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Abstract
Leaf Area Index (LAI) is an important index that reflects the growth status of forest vegetation and land surface processes.

It is of important practical significance to quantitatively and accurately estimate Leaf Area Index. We used the Landsat-8

operational land imager single-band images, and 15 vegetation indices that were extracted from the multi-band were

combined with the LAI data measured from the CI-110 canopy digital imager to establish the LAI estimation model.

Through the leave-one-out cross-validation method, the accuracy of various model estimation results was verified and

compared, and the optimal estimation model was obtained to generate the LAI distribution map of Shangri-La City. The

results show that: (1) the multivariable model method is better than the single-variable model method when estimating

LAI, and its determination coefficient is the highest (R2 = 0.7903). (2) The full-sample dataset is divided into Alpine Pine

forest, Oak forest, Spruce–fir forest, and Yunnan Pine forest for analysis. The coefficient of determination of the model

simulation is improved to varying degrees, and the highest R2 increased by 0.1652, 0.1040, 0.1264, and 0.0079, respec-

tively, over the full-sample. The corresponding best models are LAI–DVI (Difference Vegetation Index), LAI–NNIR

(normalized near-infrared), LAI–NMDI (Normalized Multi-band Drought Index), and LAI–RVI (Ratio Vegetation Index).

(3) The LAI values in Shangri-La City ranged from 0.9654 to 5.5145 and are mainly concentrated in high vegetation

coverage areas; and the higher the vegetation coverage level, the higher the LAI value.
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Introduction

Leaf Area Index (LAI) is defined as one-half of the total

green leaf area (all sides) per unit of ground surface area

(Chen and Black 2010). Among many surface biogeo-

chemical parameters that can be derived from satellite

spectral measurements, LAI is a vegetation structural

parameter of fundamental importance for the quantitative

analysis of many physical and biological processes related

to vegetation dynamics and their effects on the global

carbon cycle and climate (Chen et al. 2002). LAI is an

important input factor for the study of the forest carbon

cycle and water cycle mechanism models (Chang et al.

2016), which are vital to describe the vegetation canopy

and assess plant growth conditions and their health status

(Wang et al. 2018). LAI also plays an important role in the

quantitative remote sensing inversion of vegetation and is

widely used in the research of vegetation canopy reflec-

tance models and climate models (Ren et al. 2015).
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Forest land LAI measurement methods include direct

and indirect measurements. Although the direct mea-

surement of the LAI method has high precision, it is very

laborious and destructive to the plant itself (Zhu et al.

2014). It is also time-consuming, labor-intensive or sim-

ply unattainable, as well as difficult to expand to a large

area LAI measurement (Han et al. 2014). Therefore, LAI

observation mostly uses indirect measurement methods.

The indirect measurement method uses some measure-

ment parameters or optical instruments to obtain the Leaf

Area Index, which is convenient and quick to measure.

These include the TRAC plant canopy analyzer, the

AccuPAR plant canopy analyzer, the LAI-2000 plant

canopy analyzer, and the CI-110 vegetation canopy digital

imager. However, the results obtained by indirect methods

need to be corrected. With increasing interest in LAI

spatial models and the need for scientific research, the use

of remote sensing data to estimate LAI has become the

most attractive method because it provides the most

effective method for large area LAI estimation (Li et al.

2014; He et al. 2013; Zhang et al. 2018). The quantitative

inversion of LAI based on remote sensing methods usu-

ally includes an optical model method and a statistical

model method. The former has a certain universality, but

the inversion is time-consuming and the operation is

complex, which can result in an incorrect inversion result

(Wang et al. 2015; Li et al. 2011). The statistical model

method aims to establish a linear or nonlinear model

between the measured LAI and the vegetation index to

achieve an estimation of the LAI (Han et al. 2014). The

model is simple and easy to calculate and has high pre-

cision, but it requires a large amount of measured data

(Wang et al. 2016).

Many scholars have conducted LAI studies based on a

statistical model of vegetation index. These researchers

methods include using TM data as the data source to

analyze the correlation between vegetation index and

measured LAI (Xu et al. 2003), using the best vegetation

index model to construct the LAI estimation model of

forest land using random forest (Yao et al. 2017), and using

the method of inverting the corn canopy Leaf Area Index

by using the vegetation index as a preliminary judgment

basis for the growth status of maize (Su et al. 2018). The

radiation transmission model was used to estimate the

forest LAI model, and the NDVI–LAI (Normalized Dif-

ference Vegetation Index and Leaf Area Index) relation-

ship of deciduous forest land was studied during

1996–2001 (Wang et al. 2005). These studies were focused

on the assessment of a LAI model inversion approach

applied to multitemporal optical data over an agricultural

region that had various crop types with different crop

calendars (González-Sanpedro et al. 2008). The relation-

ship between LAI and NDVI was quantified using

empirical relationships between plant community-specific

LAI and daily scale accumulation (with a 0 �C threshold)

(Juutinen et al. 2017).

The above research shows that using the empirical

relationship between vegetation index and measured LAI,

the LAI inversion model provides an effective technical

means for LAI estimation research in areas with complex

terrain and difficult conditions, such as hard to reach arti-

ficial measurement areas. However, the research divides

the samples into modeling sets and inspection sets and

adopts a sample retention test method, which greatly

reduces the sample utilization rate. This makes it more

difficult to perform work for Leaf Area Index acquisition in

large regions and in difficult environments. The leave-one-

out cross-validation (LOOCV) method can be used for the

study of fewer sample points.

In this study, therefore, our objective is to use the

single-band data of remote sensing data and multiple

vegetation indices calculated through multiple bands to

conduct regression analysis with the land surface mea-

sured forestland LAI data. Using this method, an optimal

estimation model for LAI remote sensing inversion of

forest land (including forest types) is established. The

accuracy of the remote sensing inversion model is verified

by the LOOCV method. This provides a reference for the

inversion of LAI in the woodland of Shangri-La City

using empirical statistical models. Landsat OLI was used

as the data source for remotely sensed data, and the LAI

data were measured using the CI-110 vegetation canopy

digital imager as a field acquisition tool to collect the LAI

of each forest land from July–September 2016 and July–

September 2017.

Data and Methods

Study Area

Shangri-La City, located in the northwestern part of the

Yunnan Province, China, is situated in the Hengduanshan

area in the eastern part of the Three Parallel Rivers, and

its geographical position is 26�520–28�520N,99�200–
100�190E. The total area of the city is 11,600 km2

(Fig. 1). Most areas of Shangri-La City are subalpine,

alpine landform with elevations above 3000 m; the veg-

etation type is cold-temperate and cool-temperate conif-

erous forest. There are 43 species of major forest trees,

including 10 species of coniferous forests, 33 species of

broadleaf forests, and a wide distribution of Abies, Picea,

Sequoia, Alpine Pine, Yunnan pine, Quercus Aquifo-

lioides, Red Birch, White Birch, etc. The city’s forest

land area is 962,159.3 hectares, with the total volume of

133,224,410 cubic meters. The forest coverage rate is
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76.00%, the green area of the forest is 83.19%, and the

public welfare forest and analyzing ratio is 89.47:10.53.

The forest is mainly divided into Bract Fir forest, Cang-

shan Fir forest, Lijiang Spruce forest, Alpine Pine forest,

Quercus Aquifolioides and Yunnan Pine forest, Larch

(Large Sequoia), Yunnan Hemlock forests, Populus sze-

chuanica Schneid, White Birch forests and Acer, Birch

forest, etc. The Oak forest, Yunnan Pine forest, Alpine

Pine forest, and Spruce–fir forest (including Abies Geor-

gei forest, Cangshan Fir forest, and Lijiang Spruce forest)

account for 90.8% of ash forests in Shangri-La City;

therefore, LAI inversion studies are primarily performed

on these 4 kinds of forest species.

Data Sources

Landsat 8 OLI Image

Shangri-La City has distinct wet and dry seasons; the

summer and autumn seasons (June to October each year)

are dominated by rainy days; therefore, remote sensing

images have a greater cloud cover. Thus, the dry season

remote sensing image (December 2016 Landsat OLI

image) was selected as the data source, and the data

acquisition dates were December 6, 2016 (strip number

131, line number 41) and December 13, 2016 (strip number

132, line numbers 40–41), when the cloud volume was

below 1.18%. These data include 7 multispectral bands

Fig. 1 Location of Shangri-La City, Yunnan Province, China
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with 30 m resolution (wavelength range of 0.43–2.29 lm),

one panchromatic band with 15 m resolution (wavelength

range of 0.50–0.68 lm), and 2 thermal infrared bands with

100 m resolution (wavelength range of 10.6–12.5 lm). The

images were downloaded from the USGS (https://glovis.

usgs.gov/).

LAI Measured Data

The common types of forests in Shangri-La City are mainly

Alpine Pine forests, Oak forests, Spruce–fir forests, and

Yunnan Pine forests; therefore, LAI data of these 4 com-

mon species were obtained. The collections were con-

ducted in 3 time periods from August 27 to September 2,

2016, July 17 to July 26 and September 24 to September

30, 2017. First, using the CI-110 vegetation canopy digital

imager produced by CID, USA, indirect measurements of

plant canopy-related parameters were taken, and parame-

ters such as Leaf Area Index, average blade inclination

angle, and scattered radiation transmittance were calcu-

lated. The instrument was purchased from Zealquest Sci-

entific Technology Co., Ltd., located at 8th Floor, Building

2, East China Normal University Science and Technology

Park, 1038 Jinshajiang Road, Shanghai (Postal Code:

200062). The most suitable sky condition for measure-

ments is clear morning or evenings, that is, when the

amount of scattered radiation is low. When measured under

clear-sky conditions, the fisheye lens of the CI-110 vege-

tation canopy digital imager should be placed in the shade

or shadow to reduce the underestimation of LAI and the

overestimation of direct and diffuse radiation transmission

coefficients. The distance of the nearest leaf in the direction

of the fisheye lens to a 30-degree zenith angle should be at

least 4 times the width of the blade. Several more mea-

surements to reduce the size of the image were taken, and

so the average number of images depends on the canopy

structure and its distribution. Therefore, 40 sample plots

were randomly selected in Shangri-La City for LAI mea-

surements, with a size of 30 m 9 30 m (corresponding to

the spatial resolution of 30 m of the OLI image). A plu-

rality of LAI values is measured in 4 different directions in

a range of 30 m 9 30 m around the center point in a total

of 4 different directions is calculated to be the LAI value of

the sample; and the center point latitude and longitude are

recorded by a handheld GPS. By eliminating 6 sets of

obvious error plots, the available data consisted of 34

groups, including 7 groups of Spruce–fir forests, 9 groups

of Alpine Pine forests, 5 groups of Oak forests, and 13

groups of Yunnan Pine forests. The description statistics of

the LAI sampling data are shown in Table 1.

Auxiliary Data

Auxiliary data include Shangri-La City vector zoning data

and land use classification maps. The land use data are

from the Chinese land use data for 2015 from the Chinese

Academy of Sciences’ Resource and Environment Science

Data Center. The data update is based on the 2010 data that

is based on Landsat 8 remote sensing images and is gen-

erated through manual interpretation. The land use types

include 6 first-level types and 25 second-level types of

cultivated land, forest land, grassland, water areas, resi-

dential areas, and unused land. China’s land use remote

sensing monitoring database is China’s highest accuracy

database of land use remote sensing monitoring data

products, which has played an important role in the

national land resources survey, hydrology, and ecological

research. Therefore, the land use pattern is used to further

analyze the spatial distribution of LAI.

Methods

Based on the Landsat OLI data calculated radiation,

atmospheric correction, and other preprocessing, the multi-

band vegetation index was calculated. The field data

obtained were used for the elimination of invalid data and

the classification of sample types. The 34 measured sam-

ples were separated from the single-band and multi-band

regression analysis that was performed to establish the LAI

model. Using the LOOCV method to evaluate the accuracy

of the model, the best sample models for the full-sample

and each sample were selected. Finally, the LAI was

inverted, and the LAI status of the Shangri-La City forest

land was analyzed in combination with land use types and

vegetation coverage.

Table 1 Results of LAI for

descriptive statistics
Types Sample numbers Minimum Maximum Average SD Skewness Kurtosis

Alpine Pine 9 1.01 3.21 1.73 0.64 1.14 1.07

Oak 5 1.40 2.35 1.81 0.34 0.46 - 0.85

Spruce–fir 7 0.56 2.14 1.51 0.52 - 0.61 - 0.21

Yunnan Pine 13 1.05 2.96 1.76 0.46 1.13 2.44

Full-sample 34 0.56 3.21 1.73 0.53 0.65 1.30
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Univariate Model Method

Seven bands of Landsat OLI multispectral data were used

to perform the quadratic polynomial regression analysis

with the measured LAI, and a regression model for the

single-band gray value and LAI was established.

Multivariate Modeling Method

Vegetation index is a unique numerical value that indicates

the reflectivity of ground objects in 2 or more wavelength

ranges by using linear or nonlinear calculations to generate

certain indications of vegetation growth and biomass (Luo

et al. 2012). Fifteen broadband vegetation indices that are

sensitive to LAI to be used to estimate LAI were selected.

Statistical regression was performed between each vege-

tation index and measured LAI, and a fitting model in the

form of a linear function was established. The formulas for

calculating the vegetation indices are shown in Table 2.

Estimation of Vegetation Coverage

A dimidiate pixel model is a kind of vegetation coverage

estimation model that is simple and practical. It considers

remote sensing sensor information S, the green vegetation

information contribution of Sv, and the covered with no

vegetation (bare soil) contribution of SS (Li et al. 2004).

The dimidiate pixel model of vegetation coverage is:

FVC ¼ S� SSð Þ= Sv � SSð Þ; ð1Þ

In the formula, FVC represents the vegetation coverage,

S represents the vegetation index of the pixel, Sv is the

vegetation index information of the surface completely

covered by vegetation, and SS is the vegetation index

information of the bare soil surface. In the following for-

mula, NDVI replaces S, NDVImin replaces SS, and NDVImax

replaces Sv:

FVC ¼ NDVI� NDVIminð Þ=ðNDVImax � NDVIminÞ; ð2Þ

In the vegetation coverage estimation model based on

the dimidiate pixel, the extreme values of NDVI are not

necessarily NDVImax and NDVImin due to the

inevitable noise in the image. Therefore, in this paper, we

take the maximum and minimum values within the confi-

dence interval of 5–95%.

Results

Estimating LAI by the Univariate Model Method

In the LAI regression analysis using the single-band of the

full-sample, the determination coefficient is very low, and

the highest near-infrared band is only 0.1211, which indi-

cates that the LAI inversion of woodland using a single-

variable model has low precision and a large inversion

error (Table 3).

Table 2 Vegetation indices and expressions

Vegetation index Expression

Ratio Vegetation Index (Jordan 1969) RVI = nir/r

Normalized near-infrared (Sripada et al. 2005) NNIR = nir/(nir ? r ? green)

Soil Adjusted Vegetation Index (Huete 1988) SAVI = 1.5 9 (nir - r)/(nir ? r ? 0.5)

Normalized Difference Vegetation Index NDVI = (nir - r)/(nir ? r)

Wide Dynamic Range Vegetation Index (Huang et al. 2017) WDRVI = (0.2 9 nir - r)/(0.2 9 nir ? r)

Normalized red band (Sripada et al. 2005) NR = r/(nir ? r ? green)

Green Normalized Difference Vegetation Index (Gitelson et al. 1996) GNDVI = (nir - green)/(nir ? green)

Difference Vegetation Index (Tucker 1979) DVI = nir - r

Renormalized Difference Vegetation Index (Roujean and Breon 1995)
RDVI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nir� rð Þ2= nirþ rð Þ
q

Normalized Multi-band Drought Index (Wang and Qu 2007) NMDI = (nir - (swir1 - swir2))/(nir - (swir1 ? swir2))

Structure Insensitive Pigment Index (Penuelas et al. 2010) SIPI = (nir - blue)/(nir ? blue)

Normalized green-band (Sripada et al. 2005) NG = green/(nir ? r ? green)

Green Ratio Vegetation Index (Gitelson et al. 1996) GRVI = nir/green - 1

Modified Soil Adjusted Vegetation Index (Qi et al. 1994)
MSAVI ¼ 2� nirþ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� nirþ 1ð Þ2�8� nir� rð Þ=2
q

Plant Senescence Reflectance Index (Merzlyak et al. 2010) PSRI = (r - blue)/nir

blue, green, r, nir, swirl, and swir2, respectively, represent the reflectance of blue, green, red, near-infrared, shortwave infrared 1, and shortwave

infrared 2 in Landsat 8 images, respectively
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Estimating LAI by the Multivariate Model
Method

A linear regression analysis was carried out with 15

planting cover indices and all of the samples: Alpine Pine

forest sample, Oak forest sample, Spruce–fir sample and

Yunnan Pine sample LAI (Fig. 2). The correlation is shown

in Table 4. We know that: (1) whether it is a regression

analysis of the all of the samples or a regression analysis of

the forest land in the 4th sample, the multiple vegetation

indices extracted from remote sensing images have a good

correlation with the measured LAI. The highest correlation

indices of full-sample, Alpine Pine, Oak, Spruce–fir, and

Yunnan Pine are RVI (R2 = 0.6251), DVI (R2 = 0.7903),

WDRVI (R2 = 0.7439), NMDI (R2 = 0.7515), and RVI

(R2 = 0.6330), respectively. From these expressions, it is

not difficult to find that the near-infrared and red band are

the best expressions of LAI, with the combination of

shortwave infrared and near-infrared. (2) From the

regression analysis of the measured LAI and all sample

Table 3 Quadratic polynomial regression relationship between full-sample LAI and single-band reflectivity

Band Blue Green Red Near-infrared Short wave infrared 1 Short wave Infrared 2

R2 0.0677 0.1114 0.0981 0.1211 0.0642 0.0961

y = 0.8298x + 0.1356
R² = 0.6251
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Fig. 2 The relationship between

4 well-fitting vegetation indices

and measured LAI in the full-

sample

Table 4 Linear regression

relationship between LAI and

the vegetation index of various

samples

VI Full-sample Alpine Pine forest Oak forest Spruce–fir forest Yunnan Pine forest

RVI 0.6251 0.7033 0.6429 0.6266 0.633

NNIR 0.5913 0.7102 0.7291 0.7331 0.5484

SAVI 0.5803 0.7464 0.6772 0.6214 0.5296

NDVI 0.5736 0.7161 0.6586 0.6256 0.5232

WDRVI 0.5082 0.6406 0.7439 0.6305 0.4931

NR 0.5063 0.6828 0.4103 0.4703 0.502

GNDVI 0.5013 0.629 0.6876 0.6557 0.4622

DVI 0.4487 0.7903 0.5984 0.2397 0.474

RDVI 0.4148 0.6581 0.6633 0.2435 0.4173

NMDI 0.3915 0.4371 0.0092 0.7515 0.3294

SIPI 0.2745 0.5811 0.5708 0.072 0.23

NG 0.26 0.3669 0.636 0.0968 0.2408

GRVI 0.11 0.1064 0.4438 0.218 0.2824

MSAVI 0.0703 0.1642 0.3747 0.0003 0.0429

PSRI 0.0018 0.0043 0.4047 0.0169 0.0293
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types, it is found that the 3 kinds of samples from the

Alpine Pine forest, Oak forest, and the Spruce–fir forest

have a higher correlation than the full-sample, and the

correlation R2 of the full-sample in the analysis is less than

0.6251. In the pine forest analysis, except for the 6 vege-

tation indices (NMDI, SIPI, NG, GRVI, MSAVI, and

PSRI), the R2 of the other vegetation indices is 0.6581. This

is because the vegetation cover type of the underlying

surface corresponding to the whole sample is relatively

complex, while the single sample vegetation type is simple,

and the spectral information is more consistent. (3) The

change trend of LAI with each vegetation index in the full-

sample analysis is basically consistent with the trend of

Yunnan pine, and the R2 is relatively close.

Inversion Accuracy Evaluation

Because the measured LAI sample data are limited, in

order to make full use of the measured data, the LAI model

is validated using a verification method that is suitable for

small samples and has the highest sample utilization rate.

The LOOCV method is as follows (Jiang et al. 2013):

Select one observation data set from N observation data

sets as verification data, use the remaining observation data

to fit a model, and verify the accuracy of this model with

the one that is excluded first, and repeat N times. The

predictability of the model is measured by the root-mean-

square error of prediction (RMSEP) and the correlation

coefficient R between the observed values and the model

predictions. RMSEP is often used to quantify model

accuracy, and R is often used to assess model accuracy.

The RMSEP expression is:

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xn

i¼1
LAIimod � LAIiobs
� �2

=n
q

ð3Þ

In the expression, LAIobs
i represents the ith field obser-

vation, LAImod
i is the ith prediction of model inversion, and

N is the total number of observations. A lower RMSEP

value indicates that the regression model is more accurate.

The closer the correlation coefficient R is to 1, the higher

the model accuracy. We cross-validated all 34 samples,

i.e., 9 Alpine Pine forest samples, 5 Oak forest samples, 7

Spruce–fir forest samples, and 13 Yunnan pine forest

samples, as well as 4 kinds of vegetation indices with good

fits, and then calculated the RMSEP and R (Table 5).

From Tables 4 and 5, the full-sample was divided into

Alpine Pine forest, Oak forest, Spruce–fir forest, and

Yunnan Pine, and the coefficient of determination of the

model simulation is increased by 0.1652, 0.1040, 0.1264,

and 0.0079, respectively, compared with the highest R2 of

the full-sample. We can see that the best fitting models for

the full-sample, Alpine Pine, Oak, Spruce–fir and Yunnan

Pine are LAI–RVI, LAI–DVI, LAI–NNIR, LAI–NMDI,

and LAI–RVI, respectively. However, due to the special

vegetative conditions in the study area, it is difficult to

realize the remote sensing differentiation of the 4 forest

land types in Shangri-La City. Therefore, the full-sample

model is used to invert the Shangri-La City LAI.

Table 5 The correlation between the analog value of each sample model and measured values

Full-sample model LAI–RVI LAI–NDVI LAI–SAVI LAI–NNIR

R 0.7501 0.7088 0.7138 0.7251

RMSEP 0.3436 0.3669 0.3642 0.3578

Alpine Pine model LAI–RVI LAI–DVI LAI–SAVI LAI–NNIR

R 0.6169 0.8104 0.6971 0.6484

RMSEP 0.5399 0.3778 0.4787 0.5106

Oak model LAI-GNDVI LAI-WDRVI LAI–SAVI LAI–NNIR

R 0.6188 0.6574 0.6068 0.6499

RMSEP 0.5776 0.4331 0.3264 0.4263

Spruce–fir model LAI-GNDVI LAI-WDRVI LAI–NMDI LAI–NNIR

R 0.6101 0.5613 0.7448 0.6820

RMSEP 0.4246 0.4479 0.3529 0.3919

Yunnan Pine model LAI–RVI LAI–NDVI LAI–SAVI LAI–NNIR

R 0.6337 0.5295 0.5319 0.5327

RMSEP 0.3612 0.4027 0.4020 0.4004
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LAI Mapping

Using the full-sample LAI–RVI model,

y = 0.8298x ? 0.1356, the LAI was extracted and mapped

on the RVI map, and the LAI inversion map of the Shangri-

La City forest was obtained (Fig. 3). To further analyze the

distribution characteristics of LAI, vegetation coverage

(VC) was extracted from the study area in combination

with land use type with a spatial resolution of 1 km 9 1

km. The pixel dichotomy and grading vegetation coverage

[0.0–0.1 for other types, 0.1–0.45 for low vegetation cov-

erage (LVC), 0.45–0.65 for middle vegetation coverage

(MVC), 0.65–0.75 for middle-high vegetation coverage

(MHVC), and 0.75–1.0 for high vegetation coverage

(HVC)], were also used, as shown in Fig. 4. The LAI value

is distributed between 0.9654 and 5.5145, and the higher

the VC level, the higher the LAI value. The minimum

value of the next VC level is the maximum value of the

previous VC level. With the increase in VC level, the

proportion of LAI gradually increases. In the HVC region,

the LAI is 47.8666% and the LAI value of this region is

concentrated at 2.3151, and the corresponding land use

types are forest land, shrub, and partially middle-covered

and high-covered grassland (Table 6).

Conclusions and Discussion

Using the single-band data of Landsat 8, we measured LAI

to perform the quadratic polynomial regression analysis,

the vegetation index was calculated for the multispectral

band, and linear regression analysis was performed with

the measured LAI. The model was verified by the LOOCV

method, and the optimal model was selected to simulate

LAI. The conclusions are as follows:

1. The multivariate model method is more effective than

the univariate model method when estimating LAI. In

the multivariate model for estimating LAI, the vege-

tation index extracted from the remote sensing image

has a good correlation with measured LAI. This is

similar to the results of Tang et al. (2014), who

believed that the 2 variables have a better fit to the leafFig. 3 LAI distribution map

Fig. 4 Fractional vegetation cover

Table 6 LAI statistics within each vegetation coverage

VC level LAI statistics

LAImin LAImax LAIavg The proportion of LAI (%)

LVC 0.9654 1.1088 1.0388 11.6327

MVC 1.1088 1.3816 1.2360 19.6515

MHVC 1.3816 1.7516 1.5644 20.8492

HVC 1.7516 5.5145 2.3151 47.8666
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area than the univariate ones. The best fitting indices in

the full-sample, Alpine Pine forest, Oak forest,

Spruce–fir forest, and Yunnan Pine forest are RVI

(R2 = 0.6251), DVI (R2 = 0.7903), WDRVI

(R2 = 0.7439), NMDI (R2 = 0.7515), and RVI

(R2 = 0.6330), respectively. All of the samples in the

study area were divided into Alpine Pine forest, Oak

forest, Spruce–fir forest, and Yunnan Pine forest

samples. In addition to Yunnan Pine forest, the

determination coefficient of samples of other forest

land is higher than full-sample in the study. Zhu et al.

(2014) states that classifying a sample as a single

sample has a higher coefficient of determination and

simulation accuracy than in full-sample studies.

2. Using the leave-one-out method to verify the 4 kinds

of indices with good fits for 5 samples, it is found that

the best fitting models for the full-sample, Alpine Pine

forest, Oak forest, Spruce–fir forest, and Yunnan Pine

forest samples are LAI–RVI (y = 0.8298x ? 0.1356,

R = 0.7501, RMSEP = 0.3436), LAI–DVI

(y = 1.2478x - 0.0375, R = 0.8104, RMSEP =

0.3778), LAI–NNIR (y = 5.6094x - 0.8462,

R = 0.6499, RMSEP = 0.4263), LAI–NMDI

(y = 4.5813x - 1.6694, R = 0.7448, RMSEP =

0.3529), and LAI–RVI (y = 0.6866x ? 0.4341,

R = 0.6337, RMSEP = 0.3612), respectively.

3. In the LAI inversion, Shangri-La city LAI values are

distributed from 0.9654 to 5.5145, and the higher the

VC level, the higher the LAI value. LAI is mainly

distributed in the HVC area.

The estimation of the Leaf Area Index is a complicated

process. The research results of estimating LAI based on

the correlation between vegetation index and measured

LAI are only preliminary, and many problems need to be

further studied. For example, due to the limitation of data,

the measured data (mainly acquired in October) have a

certain degree of asynchronism, which will affect the

accuracy of the inversion, so later research should strive to

achieve synchronization. In addition, there are only 34

effective samples of the measured LAI, which will also

have some influence on the inversion accuracy.
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