limit set (11) of the grid G(pi), that is:

ωF(G(pi)) =
⋃
j

ωF(gi
j),

we can compute the following nonnegative integer c(pi) :=
|ωF(G(pi))| − 1, which counts the number of excitable
connections originating from pi which are allowed to be
activated through input. Indeed, ωF(G(pi)) is composed
of a set of stable fixed points, {pi0 ,pi1 ,pi2, . . . ,pic(pi)

},
determining the endpoints of the c(pi) different excitable
connections.

Remark Note that if the grid is sufficiently dense, then the
attractor itself is always included in such a set of fixed
points. However, we do not count this as an excitable
connection. In what follows, we assume that the attractor is
indexed by i0, i.e. pi0 = pi .

With these definitions in mind, we are ready to compute
thresholds of excitable connections. Let us denote with

σi : {1, . . . , |G(pi)|} −→ {i0, i1, . . . , ic(pi)},
an indexing function such that pσi(j) = ωF(gi

j). Through

the pre-image σ−1
i (·), we obtain a partition of points of the

grid into the following subsets:

G(pi;pit) := {gi
j ∈ G(pi) | j ∈ σ−1

i (it)}, t = 0, 1, . . . , c(pi).

(27)

The points of the grid belonging to the subset defined by
Eq. 27 are all destined to converge to pit . Therefore, we

estimate the input-driven excitability threshold (16) of the
connection from pi to pit as follows:

δ̃inp(pi ,pit) = min
{
‖gi

j − pi‖ : gi
j ∈ G(pi;pit)

}
,

t = 1, . . . , c(pi). (28)

The excitability thresholds (28) represent geometric
properties of the attractors and related basins in phase space
learned through training. In order to determine the effective
excitability (accounting for inputs) of each connection
outgoing from pi , we exploit the local topology of the LSS
of pi by means of the grid partition (27) induced by σi(·).
To this end, we define the ratio of initial conditions taken
from the grid that converged to attractor pit as follows:

νi,it := |G(pi;pit)|
|G(pi)| − |G(pi;pi)| ∈ [0, 1]. (29)

In the limit of infinite number of points in the grid, the
quantity (29) converges to the ratio of volumes between the
portion of the hypercube belonging to the basin of pit and
the portion of the hypercube that does not belong to the
basin of pi . Therefore, dense grids give ratios (29) providing
accurate information about how the LSS is distributed
between basins of attraction of stable fixed points. Finally,
merging both Eqs. 28 and 29 into a single expression, we
define effective excitability of the connection from pi to pit

as follows:

βi,it := νi,it

δ̃inp(pi ,pit)
. (30)

Note that this quantity takes into account both the distance
between the attractor pi and the basin’s boundary, and the
volume of the basin itself. A low value for βi,it indicates that
it is difficult to activate the connection from pi to pit during
the task. This may be due (i) to the small volume occupied
by the basin of the attractor pit in the LSS of pi or (ii)
to a very high excitability threshold associated with such a
connection. On the other hand, βi,it � 1 necessarily implies
that such a connection has a low excitability threshold, since
νi,it ∈ [0, 1]. As a consequence, the distance between the
basin of attraction of pit and pi is small, thus the connection
can be easily activated during the task.

Remarks on Computational Complexity There are three
parameters controlling the complexity and, accordingly, the
accuracy of the search in the grid: the dimension ζ1 of the
hypercube, the length ζ2 of the hypercube’s edge, and the
number of points ζ3 on each edge determining the density of
the grid. ζ3 and ζ2 have a linear and polynomial impact on
the computational complexity of the algorithm, respectively.
However, ζ1 is more critical as it increases exponentially the
number of points in the grid and, accordingly, the overall
complexity. In the simulations, we always set ζ1 = l, that
is, the dimension of the hypercube is equal to the dimension

Cogn Comput (2020) 12:330–356342

of the LSS which is low in our case. More generally, the
dimension of LSSs depends on the complexity of the inputs
and their impact on the dynamics, and this will need to be
assessed on a case-by-case basis.

Simulations

In this section, we discuss the results of our simulations
and relate this to our theoretical framework. In “Evaluation
on Manually Designed Low-Dimensional ESNs”, in order
to evaluate the correctness of the algorithm proposed in
“Extracting ENAs from the ESN Trajectory”, we apply
it to the manually designed, low-dimensional ESN maps
discussed in “A Minimal-Dimension Example to Solve the
Two-Bit Flip-Flop Task” and “A 2k-Dimensional Model
for k-Bit Flip-Flop Tasks”. The section “Application of
the Proposed Method to High-Dimensional Trained ESNs”
applies our method to high-dimensional trained ESNs. We
show that, even though the ESN is high dimensional,
the dynamics generated by the trained reservoir (6) is
effectively low dimensional. We also show the usefulness of
ENAs for giving a mechanistic interpretation of prediction
errors occurring during task execution. Finally, in “Noise
Tolerance and Effective Excitability of ENAs”, we show
how ENA models can be used to assess the robustness to
noise of trained ESNs. For all simulations, we use p = 0.1
as a parameter of the exponential distribution governing
the occurrence of input pulses and set the tolerance of the
kinetic energy (24) for detecting minima to 10−6.

Evaluation onManually Designed Low-Dimensional
ESNs

For the grid search algorithm, we used ζ1 = 2, ζ2 = 4 and
ζ3 = 223.

Minimal-dimension model The LSS determined as
described in “Local Switching Subspaces” corresponds to
the whole 2D phase space. As a consequence, excitability
thresholds (13) match the corresponding input-dependent
counterparts (16). For each attractor, the Euclidean dis-
tances from the two closest saddles are consistent with
the estimation of excitability thresholds provided by our
method. As discussed in “A Minimal-Dimension Example
to Solve the Two-Bit Flip-Flop Task” and graphically rep-
resented in Fig. 7 bottom centre panel, we find three
excitability thresholds in the computed ENA: 0.49, 1.39
and 1.42. In Fig. 7, bottom-right panel, we show that unde-
sired connections (i.e. connections corresponding to state
transitions that are not defined in the flip-flop task) between
fixed points (0.97, −0.97) and (−0.97, 0.97) have very
low effective excitability values (30), indicating that it is

unlikely to use such connections during the task execution.
The low effective excitability is due to the small volume
ratio (29) of the basins associated with the two attractors.
On the other hand, larger thresholds characterise the unde-
sired connections from (−1, −1) to (1, 1), reflecting a lack
of symmetry between the basin volumes of (1, 1), (−1, −1)

and (0.97, −0.97), (−0.97, 0.97).

Four-Dimensional Model The first two principal compo-
nents obtained via principal component analysis are related
to all identified fixed points and produce a cumulative vari-
ance ratio larger than 0.96; Fig. 8 shows a trajectory of
the map described in “A 2k-Dimensional Model for k-Bit
Flip-Flop Tasks” and related fixed points projected on the
plane spanned by the two principal components. For every
attractor, the computed LSS is a two-dimensional plane;
this is expected since it is actually the plane depicted in
Fig. 4. Furthermore, we note that none of these planes
is aligned with the one where the attractors lie, stressing
the importance of defining reference frameworks local to
each attractor that take the action of inputs into account.
Figure 8, middle-right panel, shows how the input moves
the states out of the plane, using additional dimensions for
the switches. The computed ENA, weighted with excitabil-
ity thresholds (28) and effective excitability (30), is shown
in Fig. 8, bottom-left and bottom-right panels, respectively.
Symmetries of the dynamical system are clearly present in
the resulting directed graphs. All desired connections are
characterised by an excitability threshold of � 0.83, while
undesired ones have higher thresholds equal to � 1.19. We
note that the presence of undesired connections does not
imply that the ESN actually uses such connections during
the task execution. To this end, the effective excitability
thresholds (30), shown in the bottom-right panel of Fig. 8,
provide us with a more realistic picture of the behaviour
under the action of inputs. Note that the effective excitabil-
ity thresholds are very low for the undesired connections,
implying that the LSS used by inputs is mostly occupied by
basins corresponding to attractors adjacent to the end-point
of desired connections.

Application of the ProposedMethod
to High-Dimensional Trained ESNs

We now consider implementation using ESNs (7) with a
reservoir composed of 500 neurons. Experimenting with
ESNs with different reservoir sizes confirms that one can
get ESNs that can be successfully trained independent of
the precise number of neurons, as long as there are enough.
We choose 500 neurons for hardware and computing time
considerations. For the grid search algorithm, we use ζ1 =
3, ζ2 = 18 and ζ3 = 12. The state-update (7) is configured
without leakage, α = 1 and standard deviation of noise ε

Cogn Comput (2020) 12:330–356 343

Fig. 7 Top Output produced by the two-dimensional ESN defined
in “A Minimal-Dimension Example to Solve the Two-Bit Flip-Flop
Task”. Bottom left Fixed points found by the optimisation algo-
rithm with 100 initial conditions. Length of the test trajectory was

1000 steps. Bottom centre Extracted ENA with edges weighted by
excitability thresholds (28). Bottom right Extracted ENA with edges
weighted according to Eq. 30. Node labels represent output values (3)
produced on the attractors

is set to 10−4 during training. The entries of matrices Win,
Wf b and Wr are i.i.d. drawn from a uniform distribution
in [−1, 1]; the sparseness of Wr is 95%. Moreover, the
reservoir matrix was rescaled to obtain a spectral radius
equal to 0.9. Finally, the training set length is always 50,000
time-steps.

Low-Dimensional Dynamics Figure 9, top panel, shows the
output produced by an ESN achieving high prediction
performance. The extracted ENA, shown in the bottom-right
panel, reveals that undesired connections have excitability
thresholds (16) significantly higher than those of desired
connections. This means that, in the LSS of every stable
point, basins corresponding to attractors adjacent to the end-
point of undesired connections stand relatively far away
from the stable point compared to basins of attractors
adjacent to the end-point of desired connections. The fixed
points of the dynamics lie in a two-dimensional subspace of
the 500-dimensional phase space (the cumulative variance
ratio is close 1). It is observed that the trajectory spends
most of the time close to such a plane. Hence, based on
a principal component analysis of the trajectory, we can
claim that the dynamics is two-dimensional. Nevertheless,
during the task execution, the trajectory is occasionally
driven away from such a 2D plane by the inputs in order

to achieve the switches between attractors, and this feature
is crucial to understand how the trained neural network
behaves while solving the task. The cumulative variance
ratio for the identification of the LSS of every attractor,
as described in “Local Switching Subspaces”, revealed that
the switching between stable fixed points takes place in a
three-dimensional subspace of the phase space, highlighting
that the overall dynamics of ESNs is effectively low-
dimensional after training. It is worth stressing that such
LSSs are usually not aligned with the standard coordinate
system of the original phase space and the subspaces where
attractors lie, suggesting that inputs operate in phase space
regions that are disjoint with respect to the low-dimensional
linear subspace of the attractors; this is consistent with
results reported in [55].

Computation Accuracy and Spurious Attractors Various
measures of accuracy exist for quantifying the performance
on prediction tasks. For instance, the mean-squared-error
(MSE) is typically adopted in tasks involving continuous
targets. The MSE is a real-valued scalar that informs us
about how close the computed output is to the target one.
However, it is not possible to infer additional insights by
looking only at the MSE; for instance, it is not possible
to provide a mechanistic description of errors in the

Cogn Comput (2020) 12:330–356344

Fig. 8 Top Output of the four-dimensional ESN defined in “A
Minimal-Dimension Example to Solve the Two-Bit Flip-Flop Task”.
Centre left Fixed points found by the optimisation algorithm with 200
initial conditions, depicted on the space spanned by the first two prin-
cipal components. In black, it is shown a trajectory starting on the
attractor (marked by a black triangle); to improve readability, the tra-
jectory is limited to two switches only. Centre right Fixed points and

trajectory depicted in the centre-left picture are embedded in the space
spanned by the three principal components. Bottom left ENA with
edge weights representing excitability thresholds (28). Bottom right
ENA with edge weights representing the effective excitability of con-
nections (30). Node labels represent output values produced by the
ESN on the attractors

computation, i.e. why and how they occur. Here, we show
how the effective ENA extracted from the ESN trajectory
can be used to describe how the computation takes place in
phase space and, in particular, how to diagnose the nature of
prediction errors.

The top panel in Fig. 10 shows the output produced by an
ESN achieving a low MSE of the order of 10−3. The small
errors observable around time-step 13,200 can be explained
by looking at the ENA model depicted in the bottom panels
of Fig. 10, which is represented with excitability thresholds

Cogn Comput (2020) 12:330–356 345

Fig. 9 Top Output produced by a trained ESN and target output. Bot-
tom left Fixed point found by means of the optimisation algorithm
with 500 initial conditions. The plane in the picture represents the
space spanned by the first two principal components determined over

all 500 solutions returned by the optimisation algorithm. Bottom right
Extracted ENA with edge weights representing excitability thresholds
(28). Node labels represent output values produced by the ESN (3) on
the attractors

(28), left panel, and with effective excitability values (30),
right panel. The directed graphs (whose topology is clearly
identical) reveal the presence of two extra stable fixed
points in the ESN phase space, which are generated during
training. Nodes of these graphs are coloured according to
output values produced by the ESN. The activation of the
related excitable connections brings the ESN to operate
in the proximity of such superfluous states, producing
inaccurate output values and hence explaining the origin of
such errors. Notably, the directed edge—in the graph on the
right-hand side—connecting the cyan with the yellow node
has a relatively high value of effective excitability. This
means that, in the LSS of the related attractor (cyan), whose
output is (−1.03, −1.07), it is relatively easy to transition
to the basin of the other attractor (yellow). This, in turn,
produces an output value equal to (−0.84, −0.40), which is
significantly different from the target output, i.e. (−1, −1).
The prediction error, visible to the naked eye in the top panel
around time-step 13,200, is indeed due to the activation of
that excitable connection.

Both of these spurious attractors act as a sort of
surrogates for the correct ones (i.e., those producing lower
prediction errors). In fact, once the internal state switches
to a spurious attractor, the ESN still behaves consistently.

More precisely, spurious attractors are associated with
higher effective excitability values on connections ending
up in the correct attractors (see the bottom-right panel of
Fig. 10). The existence of these spurious attractors and the
unravelling of their roles in the ESN computation could not
easily be inferred by looking only at the MSE or plotting
the outputs produced by the ESN. This demonstrates
the importance of ENA models for describing the ESN
behaviour.

Noise Tolerance and Effective Excitability of ENAs

Here, we aim to provide a further example of the importance
of ENAs for characterising the computation of ESNs. In
particular, we ask the following question: given a set of
ESNs trained on the same task and achieving the same
performance during training, which one will be more robust
to noise during test? Typical performance measures, such
as MSE, cannot be used to answer such a question and
provide useful insights. We show that an ENA model of
the computation, weighted with effective excitability values
(30), allows us to assess robustness to noise of ESNs.

As a perturbation, we consider the usual white Gaussian
noise term ε in the state-update (7), corresponding to

Cogn Comput (2020) 12:330–356346

Fig. 10 Top Output of the trained ESN showing an incorrect switch
around step 13, 200. Centre left Fixed points found by the optimi-
sation algorithm plotted in their two-dimensional subspace together
with the trajectory. Centre right Attractor plane divided by basins of
attraction of every stable fixed point. The figure is drawn assuming
a transient of 300 time-steps. Every basin is coloured depending on

the attractor where the ESN converges to without applying any input.
Bottom left Extracted ENA weighted with estimation of input-driven
excitability thresholds (28). Bottom right Extracted ENA weighted
with effective excitability value (30). Nodes are coloured according to
the colours used in the centre-right figure

Cogn Comput (2020) 12:330–356 347

Fig. 11 Left Results corresponding to a trained ESN giving rise to
an ENA with undesired connections and unbalanced outgoing weights
(30). Right Results obtained with a trained ESN giving rise to an ENA
with balanced outgoing weights for all excitable connections. From top

to bottom, in both columns, ESN outputs and related MSEs obtained
with increasing noise standard deviation: 10−4, 2 · 10−2, 5 · 10−2,
8 · 10−2, 10−1, 1.2 · 10−1, 1.4 · 10−1 and 1.6 · 10−1

perturbations directly applied to all neuron pre-activation
values. We stress that such perturbations are applied
only during the test phase; training is implemented as
described in the previous section. By increasing the noise
standard deviation, the ESN trajectory gets increasingly
perturbed neglecting the possibility to reach the proximity

of attractors, hence affecting the accuracy of the resulting
output values.

We note that (i) ESNs yielding ENAs with higher effec-
tive excitability values are less robust to noise perturbations
than ESNs giving rise to ENAs with low effective excitabil-
ity values (see [6]), and (ii) ESNs producing ENAs with

Cogn Comput (2020) 12:330–356348

balanced edge weights on desired outgoing connections
are more robust to noise perturbations than ENAs with
unbalanced outgoing weights. Regarding (i), high excitabil-
ity values imply the existence of connections with low
excitability thresholds. That is, the basin of the attractor
corresponding to the end-point of such a connection is
very close to the attractor associated with the origin of the
connection, resulting in unnecessary switches that induce
errors. Concerning (ii), for a given attractor, unbalanced
outgoing connection weights could be a symptom of unbal-
anced distribution of space between basins of attraction in
the LSS or the existence of some basins significantly closer
to the attractor than other basins. In the latter case, a reason-
ing similar to (i) applies. On the other hand, if there is indeed
an asymmetric distribution of volumes between basins then
basins of attractors corresponding to connections possess-
ing large volume ratios will fill most of the LSS, leaving
little space for basins of those attractors related to connec-
tions with small volume ratios. Therefore, if the ESN state
is close to an attractor with unbalanced outgoing connec-
tion weights, but with similar excitability thresholds, then
under noise perturbations it is more likely to switch towards
an attractor reachable through a connection with high effec-
tive excitability even when such a connection should not be
activated. For these reasons, an ENA, where each node is
characterised by balanced weights on outgoing connections
and very low effective excitability values on undesired con-
nections, provides a prototypical example of ESNs whose
behaviour is robust to noise.

To quantify the robustness of this behaviour to noise, we
selected two ESNs that solve the two-bit flip-flop task with
very high and comparable accuracy—MSE during training
is � 10−4. We test them on the same input series composed
of 105 time-steps and recorded their MSEs by considering
different noise instances with increasing standard deviation.
Directed graphs representing the extracted ENAs are shown
in Fig. 11. Results for increasing noise standard deviation
are divided in two columns: on the left column, we report
results obtained by the ESN that is least tolerant to noise.
The directed graph on the left-hand side of Fig. 11 shows the
presence of two undesired connections. The edge weights
of desired connections are not balanced, especially those
outgoing from attractors with output values (1, 1) and
(−1, −1). Conversely, the directed graph on the right-hand
side does not contain undesired connections and possess
balanced outgoing weights. The absence of undesired
connections indicates that, in the LSS of every attractor,
the basins of the attractors corresponding to undesired
connections do not exist or, alternatively, they are very small
and hence not detectable with the grid density used in our
simulations; therefore, they are not relevant for describing
the ESN behaviour according with the numerical precision

we considered in our simulations. Finally, we highlight that
a performance breakdown for the ESN on the left-hand side
panel is observed starting from noise standard deviation of
8×10−2. On the other hand, the ESN on the right-hand side
is significantly more robust to noise, denoting a performance
breakdown for noise standard deviation of 1.4 × 10−1.

Conclusions

In this paper, we present a novel methodology for modelling
and interpreting the behaviour of RNNs driven by inputs. In
order to obtain a mechanistic model describing how RNNs
solve tasks, we exploit the theoretical framework offered
by excitable network attractors [5], which are defined as
networks of stable fixed points connected by excitable
connections. We introduce a procedure to extract excitable
network attractors directly from a trajectory generated by a
trained RNN. Such a procedure is composed of two main
steps: first, fixed points are computed by solving a non-
linear optimisation problem [55] and successively excitable
connections, with related thresholds, are determined by
simulating the dynamics of the autonomous system.

We validate our theoretical developments by considering
ESNs trained on the flip-flop task, a simple yet relevant
benchmark that consists of learning a prescribed number
of stable states and related switching patterns guided by
control inputs. We cannot see any particular theoretical
limitations in the application of our framework to more
complex RNN architectures, although for more complicated
dynamical tasks a detailed computation of bifurcation
behaviour may become unfeasible. Simulation results
provide several interesting insights on how RNNs solve
tasks and highlight the usefulness of excitable network
attractors in describing how RNNs undertake computations.
We train echo state networks by means of ridge regression.
Our results (not shown here) suggest that the regularisation
parameter has a direct impact on the number of attracting
regions in phase space generated through training: using
too low values produces under-regularised models with a
large number of attractors. An interesting future perspective
consists of studying the impact of different training
mechanisms (e.g. via FORCE learning or similar online
approaches) on the resulting network attractor.

We believe that the proposed modelling framework based
on excitable network attractors will be suitable to describe
the RNN behaviour for many, if not all, tasks requiring
the learning of a number of attractors (which need not
be stable fixed points) and related switching patterns. To
this end, in the future, we will also examine classification
tasks. A related next step includes the possibility to handle
inputs that are not instantaneous pulses, opening the way

Cogn Comput (2020) 12:330–356 349

to more interesting case studies of practical relevance. As
mentioned in the introductory sections, network attractors
can in principle be constructed between any type of invariant
sets, including limit cycles and strange attractors. Our
focus on fixed points was mainly dictated by the fact that
computing fixed points from a trajectory is significantly
easier than computing limit cycles, for instance.

Clearly, fixed points are not powerful enough to accu-
rately model all possible behaviours in phase space. There-
fore, an interesting future perspective consists in extending
our modeling framework to handle networks composed
of heterogeneous attractors, such as a network in phase space
connecting fixed points and limit cycles. In turn, this will
allow modeling more complex RNN behaviour. Finally,
future directions include embedding the directed graph rep-
resenting the excitable network attractor extracted from
the trajectory in a new phase space, thus producing a set
of ordinary differential equations [4] describing the RNN
behaviour for the task under consideration.

Acknowledgements We gratefully acknowledge the support of NVIDIA
Corporation with the donation of the Titan Xp GPU used for this research.

Funding Information LL received partial support from the Canada
Research Chairs program. PA received partial support of the
EPSRC Centre for Predictive Modelling in Healthcare via grant
EP/N014391/1.

Compliance with Ethical Standards

Conflict of interest Andrea Ceni, Peter Ashwin and Lorenzo Livi
declare that they have no conflict of interest.

Human and Animal Rights This article does not contain any studies
with human participants or animals performed by any of the authors.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons license, and indicate if changes were made.

Appendix A: Linear Stability Analysis

By considering the case where the neural network is
autonomous, we follow (10) and write the related map as
x[k] = F(x[k −1]) = G(x[k −1], 0). The ith component of
the ESN state, xi, i = 1, . . . , Nr , evolves according to the
scalar map Fi(x)= (1−α)xi+α tanh(M(i)·x). By noting that:

∂Fi

∂xj

(x0) = (1 − α)δij + α
(

1 − tanh2(M(i) · x0)
)

mij ,

where δij is the Kronecker delta, it is possible to write the
Jacobian matrix evaluated onto x0 as JF(x0) = (1−α)INr +
αD(x0)M, where

D(x0) =

⎡
⎢⎢⎢⎣

1 − tanh2(M(1) · x0) 0 . . . 0
0 1 − tanh2(M(2) · x0) . . . 0
...

...
. . .

...
0 0 . . . 1 − tanh2(M(Nr) · x0)

⎤
⎥⎥⎥⎦ (31)

is an Nr × Nr diagonal matrix representing the squashing
action of tanh(·) along the saturating components of x0.
By linearising the network state-update (7) around a given
fixed point x∗, we obtain the linear system δx[k + 1] =
JF(x∗)δx[k], where δx[k] = x[k] − x∗. It is known
[53] that if a fixed point x∗ is hyperbolic (i.e. JF(x∗)
has no eigenvalues on the unit circle in the complex
plane), then the linear approximation provides a bona
fide characterisation of the nonlinear behaviour around
that fixed point. Therefore, the (linear) stability of x∗ is
completely determined by the spectral radius of JF(x∗). If
all eigenvalues of JF(x∗) are inside the unit circle, then
x∗ is a stable fixed point; on the other hand, if even just
one eigenvalue has norm larger than 1, then the linearised
map is expanding along the corresponding eigenvectors and
x∗ is called a saddle5. We conclude observing that holds

5If every eigenvalue has a norm greater than 1, then the fixed point is
a repeller.

x∗
i = tanh(M(i) · x∗) ⇐⇒ αx∗

i = α tanh(M(i) · x∗) ⇐⇒
x∗
i + αx∗

i = x∗
i + α tanh(M(i) · x∗) ⇐⇒ x∗

i = (1 −
α)x∗

i + α tanh(M(i) · x∗); hence, the number of fixed points
and their positions in phase space do not change on varying
α ∈ (0, 1]. However, their linear stability properties are
directly affected by α.

Appendix B: Bifurcation of Fixed Points
in ESNs

In what follows, we perform a bifurcation analysis of
one-dimensional ESN map and provide some sufficient
conditions to design two-dimensional ESNs with a desired
number of fixed points. In particular, we focus on
fold bifurcations6 of low-dimensional ESN maps, which

6We refer to [28] for the terminology; the fold bifurcation is also
known as saddle-node, limit point or turning point bifurcation.

Cogn Comput (2020) 12:330–356350

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

constitute the only codimension-1 bifurcation that generate
new fixed points; as discussed by [57], it is the usual
mechanism for creating new attractive fixed point in RNNs.
Moreover, as shown by [7], some fold bifurcations are
responsible for reducing the dimensions where the actual
dynamics takes place, dividing the RNN parameter space in
different regions of effective dimensionality.

B.1 ESNMaps in One Dimension

Here, we consider the following one-dimensional map,

x[k] = tanh(mx[k − 1] + w), (32)

where (m, w) ∈ R
2 are the bifurcation parameters; we

simplify the state-update in Eq. 7 and set leak rate α =
1, ε = 0, and remove explicit reference to inputs.
Nevertheless, studying the map (32) is still useful to
obtain insights about high-dimensional input-driven ESN
dynamics. In fact, in the high-dimensional case (7), the
activation function of the j th neuron is determined by:

xj [k] = tanh

⎛
⎝mjjxj [k − 1] +

∑
s �=j

mjsxs[k − 1]

+ (Win)(j) · u[k] + εj

⎞
⎠ . (33)

Hence, the parameter w in Eq. 32 can be interpreted as the
weighted sum of all incoming neurons, plus input and noise
terms. Fixed points of the map F(x) = tanh(mx + w) are
the solutions x∗ of the equation Q(x∗) = 0, where:

Q(x) := F(x) − x = tanh(mx + w) − x. (34)

It is not possible to find a closed-form expression for the
fixed points. However, it is possible to state that (i) for
every (m, w) ∈ R

2, there exists at least one fixed point;
(ii) there can be one, two or three fixed points. The proof
of these statements follows straightforwardly from the fact
that limx→±∞ Q(x) = ∓∞ and because if m < 1, then
Q is monotonic. Otherwise, there exist two critical points,
xl < xr , namely

xl,r = 1

m

[
± tanh−1

(√
m − 1

m

)
− w

]
, (35)

such that the function Q(x) folds. Moreover, since Q(x∗) =
0 ⇐⇒ x∗ = tanh(mx∗ + w) ∈ (−1, 1) for every (m, w) ∈
R

2, all fixed points lie in the open interval (−1, 1). Critical
points in Eq. 35 are solutions to Q′(x) = 0, or equivalently
to F ′(x) = 1.

Let us assume m > 0. We observe a fold bifurcation
whenever a critical point assumes the zero value. The

condition Q(xl,r) = 0 gives rise to the following
parametrisation of the fold bifurcation curve,

w±(m) := ±
[
m

√
m − 1

m
− tanh−1

(√
m − 1

m

)]
,

m ∈ [1, +∞), (36)

which possesses two symmetric branches ending on a cusp
(see Fig. 12 for an illustration). Crossing that curve in
parameter space towards the region containing the semi-axis
of m > 1, a new fixed point is formed (xl or xr , depending
on the branch) and splits in a pair of fixed points, one
stable and one unstable7. This curve delimits the boundary
between a dynamic regime where two stable points coexist
with an unstable one, and a regime where only one fixed
point exists. Due to symmetry, in the m < 0 case, there
are two bifurcation branches identifying a flip or period
doubling bifurcation, which is analytically described by the
curve w±(−m) with m ≤ −1. Crossing that curve towards
the region containing the semi-axis of m < −1, a stable
fixed point loses stability and gives rise to a 2-periodic
attracting trajectory surrounding it. We note that the flip
bifurcation is detrimental for the flip-flop task considered
here, as it gives period rather than fixed point attractors.

B.2 ESNMaps in Two Dimensions

Here, we consider a two-neuron reservoir. We denote the
activation functions of these neurons as x and y, so that
the ESN state evolution defines a trajectory (x[k], y[k]) ∈
[−1, 1]2, k = 1, 2, ..., ruled by:

x[k] = tanh(ax[k − 1] + by[k − 1]) ,

y[k] = tanh(cx[k − 1] + dy[k − 1]) .
(37)

It is known that a fixed point can undergo only
fold or flip bifurcations in one-dimensional, discrete-time
dynamical systems [28]. Nevertheless, considering two
or more dimensions, also Neimark-Sacker bifurcations
could occur, where a stable point loses stability and an
invariant curve surrounding it is created. These are the only
possible codimension-1 bifurcations of a fixed point for
a discrete-time dynamical system. Among them, only the
fold bifurcation can generate new fixed points. The origin
is always a fixed point of Eq. 10. Considering (37), the
Jacobian matrix evaluated on the origin reads:

Wr =
(

a b

c d

)
.

Therefore, training ESNs via (6) implies a qualitative
change of the dynamics around the origin if some eigenvalue
crosses the unit circle, i.e. fixed point (0, 0) bifurcates.

7The particular case of crossing that curve through the cusp gives rise
to a pitchfork bifurcation of the origin.

Cogn Comput (2020) 12:330–356 351

Fig. 12 Left Three different folding configurations of the function Q(x) in Eq. 34 with m = 2.5; purple w = 1.5, black w ≈ 0.9, green w = 0.5.
Right Bifurcation diagram of fixed points in one-dimensional ESN

However, adding a low-rank matrix to the reservoir can
induce global bifurcations far away from the origin as well;
hence, we cannot rely on the local bifurcation of the origin
to deduce the global attractor structure after training. As a
counterexample, suppose λ1, λ2 > 1. The diagonal matrix

diag(λ1, λ2) and the upper triangular matrix

(
λ1 γ

0 λ2

)
share

the same spectrum {λ1, λ2}. Nevertheless, if the coupling

is strong enough, that is |γ | >
w+(λ1)

y∗ , where w+(λ1)

is the function (36) evaluated on λ1 and y∗ is the positive
stable solution of y[k] = tanh(λ2y[k − 1]), then the
fold bifurcation curve is crossed, making the dynamics
for x variable trivial. As a consequence of this, the upper
triangular matrix induces dynamics with just two attractors
(plus two saddles and the origin is a repeller), while the
diagonal matrix induces four attractors (plus four saddles
and the repeller).

In order to count the number of fixed points of the
map (37), we can draw its nullclines. Defining function

Nα,β(η) := 1

β
[−αη + tanh−1(η)], the nullclines are given

by:

y = Na,b(x),

x = Nd,c(y), (38)

and they represent the locus of points where x-dynamic/y-
dynamic is stationary. As a consequence, the solutions of
the algebraic nonlinear system (38) coincide with the set
of fixed points. In the last part of this subsection, we show
some sufficient conditions to control the number of fixed
points assuming a, d > 1, i.e. when both nullclines are
folding. We refer to Fig. 13 for a graphical illustration.

• Case bc ≥ 0.

|N ′
a,b(0)| < |N ′

d,c(0)|−1, i.e. (1 − a)(1 − d) < bc

=⇒ there are exactly 3 fixed points. (39)

On the other hand, when (1 − a)(1 − d) ≥ bc, there
could exist 5, 7 or 9 fixed points. Critical points of

the function Nα,β(η) are η± = ±
√

α−1
α

. Therefore, if
(1 − a)(1 − d) ≥ bc holds then

∣∣∣∣∣Na,b

(√
a−1

a

)∣∣∣∣∣ <

√
d−1

d
or

∣∣∣∣∣Nd,c

(√
d − 1

d

)∣∣∣∣∣

<

√
a − 1

a
=⇒ there are exactly 5 fixed points.

(40)

Cogn Comput (2020) 12:330–356352

Fig. 13 In all panels, filled points denote stable attractors, while cir-
cles denote saddles or repellers. Top left Geometric representation of
the sufficient condition (39); nullcline slopes on the origin are high-
lighted with different colours. Top right The condition (40); the black
dashed line acts as an upper bound ensuring that the maximum height
of the peak of the x-nullcline (represented by the green dashed line)
does not cross further the y-nullcline. Centre left Special case of 7

fixed points. Crosses indicate neutral fixed points where fold bifurca-
tions take place. Centre right An example of nullcline configuration
holding the condition (43) in the case of bc > 0. Both curves come
out of the invariant square [−1, 1]2 with their humps, that guarantees
9 intersections, i.e. 9 fixed points. Bottom left Depiction of the suffi-
cient condition (41); the origin is the only fixed point and it is unstable.
Bottom right The sufficient condition (42)

Cogn Comput (2020) 12:330–356 353

Figure 13 depicts a nullcline configuration where there
are 5 intersections8. From that configuration, we can
make the humps of y = Na,b(x) more pronounced by
increasing the a

b
ratio, until a fold bifurcation occurs,

giving rise to a new couple of pair of fixed points.
The case of 7 fixed points is obtained after the fold
bifurcation.

• Case bc < 0.∣∣∣∣∣Na,b

(√
a − 1

a

)∣∣∣∣∣<
√

d−1

d
and

∣∣∣∣∣Nd,c

(√
d−1

d

)∣∣∣∣∣

<

√
a−1

a
=⇒ there is exactly 1 fixed point. (41)

From the above configuration, increasing the d/c ratio
makes stretch the humps of Nd,c until a fold bifurcation
occurs producing exactly three fixed points. Beyond the
fold bifurcation, a new pair of fixed points is generated9.
∣∣∣∣∣Na,b

(√
a−1

a

)∣∣∣∣∣<
√

d−1

d
and

∣∣∣∣∣Nd,c

(√
d−1

d

)∣∣∣∣∣
> 1 =⇒ there are exactly 5 fixed points. (42)

In both cases, a simple sufficient condition to ensure the
existence of 9 fixed points (see Fig. 13) is
∣∣∣∣∣Na,b

(√
a − 1

a

)∣∣∣∣∣ > 1 and

∣∣∣∣∣Nd,c

(√
d − 1

d

)∣∣∣∣∣
> 1 =⇒ there are exactly 9 fixed points. (43)

The maximum number of nullcline intersections is 9, setting
the maximum number of fixed points that can be generated
in a two-dimensional ESN map.

Appendix C: Aggregation of Fixed Points via
Clustering

The optimisation procedure described in “Finding Fixed
Points of the Dynamics” provides a number of solutions
equal to the number of initial conditions taken into account
(assuming all initial conditions converge); however, such
solutions might be similar up to a prescribed numerical
precision. In order to reduce the set of all solutions to a
few effective fixed points, we run the k-means clustering
algorithm and retain only the elements belonging to the final
clusters minimising the distance w.r.t. the cluster centroids.
Instead of aggregating all solutions at once, we first group
such solutions according to their linear stability properties

8Note that it holds Nα,β

(
±
√

α−1
α

)
= − 1

β
w±(α).

9Due to symmetry, this condition holds also when inverting the role of
Nd,c, Na,b and consequently (a, b), (d, c).

as indicated by the spectrum of the Jacobian matrix of the
autonomous map (10). In particular, we form the group
of linear stable fixed points, the group with one unstable
direction and so on. Finally, for each group, we run k-means
with parameter k identified according to the minimum of the
Davies-Bouldin index [2].

References

1. Aljadeff J, Renfrew D, Vegué M, Sharpee TO. Low-dimensional
dynamics of structured random networks. Phys Rev E. 2016;93(2):
022302. https://doi.org/10.1103/PhysRevE.93.022302.

2. Arbelaitz O, Gurrutxaga I, Muguerza J, Pérez JM, Perona
I. An extensive comparative study of cluster validity indices.
Pattern Recogn. 2013;46(1):243–56. https://doi.org/10.1016/j.
patcog.2012.07.021.

3. Arjovsky M, Shah A, Bengio Y. Unitary evolution recurrent
neural networks. In: International conference on machine learning,
pp 1120–1128, New York, USA; 2016.

4. Ashwin P, Postlethwaite C. On designing heteroclinic networks
from graphs. Physica D: Nonlinear Phenomena. 2013;265:26–39.
https://doi.org/10.1016/j.physd.2013.09.006.

5. Ashwin P, Postlethwaite C. Designing heteroclinic and excitable
networks in phase space using two populations of cou-
pled cells. Journal of Nonlinear Science. 2016;26(2):345–64.
https://doi.org/10.1007/s00332-015-9277-2.

6. Ashwin P, Postlethwaite C. Sensitive finite state computations
using a distributed network with a noisy network attractor. IEEE
Transactions on Neural Networks and Learning Systems, pp 1–12.
2018. https://doi.org/10.1109/TNNLS.2018.2813404.

7. Beer RD. Parameter space structure of continuous-time recur-
rent neural networks. Neural Comput. 2006;18(12):3009–51.
https://doi.org/10.1162/neco.2006.18.12.3009.

8. Bianchi FM, Scardapane S, Uncini A, Rizzi A, Sadeghian
A. Prediction of telephone calls load using echo state net-
work with exogenous variables. Neural Netw. 2015;71:204–13.
https://doi.org/10.1016/j.neunet.2015.08.010.

9. Bianchi FM, Livi L, Alippi C. Investigating echo state networks
dynamics by means of recurrence analysis. IEEE Transactions
on Neural Networks and Learning Systems. 2018;29(2):427–39.
https://doi.org/10.1109/TNNLS.2016.2630802.

10. Castelvecchi D. Can we open the black box of AI? Nat News.
2016;538(7623):20.

11. Cencini M, Cecconi F, Vulpiani A. Chaos: from simple models
to complex systems. Singapore: World Scientific; 2010.

12. Chung J, Gulcehre C, Cho K, Bengio Y. Empirical evaluation
of gated recurrent neural networks on sequence modeling.
arXiv:1412.3555. 2014.

13. De Pasquale B, Cueva CJ, Rajan K, Escola GS, Abbott
LF. full-FORCE: a target-based method for training recurrent
networks. PLoS ONE. 2018;13(2):1–18,2. https://doi.org/10.1371
/journal.pone.0191527.

14. Funahashi K, Nakamura Y. Approximation of dynamical systems
by continuous time recurrent neural networks. Neural Netw.
1993;6(6):801–806.

15. Gallicchio C, Micheli A. Echo state property of deep reservoir
computing networks. Cogn Comput. 2017;9(3):337–50. ISSN
1866-9964. https://doi.org/10.1007/s12559-017-9461-9.

16. Golub MD, Sussillo D. Fixedpointfinder: a tensorflow toolbox
for identifying and characterizing fixed points in recurrent neural
networks. The Journal of Open Source Software. 2018;3:1003.
https://doi.org/10.21105/joss.01003.

Cogn Comput (2020) 12:330–356354

https://doi.org/10.1103/PhysRevE.93.022302
https://doi.org/10.1016/j.patcog.2012.07.021
https://doi.org/10.1016/j.patcog.2012.07.021
https://doi.org/10.1016/j.physd.2013.09.006
https://doi.org/10.1007/s00332-015-9277-2
https://doi.org/10.1109/TNNLS.2018.2813404
https://doi.org/10.1162/neco.2006.18.12.3009
https://doi.org/10.1016/j.neunet.2015.08.010
https://doi.org/10.1109/TNNLS.2016.2630802
http://arXiv.org/abs/1412.3555
https://doi.org/10.1371/journal.pone.0191527
https://doi.org/10.1371/journal.pone.0191527
https://doi.org/10.1007/s12559-017-9461-9
https://doi.org/10.21105/joss.01003

17. Goodman B, Flaxman S. European union regulations on
algorithmic decision-making and a right to explanation.
arXiv:1606.08813. 2016.

18. Graves A, Mohamed A-R, Hinton G. Speech recognition with
deep recurrent neural networks. In: Proceedings of IEEE interna-
tional conference on acoustics, speech and signal processing, pp
6645–6649, Vancouver, BC, Canada. IEEE; 2013.

19. Hammer B. On the approximation capability of recurrent neural
networks. Neurocomputing. 2000;31(1):107–23. https://doi.org/
10.1016/S0925-2312(99)00174-5.

20. Hochreiter S, Schmidhuber J. Long short-term memory. Neural
Comput. 1997;9(8):1735–80.

21. Jaeger H, Haas H. Harnessing nonlinearity: Predicting chaotic
systems and saving energy in wireless communication. Science.
2004;304(5667):78–80. https://doi.org/10.1126/science.1091277.

22. Jaeger H, Lukoševičius M, Popovici D, Siewert U.
Optimization and applications of echo state networks with
leaky-integrator neurons. Neural Netw. 2007;20(3):335–52.
https://doi.org/10.1016/j.neunet.2007.04.016.

23. Kanai S, Fujiwara Y, Iwamura S. Preventing gradient explosions
in gated recurrent units. In: Advances in neural information
processing systems, pp 435–444; 2017.

24. Karpatne A, Atluri G, Faghmous JH, Steinbach M, Banerjee
A, Ganguly A, Shekhar S, Samatova N, Kumar V. Theory-
guided data science: a new paradigm for scientific discovery from
data. IEEE Trans Knowl Data Eng. 2017;29(10):2318–31. ISSN
1041-4347. https://doi.org/10.1109/TKDE.2017.2720168.

25. Katz GE, Reggia JA. Using directional fibers to locate
fixed points of recurrent neural networks. IEEE Trans Neural
Netw Learn Syst. 2018;29(8):3636–46. https://doi.org/10.1109
/TNNLS.2017.2733544.

26. Keuninckx L, Danckaert J, Van der Sande G. Real-time
audio processing with a cascade of discrete-time delay line-
based reservoir computers. Cogn Comput. 2017;9(3):315–26.
https://doi.org/10.1007/s12559-017-9457-5.

27. Koryakin D, Lohmann J, Butz MV. Balanced echo state
networks. Neural Netw. 2012;36:35–45. https://doi.org/10.1016/
j.neunet.2012.08.008.

28. Kuznetsov YA. Elements of applied bifurcation theory, vol 112.
Berlin: Springer; 2013.

29. Livi L, Bianchi FM, Alippi C. Determination of the edge of
criticality in echo state networks through Fisher information max-
imization. IEEE Trans Neural Netw Learn Syst. 2018;29(3):706–
17. https://doi.org/10.1109/TNNLS.2016.2644268.

30. Løkse S, Bianchi FM, Jenssen R. Training echo state
networks with regularization through dimensionality reduc-
tion. Cogn Comput. 2017;9(3):364–378. https://doi.org/10.1007/
s12559-017-9450-z.

31. Lukoševičius M. A practical guide to applying echo state
networks. Berlin: Springer; 2012, pp. 659–686. https://doi.org/10.
1007/978-3-642-35289-8 36.

32. Lukoševičius M, Jaeger H. Reservoir computing approaches to
recurrent neural network training. Cogn Comput. 2009;3(3):127–
49. https://doi.org/10.1016/j.cosrev.2009.03.005.

33. Maass W, Joshi P, Sontag ED. Computational aspects of
feedback in neural circuits. PLoS Comput Biol. 2007;3(1):e165.
https://doi.org/10.1371/journal.pcbi.0020165.eor.

34. Manjunath G, Jaeger H. Echo state property linked to
an input: exploring a fundamental characteristic of recur-
rent neural networks. Neural Comput. 2013;25(3):671–96.
https://doi.org/10.1162/NECO a 00411.

35. Mastrogiuseppe F, Ostojic S. Linking connectivity, dynam-
ics, and computations in low-rank recurrent neural net-
works. Neuron. 2018. ISSN 0896-6273. https://doi.org/10.1016/
j.neuron.2018.07.003.

36. Mayer NM, Yu Y-H. Orthogonal echo state networks and stochas-
tic evaluations of likelihoods. Cogn Comput. 2017;9(3):379–90.
https://doi.org/10.1007/s12559-017-9466-4.

37. Miller KD, Fumarola F. Mathematical equivalence of two
common forms of firing rate models of neural networks. Neural
Comput. 2012;24(1):25–31.

38. Miller P. Itinerancy between attractor states in neural systems.
Curr Opin Neurobiol. 2016;40:14–22. https://doi.org/10.1016/j.
conb.2016.05.005.

39. Milnor J. On the concept of attractor. 1985.
40. Montavon G, Samek W, Müller K-R. Methods for interpreting

and understanding deep neural networks. Digital Signal Process.
2017;73:1–15. https://doi.org/10.1016/j.dsp.2017.10.011.

41. Neves FS, Voit M, Timme M. Noise-constrained switch-
ing times for heteroclinic computing. Chaos: An Interdis-
ciplinary Journal of Nonlinear Science. 2017;27(3):033107.
https://doi.org/10.1063/1.4977552.

42. Nocedal J, Wright SJ. Numerical optimization. 2006: Springer,
Berlin.

43. Pascanu R, Mikolov T, Bengio Y. On the difficulty of
training recurrent neural networks. In: Proceedings of the 30th
international conference on machine learning, vol 28, pp 1310–
1318, Atlanta, Georgia, USA; 2013.

44. Pham V, Bluche T, Kermorvant C, Louradour J. Dropout
improves recurrent neural networks for handwriting recogni-
tion. In: 14th international conference on frontiers in hand-
writing recognition, pp 285–290, Crete Island, Greece; 2014,
https://doi.org/10.1109/ICFHR.2014.55.

45. Rabinovich M, Volkovskii A, Lecanda P, Huerta R,
Abarbanel H, Laurent G. Dynamical encoding by networks of
competing neuron groups: winnerless competition. Phys Rev Lett.
2001;87(6):068102.

46. Rabinovich M, Huerta R, Laurent G. Transient dynamics for neu-
ral processing. Science. 2008;321:48–50. https://doi.org/10.1126
/science.1155564.

47. Rajan K, Abbott LF, Sompolinsky H. Stimulus-dependent
suppression of chaos in recurrent neural networks. Phys Rev E.
2010;82(1):011903. https://doi.org/10.1103/PhysRevE.82.0119
03.

48. Reinhart RF, Steil JJ. Regularization and stability in reservoir
networks with output feedback. Neurocomputing. 2012;90:96–
105. https://doi.org/10.1016/j.neucom.2012.01.032.

49. Rivkind A, Barak O. Local dynamics in trained recurrent neural
networks. Phys Rev Lett. 2017;118:258101. https://doi.org/10.11
03/PhysRevLett.118.258101.

50. Rodan A, Tiňo P. Simple deterministically constructed cycle
reservoirs with regular jumps. Neural Comput. 2012;24(7):1822–
52. https://doi.org/10.1162/NECO a 00297.

51. Ruder S. An overview of gradient descent optimization algo-
rithms. arXiv:1609.04747. 2016.

52. Scardapane S, Uncini A. Semi-supervised echo state net-
works for audio classification. Cogn Comput. 2017;9(1):125–35.
https://doi.org/10.1007/s12559-016-9439-z.

53. Strogatz SH. Nonlinear dynamics and chaos. UK: Hachette;
2014.

54. Sussillo D, Abbott LF. Generating coherent patterns of
activity from chaotic neural networks. Neuron. 2009;63(4):544–
57. https://doi.org/10.1016/j.neuron.2009.07.018.

55. Sussillo D, Barak O. Opening the black box: Low-dimensional
dynamics in high-dimensional recurrent neural networks. Neural
Comput. 2013;25(3):626–49. https://doi.org/10.1162/NECO a
00409.

56. Tallec C, Ollivier Y. Can recurrent neural networks warp time? In:
International conference on learning representations; 2018. https://
openreview.net/forum?id=SJcKhk-Ab.

Cogn Comput (2020) 12:330–356 355

http://arXiv.org/abs/1606.08813
https://doi.org/10.1016/S0925-2312(99)00174-5
https://doi.org/10.1016/S0925-2312(99)00174-5
https://doi.org/10.1126/science.1091277
https://doi.org/10.1016/j.neunet.2007.04.016
https://doi.org/10.1109/TKDE.2017.2720168
https://doi.org/10.1109/TNNLS.2017.2733544
https://doi.org/10.1109/TNNLS.2017.2733544
https://doi.org/10.1007/s12559-017-9457-5
https://doi.org/10.1016/j.neunet.2012.08.008
https://doi.org/10.1016/j.neunet.2012.08.008
https://doi.org/10.1109/TNNLS.2016.2644268
https://doi.org/10.1007/s12559-017-9450-z
https://doi.org/10.1007/s12559-017-9450-z
https://doi.org/10.1007/978-3-642-35289-8_36
https://doi.org/10.1007/978-3-642-35289-8_36
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1371/journal.pcbi.0020165.eor
https://doi.org/10.1162/NECO_a_00411
https://doi.org/10.1016/j.neuron.2018.07.003
https://doi.org/10.1016/j.neuron.2018.07.003
https://doi.org/10.1007/s12559-017-9466-4
https://doi.org/10.1016/j.conb.2016.05.005
https://doi.org/10.1016/j.conb.2016.05.005
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.1063/1.4977552
https://doi.org/10.1109/ICFHR.2014.55
https://doi.org/10.1126/science.1155564
https://doi.org/10.1126/science.1155564
https://doi.org/10.1103/PhysRevE.82.011903
https://doi.org/10.1103/PhysRevE.82.011903
https://doi.org/10.1016/j.neucom.2012.01.032
https://doi.org/10.1103/PhysRevLett.118.258101
https://doi.org/10.1103/PhysRevLett.118.258101
https://doi.org/10.1162/NECO_a_00297
http://arXiv.org/abs/1609.04747
https://doi.org/10.1007/s12559-016-9439-z
https://doi.org/10.1016/j.neuron.2009.07.018
https://doi.org/10.1162/NECO_a_00409
https://doi.org/10.1162/NECO_a_00409
https://openreview.net/forum?id=SJcKhk-Ab
https://openreview.net/forum?id=SJcKhk-Ab

57. Tiňo P, Horne BG, Giles CL. Attractive periodic sets in discrete-
time recurrent networks (with emphasis on fixed-point stability
and bifurcations in two-neuron networks). Neural Comput.
2001;13(6):1379–1414.

58. Tsuda I. Chaotic itinerancy and its roles in cognitive neurodynam-
ics. Curr Opin Neurol. 2015;31:67–71. https://doi.org/10.1016
/j.conb.2014.08.011.

59. Vincent-Lamarre P, Lajoie G, Thivierge J-P. Driving reservoir
models with oscillations: a solution to the extreme structural
sensitivity of chaotic networks. J Comp Neurol, pp 1–18.
2016.

60. Weinberger O, Ashwin P. From coupled networks of systems
to networks of states in phase space. Discrete & Continuous

Dynamical Systems - B. 2018;23:2043. ISSN 1531-3492.
https://doi.org/10.3934/dcdsb.2018193.

61. wyffels F, Li J, Waegeman T, Schrauwen B, Jaeger
H. Frequency modulation of large oscillatory neural networks.
Biol Cybern. 2014;108(2):145–57. https://doi.org/10.1007/s004
22-013-0584-0.

62. Yildiz IB, Jaeger H, Kiebel SJ. Re-visiting the echo state
property. Neural Netw. 2012;35:1–9. https://doi.org/10.1016/j.
neunet.2012.07.005.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Cogn Comput (2020) 12:330–356356

https://doi.org/10.1016/j.conb.2014.08.011
https://doi.org/10.1016/j.conb.2014.08.011
https://doi.org/10.3934/dcdsb.2018193
https://doi.org/10.1007/s00422-013-0584-0
https://doi.org/10.1007/s00422-013-0584-0
https://doi.org/10.1016/j.neunet.2012.07.005
https://doi.org/10.1016/j.neunet.2012.07.005

	Interpreting Recurrent Neural Networks Behaviour via Excitable Network Attractors
	Abstract
	Introduction
	Problem Statement and Research Hypothesis
	Contribution and Paper Organisation

	Background
	Echo State Networks
	Training ESNs with Low-Rank Perturbation Matrices
	Network Attractors

	Designing Low-Dimensional ESNs to Solve Flip-Flop Tasks
	A Minimal-Dimension Example to Solve the Two-Bit Flip-Flop Task
	A 2k-Dimensional Model for k-Bit Flip-Flop Tasks

	Extracting ENAs from the ESN Trajectory
	Finding Fixed Points of the Dynamics
	Determining Excitable Connections Between Attractors
	Local Switching Subspaces
	Estimation of Excitability Thresholds
	Remarks on Computational Complexity

	Simulations
	Evaluation on Manually Designed Low-Dimensional ESNs
	Minimal-dimension model
	Four-Dimensional Model

	Application of the Proposed Method to High-Dimensional Trained ESNs
	Low-Dimensional Dynamics
	Computation Accuracy and Spurious Attractors

	Noise Tolerance and Effective Excitability of ENAs

	Conclusions
	Acknowledgements
	Funding Information
	Compliance with Ethical Standards
	Conflict of interest
	Human and Animal Rights
	Open Access
	Appendix A: Linear Stability Analysis
	Appendix B: Bifurcation of Fixed Points in ESNs
	Appendix B: Bifurcation of Fixed Points in ESNs
	B.1 ESN Maps in One Dimension
	B.2 ESN Maps in Two Dimensions
	Appendix C: Aggregation of Fixed Points via Clustering
	Appendix C: Aggregation of Fixed Points via Clustering
	References
	Publisher's Note

