Skip to main content
Log in

Ship Classification in SAR Images Using a New Hybrid CNN–MLP Classifier

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Ship detection on the SAR images for marine monitoring has a wide usage. SAR technology helps us to have a better monitoring over intended sections, without considering atmospheric conditions, or image shooting time. In recent years, with advancements in convolutional neural network (CNN), which is one of the well-known ways of deep learning, using image deep features has increased. Recently, usage of CNN for SAR image segmentation has been increased. Existence of clutter edge, multiple interfering targets, speckle and sea-level clutters makes false alarms and false detections on detector algorithms. In this letter, constant false alarm rate is used for object recognition. This algorithm, processes the image pixel by pixel, and based on statistical information of its neighbor pixels, detects the targeted pixels. Afterward, a neural network with hybrid algorithm of CNN and multilayer perceptron (CNN–MLP) is suggested for image classification. In this proposal, the algorithm is trained with real SAR images from Sentinel-1 and RADARSAT-2 satellites, and has a better performance on object classification than state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akbarizadeh, G., & Tirandaz, Z. (2015). Segmentation parameter estimation algorithm based on curvelet transform coefficients energy for feature extraction and texture description of SAR images. In 2015 7th conference on information and knowledge technology (IKT) (pp. 1–4).

  • Ampe, E. M., Vanhamel, I., Salvadore, E., Dams, J., Bashir, I., Demarchi, L., et al. (2012). Impact of urban land-cover classification on groundwater recharge uncertainty. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(6), 1859–1867.

    Article  Google Scholar 

  • Arel, I., Rose, D. C., & Karnowski, T. P. (2010). Deep machine learning—A new frontier in artificial intelligence research. IEEE Computational Intelligence Magazine, 5(4), 13–18.

    Article  Google Scholar 

  • Bengio, Y. (2009). Learning deep architectures for AI. Foundations and trends® in Machine Learning, 2(1), 1–127.

    Article  Google Scholar 

  • Bentes, C., Frost, A., Velotto, D., & Tings, B. (2016). Ship-iceberg discrimination with convolutional neural networks in high resolution SAR images. In Proceedings of EUSAR 2016: 11th European conference on synthetic aperture radar (pp. 1–4).

  • Bentes, C., Velotto, D., & Lehner, S. (2015). Target classification in oceanographic SAR images with deep neural networks: Architecture and initial results. In 2015 IEEE International on geoscience and remote sensing symposium (IGARSS) (pp. 3703–3706).

  • Bentes, C., Velotto, D., & Tings, B. (2018). Ship classification in terrasar-x images with convolutional neural networks. IEEE Journal of Oceanic Engineering, 43(1), 258–266.

    Article  Google Scholar 

  • Bezak, P., Bozek, P., & Nikitin, Y. (2014). Advanced robotic grasping system using deep learning. Procedia Engineering, 96, 10–20.

    Article  Google Scholar 

  • Chen, S., Wang, H., Xu, F., & Jin, Y.-Q. (2016). Target classification using the deep convolutional networks for SAR images. IEEE Transactions on Geoscience and Remote Sensing, 54(8), 4806–4817.

    Article  Google Scholar 

  • Ding, J., Chen, B., Liu, H., & Huang, M. (2016). Convolutional neural network with data augmentation for SAR target recognition. IEEE Geoscience and Remote Sensing Letters, 13(3), 364–368.

    Google Scholar 

  • Doulgeris, A. P. (2015). An automatic U-distribution and Markov random field segmentation algorithm for PolSAR images. IEEE Transactions on Geoscience and Remote Sensing, 53(4), 1819–1827.

    Article  Google Scholar 

  • Doulgeris, A. P., Anfinsen, S. N., & Eltoft, T. (2011). Automated non-Gaussian clustering of polarimetric synthetic aperture radar images. IEEE Transactions on Geoscience and Remote Sensing, 49(10), 3665–3676.

    Article  Google Scholar 

  • Frost, A., Ressel, R., & Lehner, S. (2015). Iceberg detection over northern latitudes using high resolution TerraSAR-X images. In 36th Canadian symposium of remote sensing-abstracts (pp. 1–8).

  • Gao, G., Liu, L., Zhao, L., Shi, G., & Kuang, G. (2009). An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images. IEEE Transactions on Geoscience and Remote Sensing, 47(6), 1685–1697.

    Article  Google Scholar 

  • Geng, J., Fan, J., Wang, H., Ma, X., Li, B., & Chen, F. (2015). High-resolution SAR image classification via deep convolutional autoencoders. IEEE Geoscience and Remote Sensing Letters, 12(11), 2351–2355.

    Article  Google Scholar 

  • Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 580–587).

  • Hinton, G. E., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527–1554.

    Article  Google Scholar 

  • Hou, B., Kou, H., & Jiao, L. (2016). Classification of polarimetric SAR images using multilayer autoencoders and superpixels. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(7), 3072–3081.

    Article  Google Scholar 

  • Hwang, S.-I., & Ouchi, K. (2010). On a novel approach using MLCC and CFAR for the improvement of ship detection by synthetic aperture radar. IEEE Geoscience and Remote Sensing Letters, 7(2), 391–395.

    Article  Google Scholar 

  • Jakeman, E., & Pusey, P. (1976). A model for non-Rayleigh sea echo. IEEE Transactions on Antennas and Propagation, 24(6), 806–814.

    Article  Google Scholar 

  • Lang, H., Zhang, J., Zhang, X., & Meng, J. (2016). Ship classification in SAR image by joint feature and classifier selection. IEEE Geoscience and Remote Sensing Letters, 13(2), 212–216.

    Article  Google Scholar 

  • LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436.

    Article  Google Scholar 

  • Leng, X., Ji, K., Yang, K., & Zou, H. (2015). A bilateral CFAR algorithm for ship detection in SAR images. IEEE Geoscience and Remote Sensing Letters, 12(7), 1536–1540.

    Article  Google Scholar 

  • Lombardo, P., & Sciotti, M. (2001). Segmentation-based technique for ship detection in SAR images. IEE Proceedings—Radar, Sonar and Navigation, 148(3), 147–159.

    Article  Google Scholar 

  • Lv, Q., Dou, Y., Niu, X., Xu, J., Xu, J., & Xia, F. (2015). Urban land use and land cover classification using remotely sensed SAR data through deep belief networks. Journal of Sensors, 2015, 1–10.

    Article  Google Scholar 

  • Makedonas, A., Theoharatos, C., Tsagaris, V., Anastasopoulos, V., & Costicoglou, S. (2015). Vessel classification in Cosmo-SkyMed SAR data using hierarchical feature selection. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, 975.

    Article  Google Scholar 

  • Mazzarella, F., Vespe, M., & Santamaria, C. (2015). SAR ship detection and self-reporting data fusion based on traffic knowledge. IEEE Geoscience and Remote Sensing Letters, 12(8), 1685–1689.

    Article  Google Scholar 

  • Modava, M., & Akbarizadeh, G. (2017). Coastline extraction from SAR images using spatial fuzzy clustering and the active contour method. International Journal of Remote Sensing, 38(2), 355–370.

    Article  Google Scholar 

  • Pacifici, F., Chini, M., & Emery, W. J. (2009). A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification. Remote Sensing of Environment, 113(6), 1276–1292.

    Article  Google Scholar 

  • Romero, A., Gatta, C., & Camps-Valls, G. (2016). Unsupervised deep feature extraction for remote sensing image classification. IEEE Transactions on Geoscience and Remote Sensing, 54(3), 1349–1362.

    Article  Google Scholar 

  • Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.

    Article  Google Scholar 

  • Schwegmann, C. P., Kleynhans, W., Salmon, B. P., Mdakane, L. W., & Meyer, R. G. V. (2017). A SAR ship dataset for detection, discrimination and analysis. IEEE Dataport. https://doi.org/10.21227/H2RK82.

    Google Scholar 

  • Srinivas, U., Monga, V., & Raj, R. G. (2014). SAR automatic target recognition using discriminative graphical models. IEEE Transactions on Aerospace and Electronic Systems, 50(1), 591–606.

    Article  Google Scholar 

  • Tan, X., & Triggs, B. (2010). Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on Image Processing, 19(6), 1635–1650.

    Article  Google Scholar 

  • Tang, J., Deng, C., Huang, G.-B., & Zhao, B. (2015). Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine. IEEE Transactions on Geoscience and Remote Sensing, 53(3), 1174–1185.

    Article  Google Scholar 

  • Tao, D., Anfinsen, S. N., & Brekke, C. (2016a). Robust CFAR detector based on truncated statistics in multiple-target situations. IEEE Transactions on Geoscience and Remote Sensing, 54(1), 117–134.

    Article  Google Scholar 

  • Tao, D., Doulgeris, A. P., & Brekke, C. (2016b). A segmentation-based CFAR detection algorithm using truncated statistics. IEEE Transactions on Geoscience and Remote Sensing, 54(5), 2887–2898.

    Article  Google Scholar 

  • Wang, M., Fei, X., Zhang, Y., Chen, Z., Wang, X., Tsou, J. Y., et al. (2018). Assessing texture features to classify coastal wetland vegetation from high spatial resolution imagery using completed local binary patterns (CLBP). Remote Sensing, 10(5), 778.

    Article  Google Scholar 

  • Watts, S. (1987). Radar detection prediction in K-distributed sea clutter and thermal noise. IEEE Transactions on Aerospace and Electronic Systems, 23, 40–45.

    Article  Google Scholar 

  • Weiss, M. (1982). Analysis of some modified cell-averaging CFAR processors in multiple-target situations. IEEE Transactions on Aerospace and Electronic Systems, 18, 102–114.

    Article  Google Scholar 

  • Wilmanski, M., Kreucher, C., & Lauer, J. (2016). Modern approaches in deep learning for SAR ATR. In Algorithms for synthetic aperture radar imagery XXIII (p. 98430 N).

  • Wu, F., Wang, C., Jiang, S., Zhang, H., & Zhang, B. (2015). Classification of vessels in single-pol COSMO-SkyMed images based on statistical and structural features. Remote Sensing, 7(5), 5511–5533.

    Article  Google Scholar 

  • Yang, X., Qian, X., & Mei, T. (2015). Learning salient visual word for scalable mobile image retrieval. Pattern Recognition, 48(10), 3093–3101.

    Article  Google Scholar 

  • Yueh, S. H., Kong, J. A., Jao, J. K., Shin, R. T., & Novak, L. M. (1989). K-distribution and polarimetric terrain radar clutter. Journal of Electromagnetic Waves and Applications, 3(8), 747–768.

    Article  Google Scholar 

  • Zhang, C., Pan, X., Li, H., Gardiner, A., Sargent, I., Hare, J., et al. (2017). A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 140, 133–144.

    Article  Google Scholar 

  • Zhao, W., & Du, S. (2016). Spectral–spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach. IEEE Transactions on Geoscience and Remote Sensing, 54(8), 4544–4554.

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by Shahid Chamran University of Ahvaz (Grant No. 96/3/02/16670).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Akbarizadeh.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifzadeh, F., Akbarizadeh, G. & Seifi Kavian, Y. Ship Classification in SAR Images Using a New Hybrid CNN–MLP Classifier. J Indian Soc Remote Sens 47, 551–562 (2019). https://doi.org/10.1007/s12524-018-0891-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-018-0891-y

Keywords

Navigation