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Abstract

Domestic rice agriculture had spread across the mainland Indian subcontinent by ¢.500 BC. The initial spread of rice outside the
core zone of the central Gangetic Plains is thought to have been limited by climatic constraints, particularly seasonal rainfall
levels, and so the later spread of rice into the dry regions of South India is largely supposed to have relied on irrigation. This has
been associated with the development of ritual water features in the Iron Age (c.1000-500 BC), and to the subsequent develop-
ment of tanks (reservoirs) during the period of Early Historic state development (c.500 BC-500 AD). The identification of early
irrigation systems within South Asia has largely relied on early historical texts, and not on direct archaeological evidence. This
initial investigation attempts to identify irrigated rice cultivation in the Indian subcontinent by directly examining rice crop
remains (phytolith and macrobotanical data) from four sites. The evidence presented here shows that, contrary to accepted
narratives, rice agriculture in the Iron Age-Early Historic South India may not have been supported by irrigated paddy fields,
but may have relied on seasonal rainfall as elsewhere in the subcontinent. More caution is urged, therefore, when using terms
related to ‘irrigation” and ‘agricultural intensification’ in discussions of the Iron Age and Early Historic South Asia and the related

developments of urbanism and state polities.
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Introduction

Within South Asia, the prehistory and history of rice has to be
picked out using data points that are very few and far between
(Bates et al. 2017; Fuller et al. 2010, 2016). Archaeology has
now reached a stage where it is possible to detail where rice
was first used as a major food resource (c.6400 BC in Uttar
Pradesh; Tewari et al. 2008), to outline when it became a
domestic crop in India (c.2500 BC; Bates et al. 2017,
Murphy and Fuller 2016) and, roughly, when it spread across
South India to reach Sri Lanka by ¢.500 BC (Fuller et al. 2010,
2016). However, we do not know how rice was grown in
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many areas of South Asia, when deep-water irrigation systems
were developed or how the spread of rice outside of its natural
zone was facilitated by human intervention and invention. By
examining these questions, it is also possible to inform the
development of state polities in South India, which is argued
to have coincided with the introduction of deep-water irriga-
tion and rice crops in these regions (Shaw and Sutcliffe 2003;
Morrison 2015). Agricultural intensification in the form of
irrigated rice has often been given a causal role in the devel-
opment of urbanism (cf. Fuller and Qin 2009; Stargardt 2019;
Wittfogel 1957). Across South Asia, and particularly Sri
Lanka, irrigation tanks (artificial reservoirs of any size) form
significant parts of the landscape, as well as cultural, agricul-
tural and religious life (Shaw 2005; Sengupta 2000). The con-
struction and maintenance of tanks (as well as other irrigation
infrastructure such as canals and dams) requires community
management, demands a high labour cost (Mosse 1999) and
so their development and spread has been associated with the
Early Historic development and spread of urbanism and
Buddhism ¢.500 BC-500 AD (Shaw and Sutcliffe 2003;
Morrison 2015; Morrison 2019). This theory, however,
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neglects other important factors in the development of states
and urbanism, especially trade and economic specialisation
(Allchin 1995; Johansen 2010; Moorti 1994; Smith 2006;
Thakur 2002) and the autonomous agency of ‘ruled’ state
subjects (cf. Hall 2001; Morrison and Junker 2002; Scott
2017). It also neglects alternative agricultural strategies such
as diversification (Marston 2011; Petriec and Bates 2018;
Weber et al. 2010a) and extensification (Porter et al. 2014;
Strying et al. 2017).

This paper presents archaeobotanical data from four sites
separated by up to 3000 km and 3000 years, from the north to
the south of India: Tokwa, Gopalpur, Perur and Kodumanal.
This analysis aims to directly investigate the ecology of the
rice crops cultivated at each site, via archaeological phytolith
samples (silica bodies which form within and between plant
cells), in order to confirm the emergence of irrigated cultiva-
tion systems in the Early Historic South India.

Rice, rain and reservoirs

Rice agriculture is intrinsically coupled to the monsoons in
South Asia, which provides the bulk of water used in agricul-
ture. The southwest summer monsoon begins in June,
reaching Sri Lanka and the south of India first and ending in
the northwest of India in September. Caused by low pressure
over the subcontinent and the high wall of the Himalayas,
winds bring moisture from the Indian Ocean in huge amounts,
leading to rainfalls of up to 2500 mm in just 2 months on the
southwest coast and northeast India. The northeast monsoons
take place between October and February and are the result of
the Indian subcontinent cooling after the summer months.
This monsoon brings water to the east coast, areas of Central
India and Sri Lanka, and accounts for around 50% of Tamil
Nadu’s annual rainfall (Fick and Hijmans 2017). The period
between the two monsoons, summer, sees very high tempera-
tures and little to no rainfall in India. There are, therefore, three
seasons across most of India: monsoon, summer and winter
(during the northwest monsoon). Some coastal parts of south-
ern India have a different pattern of four seasons, with the
southwest monsoon from June to October, the northeast mon-
soon from December to March, and two intermonsoonal pe-
riods. This causes a different pattern of vegetative growth
from the rest of India, with flowering occurring in the winter,
rather than the monsoon season (Asouti and Fuller 2007). The
scheduling of crop growing seasons is, naturally, heavily in-
fluenced by the monsoons (see discussion in Morrison, in
press). In India, there are two growing seasons: kharif (coin-
ciding with the summer monsoon) and rabi (coinciding with
the northeast monsoon). Both are timed so that planting coin-
cides with the beginning of the rains, and harvesting occurs
several weeks after they have ended. Traditionally, across
most of India, the kharif crop is characterised by rice, millets
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and Vigna pulses, whereas wheats, barley and peas are grown
as the rabi crop. Not all areas can produce a double crop;
today, the rabi crop is largely found in the states of Tamil
Nadu, Kerala, Telangana and Andhra Pradesh, as well as
across soils of Indus-Ganges alluvium, and is facilitated by
the use of irrigation technologies. The production of kharif
and rabi crops is not solely dependent on the monsoon rains
however. Irrigation technologies allow for the production of
multiple crops (including double or even triple rice cropping
(Petrie and Bates 2017)) in areas that would not necessarily
receive enough rainfall (for example, by pumping ground wa-
ter). Local environments and geographies also play a role,
such as in the Kaveri delta in Tamil Nadu where multiple
cropping is supported by the waters of the delta.

Of particular importance around the early first millennium
AD were tanks and canals. References to such irrigation
works are frequently recorded in Sangam texts of South
India and it is clear that undertaking irrigation projects was a
noble and lofty scheme for kings to undertake (Ramaswamy
2008; Raman 2008). Dating these texts, particularly the earli-
est, remains problematic, however, with a reasonable estimate
of 300 BC-300 AD proposed by Abraham (2003 p. 214) and
Thapar 2004 p. 231) for the Early Sangam period. Direct dates
on tank construction are so far unavailable in South India, but
the initial construction phase for a tank in the Anuradhapura
region of Sri Lanka has been placed at ¢.400-200 BC using
Optically stimulated luminescence dating (Gilliland et al.
2013). It is suggested that this tank was used for small-scale
agriculture within the developing urban hinterland of
Anuradhapura City (ibid.). The earliest direct dates for rice
from Sri Lanka come from Kantharodai ¢.300 BC and
Mantai at 74-241 cal AD (Kingwell-Banham et al. in press).

Whilst irrigation technologies allow for a degree of mitiga-
tion against both drought and flooding, the quantity, intensity
and availability of rainfall were of greater importance in pre-
irrigation technology agriculture than they are today. The ear-
liest rice-producing societies all occur within areas that receive
substantial monsoon rainfall and seasonal flooding: the Indo-
Gangetic basin and East India (Kingwell-Banham et al. 2015).
Across the semi-arid areas of South Asia agricultural produc-
tion focused on drought tolerant millets and pulses as well as
wheat and barley, which formed the basis of crop production
in Neolithic South India ¢.2800-1000 BC (Fuller 2006;
Kingwell-Banham et al. 2015). Wheat and barley, whilst need-
ing more water than millets, still require less water than rice in
predominant cultivation systems. This pattern suggests that a
change must have occurred to either the environment, agricul-
tural systems (including through technological innovation) or
to the rice crop itself, before rice agriculture could move from
within its restricted environmental sphere into the drier areas
of South Asia around 500 BC.

Unfortunately, palacoecological studies for the Deccan and
central South India are rare. What little data that exists
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suggests that monsoon variability increased in the Late
Holocene, but that this had different regional expressions
(Patnaik et al. 2012; Ponton et al. 2012; e.g. compare Prasad
et al. 2014 to Tripathi et al. 2014). Roberts et al. (2016) have
examined changes in settlement patterns, subsistence and de-
mographics in relation to environmental change during the
Late Neolithic-Megalithic transition in Bellary, Karnataka.
This study has suggested that fluctuations in rainfall levels
would have made access to reliable watercourses, such as
the Krishna and Tugabhadra rivers, of great importance.
This is demonstrated by the increase in settlement size and
density along such watercourses within the Southern Deccan
and the abandonment of settlements located away from rivers,
such as Sanganakallu and Hiregudda Area A (Roberts et al.
2016 pp.596-5). Similar shifts in settlements in the
Vijayanagara region have been reported by Morrison (2015
p. 12) for the Late Iron Age-Early Historic period, although
she did not identify such change during the Neolithic-Iron
Age period. It is unlikely that monsoon variability would have
caused a large enough increase in rainfall to allow for signif-
icant non-irrigated wet-rice agriculture in central South India
¢.1000 BC onwards. It appears, however, that human response
to this variability included concentrating settlements along
larger rivers and tracts of alluvium that could have provided
adequate water for crop production (Roberts et al. 2016).

The development of rice agriculture in South
Asia: established narratives and gaps
in the data

The use of archaeobotanical data to investigate the impact of
monsoon variability on agriculture in South Asia has been
hampered by the fact that few sites have been systematically
sampled for archaeobotanical remains, and fewer of these
have been published. This is particularly true for South India
(Table 1). Yet, there is not enough data to fully examine
changes in crop composition between the Neolithic-Iron
Age-Medieval periods; however, it is possible to trace an
outline.

There is a period of approximately 1000 years in which the
transition from using proto-indica rice (the early rice variety
indigenous to India) to supplement subsistence in the Ganges
Basin to the use of rice as a primary cultivated domestic crop
across the Indo-Gangetic Basin occurred, ¢.2500 BC (Silva
et al. 2018). There is a hiatus, however, before rice cultivation
is taken up in drier parts of India: the Deccan and South
India (Fig. 1). It is not until the second half of the first millen-
nium BC that we see archaeobotanical evidence and rice-
tempered pottery suggesting the use of rice as a major crop
(Fuller and Qin 2009; Fuller 2006). This final dispersal of
Oryza sativa in India has been attributed in part to the spread
of Buddhism and irrigation technology in the area between the

3rd—1st centuries BC (Shaw et al. 2007; (although others have
dated this more recently, e.g. Raman (2008 p. 497) at mid-first
millennium AD), but has also been given causality in the rise
of urbanism (e.g. Fuller and Qin 2009).

The spread of rice agriculture into the savannahs of south-
ern India is postulated to have been via the eastern coast
(Cooke et al. 2005), but may equally have travelled along
the western coast as the data are very patchy. Both the coastal
regions to the sides of the Western and Eastern Ghats see
higher levels of rainfall than the central zone during the sum-
mer monsoon and so could have supported a rainfed rice crop.
It is also possible that early forms of saltwater/saline rice cul-
tivation systems (e.g. kaipad) may have developed in these
regions, but this remains speculation. From there, either before
or after the development of irrigation systems, rice cultivation
may have moved over these mountain ranges and into the
interior, possibly along rivers such as the Krishna or
Godavari and their tributaries (see Raman 2008 for notes on
the importance of riverside agricultural land in the Sangam
period). By 1000 AD urban centres, tanks and irrigation net-
works were present across arid South India. Undoubtedly, by
this time, irrigated agriculture was important in supporting
larger urban populations and irrigated cash crops such as sug-
arcane and cotton became increasingly important to the econ-
omy (Thakur 2002; Fuller 2008; Fuller et al. 2017).

Intensification versus extensification

The leading theory as to what allowed rice agriculture to move
into the dry zones of the Southern Peninsula does not primar-
ily come directly from archaeobotanical analysis, but from the
archaeologies of settlement, landscape, state development and
from the studies of early historical texts. This theory ties the
spread of rice agriculture to the development of irrigation
technologies, the construction of tanks, ponds and canals
across the Deccan, the Southern Peninsula and Sri Lanka at
the end of the Iron Age/beginning of the Early Historic Period,
and the development of early polities and urbanism (e.g. Shaw
and Sutcliffe 2003; Bauer and Morrison 2008; Gilliland et al.
2013) and can be traced back to Wittfogel’s seminal work
(Wittfogel 1957).

Irrigation is a form of agricultural intensification which can
dramatically increase yields (Boserup 1965; Brookfield 1972;
McClatchie 2014), and as such is often associated with the
development of densely populated urban societies across the
world (e.g. Marcus and Stanish 2006; Weiss 1986); however,
this is a simplified understanding of the dynamics between
agriculture and populations (e.g. Erickson 2006; Kirch 1995;
Morrison 1994). Other forms of agricultural intensification
include manuring and weed management, both of which can
be analysed archaeobotanically (see Jones et al. 2000;
Bogaard et al. 2005), but these have often been overlooked
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Table 1 Key crops of South India, their earliest reported dates and the
number of sites they have been reported. Data from Stevens et al. (2016),
Supplementary Table 1, which records published archacobotanical data

and associated radiocarbon dates. Note the reduction in published
archaeobotanical data sets from post-Neolithic sites (1000 BC onwards)

Area of Crop Earliest reported date  Number of sites Number of sites Number of sites Number of sites
origin in South India (BC)  present at 2000— present at 1000— present at 500— present at 0—
1000 BC 500 BC 0 BC 500 AD
South Asia  Macrotyloma uniflorum 1900 17 2 3
South Asia  Vigna radiata 1875 10 3
West Asia  Triticum aestivum 1800 7 2
West Asia  Hordeum vulgare 1800 7 1 1
West Asia  Lathyrus sativus 1800 2
South Asia  Panicum sumatrense 1800 2 1
Africa Paspalum 1800 5
scrobiculatum
South Asia  Cajanus cajan 1800 4 1
South Asia  Setaria verticillata 1750
South Asia  Brachiaria ramosa 1700 15 2 1
South Asia  Vigna mungo 1650 2
Africa Pennisetum glaucum 1550 2 1 1
South Asia  Oryza sativa indica 700 3 13 3
Africa Sorghum bicolor 550 1
Africa Vigna unguiculata 550 1
Total 85 18 25 3

in South Asian archaeobotany in favour of irrigation, undoubt-
edly because deep-water irrigated paddy fields are visually
conspicuous within the modern landscape. Flooded and
transplanted rice cultivation systems (which the term ‘paddy’
most often relates to, when not used more generally simply
mean ‘rice’) are almost unique in that the process of flooding
fields and transplanting seedlings both fertilises and dramati-
cally reduces the amount of weeding needed to raise a crop. It
is a highly labour intensive system of cultivation (including
the creation of bunds [linear banks of earth], canals, damns
and sluices) but with some of the highest yields. Compare
modern yields of deep-water irrigated rice of around 2.5 t/ha
to around 1 t/ha for rainfed rice (IRRI 2000), for example. The
early development of irrigated fields has been documented
archaeologically in Neolithic China, where small, enclosed,
rainfed ‘ponds’ developed into large canal fed paddy fields
(Fuller and Qin 2009; Zhuang et al. 2014), but not in South
Asia.

Intensification is not, however, the only way in which past
societies increased crop yields. Diversification of crops (see
Marston 2011), including the establishment of summer and
winter cropping, has frequently been considered within the
archaeology of Northern India in particular (e.g. Petrie and
Bates 2017; Weber 1998; Weber et al. 2010a) and to a more
limited extent in South India (e.g. Cooke and Fuller 2015).
Extensification has been greatly overlooked in the research of
the Early Historic South Asia however (although see Miller
2006). Extensification refers to the process of increasing crop
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production by bringing more land under cultivation. Obvious
indicators of extensification include deforestation (most often
seen archaeologically through palaeoclimate records as in-
creased microcharcoal or decreased arboreal pollen, e.g.
Penny and Kealhofer (2005)) and the creation of new fields
and field boundaries over a large area (e.g. Porter et al. 2014).
McClatchie (2014) convincingly argues against oversimplifi-
cation in the identification of ‘intensive agriculture’ through
the creation of stone-built field boundaries. These have been
interpreted as the establishment of fixed plot, more intensive
agriculture, developing from less intensive systems of shifting
cultivation. As McClatchie details, however, ‘a change in the
organisation of production ... does not necessarily imply any
enhancement in productivity’ and instead may mark changes
in the conceptual and social demarcation of landscapes. This
can be related to Bauer and Morrison’s (2008) consideration
of the socially symbolic importance of early reservoirs in
South India. These changes in social landscape may include
the process of extensification, as a social group incorporates
larger areas into their agricultural territory, such as the Tiv’s
extensive agriculture in the Benue Lowlands. As Stone (1996
p. 189) describes it ‘in location after location, land pressure
brought not the heightened work of intensification, but move-
ment’, indicating that extensive agriculture can sometimes
provide a more resilient and productive option. This resilience
is demonstrated in the continued existence of shifting cultiva-
tors within India today, who instead of being seen as
marginalised and ‘pushed out’, instead could be seen as
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Fig. 1 a Locations and time periods of archaeological sites in South India
with published archaeobotanical data recorded in Stevens et al. (2016). b
Map showing the spread of rice across South Asia based on Fast-March

groups who have maintained their cultural and economic iden-
tities despite consistent pressures to ‘modernise’ (Guha 1999;
Kingwell-Banham and Fuller 2012; Morrison 2007; Scott,
2009, b).

Within South Asian archaeology, there tends to be an as-
sumption that the presence of rice = presence of irrigation =
intensive agriculture and centrally controlled labour = in-
creased production and political control = urbanism. Yet, how-
ever, there is unfortunately little archacobotanical evidence to
support this assumption outside of the comparatively well-
researched Harappan Civilisation (Miller 2006; Weber 1999;
and for replies, see Fuller 2001; Weber et al. 2010a) and stud-
ies from around the world into agriculture, intensification and
the emergence of complex societies repeatedly demonstrate
that models like this are too simple. Challenges to this and
similar models have been proposed for places as disparate as
the Indus Civilisation (e.g. Miller 2006, who critically
reanalyses the Wittfoglian hypothesis; Petrie and Bates,
2017, who discuss intensification via multi-cropping), Africa
(see Connah 2001, who also provides an overview of state
formation theories), the Early Historic Mesopotamia (Styring
etal. 2017, who show evidence for extensive agriculture in an
early urban environment), China (e.g. Liu 2005 for the impor-
tance of craft specialisation, bronze and other non-agricultural
resources in the development of urbanism) and from, of
course, the complex hunter-gatherer societies of the
Americas (Ames 1994; Fitzhugh 2003; Marquet et al. 2012,
who document non-agricultural complex societies).
Challenges to the idea that centralised government was need-
ed for tank construction have also been recently made for
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modelling, from Silva et al. (2018). Sites in black have macrobotanical
remains of domesticated-type rice spikelet bases; sites in red are those
studied in this article

South India, with Stargardt (2019) suggesting a bottom-up
management of irrigation infrastructure in the first millennium
AD. 1t is clear, therefore, that more care needs to be applied
when interpreting the relationship between rice agriculture,
irrigation, intensification, state formation and urban complex-
ity in South Asia. To this aim, a preliminary study into the
agricultural field systems of ancient South Asia was conduct-
ed. This article presents the first attempt to directly identify
crop irrigation within the archaeological record of South Asia
using the crop remains themselves.

Materials and methods
The sites

Four sites were analysed from three separate archacological
and cultural periods, and radiocarbon dates were taken direct-
ly from rice grains recovered within the material analysed here
(Fig. 2; Table 2).

Tokwa is a Neolithic-Chalcolithic site situated in the Uttar
Pradesh on the confluence of the Belan and Adwa rivers
(Misra et al. 2000-2001). Uttar Pradesh receives around
80% of its annual rainfall during the summer monsoon
(WorldClim v2 data, Fick and Hijmans 2017). It is associated
with several other Neolithic-Chalcolithic sites, dated to
¢.2500-1000 BC, with evidence of early permanent settle-
ment and agriculture, including Koldihwa, Mahagara and
Senuwar. These sites all have evidence for the production of
summer (rice) and winter crops (wheat, barley), indicating the
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presence of two agricultural seasons per year (Kingwell-
Banham 2015; Pokharia 2008) (Table 3). Golbai Sasan is a
Neolithic-Chalcolithic site of East India, located in Odisha,
close to Chilka Lake and on the bank of the Mandakini
River. This area also receives the majority of its annual rainfall
during the summer monsoon. Golbai Sasan is dated to
¢.1400-900 BC and rice and pulses have been recovered from
the site, indicating that agricultural production was focused on
summer crops (Harvey 2006; Kingwell-Banham 2015;
Kingwell-Banham et al. 2018). Tokwa and Golbai Sasan are
both situated in low-lying floodplain environments that re-
ceive adequate rainfall during the summer monsoon to pro-
duce good yields of rice without supplemental irrigation.
Phytolith remains from these sites will therefore produce a
clear-rained rice signature against which to compare the data
from Perur and Kodumanal.

Perur and Kodumanal are both located in Tamil Nadu, a
much drier state than Uttar Pradesh and Odisha, which receive
the majority of its rainfall during the winter monsoon. Both
sites belong to the Early Historic-Medieval period. Rice from
Kodumanal has recently been dated to 430-230 BC and Perur
from 260 to 557 AD (Table 2). Kodumanal is situated further
inland than Perur, which benefits slightly from the increased
precipitation of the Western Ghats; thus, Kodumanal receives
less rainfall than Perur (Fig. 2). Rice, tuber parenchyma and

Fig. 2 Map of South Asia
showing the location of sites
studied in this paper and length of
dry seasons (based on the average
monthly precipitation data in
WorldClim v2 (Fick and Hijmans
2017). Dry season months were
identified where monthly
precipitation was below 60 mm,
as per the Koppen climate
classification system (Koppen
1923)). (Map made by F. Silva)
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Table 2 Published dates for Tokwa, Golbai Sasan, Perur and
Kodumanal (Kingwell-Banham 2015)

Site State Time period Date cal BC/AD
Tokwa Uttar Pradesh Neolithic-Chalcolithic 2500-1000 BC
Golbai Sasan Odisha Neolithic-Chalcolithic  1400-900 BC
Perur Karnataka Early Historic 260-557 AD
Kodumanal  Karnataka Early Historic 430-230 BC

some millets were recovered in the macrobotanical remains
from both sites. In addition, pulses were recovered from
Kodumanal and Perur (Cooke et al. 2005) (Table 3).

A common problem in Indian archaeobotany is that the
preservation of macrobotanical charred remains is often poor.
This particularly affects less robust plant remains such as chaff
and some of the smaller seeds of weedy plants, creating dif-
ferential preservation between these items and cereal grains
and pulses. Recovery practices are also implicit in this, with
samples floated onto a 0.5-mm sieve less likely to contain
small seeds of weedy plants than those floated on a 0.25-mm
sieve (e.g. compare Tokwa [0.5-mm sieve] to Golbai Sasan
[0.25-mm sieve] in Table 4). As a result, it is often a challenge
to use weedy taxa as ecological indicators. This means that it is
very difficult (in many cases impossible) to reconstruct crop

.Gol ai Sasan

A

750 1000 1250 1500 km
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Table 3 Ubiquities of main crops
identified at Tokwa, Golbai
Sasan, Perur and Kodumanal
(Cooke et al. 2005; Kingwell-

Banham 2015)

Table 4 Macrobotanical data for
weedy plants recovered from

Tokwa, Golbai Sasan,

Kodumanal and Perur (Cooke
et al. 2005; Kingwell-Banham
2015). Fimbristylus sp. (X) re-
ported by Pokharia 2008

Site

Rice
(% ubiquity)

Wheat and Barley
(% ubiquity)

Small millets
(% ubiquity)

Pulses
(% ubiquity)

Tokwa
Golbai Sasan
Perur
Kodumanal

67
50
100
60

57
0
0
0

0
19
50
60

86
10
60
90

Tokwa

Golbai Sasan

Kodumanal

Perur

Period

# of samples
Total volume (L)
cf. Aizoaceae
Aizoaceae

cf. Araliaceae

cf. Asteraceae
Asteraceae
Asteraceae Tridex type
Bromus ramosus
Boraginaceae
Chenopodium sp.
Commelinaceae
cf. Cruciferae

cf. Crotolaria sp.
cf. Cyperaceae
Cyperaceae
Euphorbiaceae
Fimbristylus sp.
Ischaemum rugosum
cf. Ipomea sp.
Lamiaceae

cf. Liliaceae

cf. Lolium sp.
Malvaceae

cf. Molluga sp.

cf. Oldenlandia sp.
cf. Phyllanthus sp.
Polygonaceae
Portulaca sp.
Rubiaceae

cf. Rumex

cf. Lindernia/Scropia sp.

cf. Schoenoplectus
Sida sp.
Sisyrinchium sp.
cf. Scirpus sp.

cf. Stellaria sp.
Verbascum sp.
Wild seed indet.

Neolithic
18
Unknown

Neolithic-Chalcolithic
44
696

[ S A T T NS T

13

Early Historic
10

200

3

Early Historic
10

200

18

N = =N

27
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agricultural practices such as manuring, field rotation or
ploughing, or irrigation using macrobotanical data. The weedy
seed assemblage for each site analysed here is presented in
Table 4. Of note is the low number of species level identifica-
tions across the sites, even when the assemblage is relatively
large as at Golbai Sasan. Therefore, other means of investiga-
tion must be used, and phytolith analysis in particular has
proven to be a strong tool in the identification of irrigated field
systems.

Identifying rice cultivation systems

Different field management and cultivation systems produce
different field ecologies, and this has been used in
archaeobotany to identify cultivation practices and changes
to cultivation practices over long- and short-time frames, from
more simple analyses of the abundance of certain weed-type
floras (e.g. Jones 2009), to more complex analyses of weed-
type floras (e.g. Bogaard et al. 1998; Jones et al. 2000) and
phytolith assemblages (e.g. Weisskopf et al. 2013). Due to the
relative sparsity of the macrobotanical weeds within the as-
semblages from each of the sites investigated, analysis of the
phytolith data has provided the main avenue of investigation.

The variation in methods to both irrigate crops and culti-
vate rice can make it difficult to develop clear classifications
for the difference between, for example ‘dry’ and ‘rainfed’
crops, or ‘wet paddy’ and ‘irrigated’ rice. With regard to hu-
man agency, irrigation is defined as any artificial process
which increases the supply of water to land with growing

crops (Dictionary of agriculture, third edition, 2011). In order
to distinguish between different cultivation systems
archaeobotanically, rice cultivation systems were defined
based on water availability during the growing season by
UCL’s Early Rice Project (Fuller et al. 2010). The rationale
behind this is that the high-yielding irrigated rice that is of
particular significance in archaeological narratives require a
very high quantity of water, that is (with the exception of some
forms of decrue cultivation) above the level of naturally avail-
able seasonal rainfall across Asia. This water-based definition
allows for differentiation between systems based on
their ecological signatures and associated wild weedy floras
(Fig. 3). As such, ‘dry cultivation’ refers to rice that was cul-
tivated with < 800 mm of water over the growing season, ‘wet
cultivation’ with > 1000 mm of water over the growing sea-
son. Rainfed cultivation systems can be found along the spec-
trum from 800 mm +, and can fall into the category of ‘wet
cultivation’ alongside irrigated rice. There is ambiguity with
regard to cultivation systems using between ¢.600-999 mm of
water, i.e. are they truly ‘dry’ or ‘wet’/irrigated or rainfed.
Archaeobotanically, cultivation systems falling towards the
middle of the spectrum are very hard to differentiate between
as they will have similar field ecologies and weed floras. It is
therefore necessary to consider other forms of evidence along-
side the archaeobotanical data in order to identify these culti-
vation systems. For the time periods under investigation at
Tokwa and Golbai Sasan, for example it is possible to be clear
that the crops were rainfed, as opposed to irrigated, due to the
absence of irrigation technology at that time. Both sites are in

Fig. 3 Rice cultivation systems Dry Rice | Wet Rice
classified according to elevation upland ground water/ flooded/ irrigated deepwater
and water availability, with lowland rainfed decrue (paddyfield)

example weed profiles (as per [
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areas with good monsoon rainfall and will produce a signal for
‘wet’ rice cultivation against which the results from
Kodumanal and Perur can be compared.

In order to identify irrigation, phytoliths with a rate of pro-
duction determined by water availability were specifically
pinpointed within the analysis of the results. ‘Fixed’
morphotypes (grass phytoliths with a rate of production that
is not related to water availability), ‘sensitive’ morphotypes
(grass phytoliths that have a rate of production directly corre-
lated with water availability) and ‘other grass multi-cells’
(grass multi-celled phytolith panels) were separately classified
(Table 5). In grasses, the long cells and stomatal cells (sensi-
tive morphotypes) which show a quantifiable difference in
production in Triticum aestivum, Triticum dicoccum,
Hordeum vulgare and Hordeum aegiceras grown in con-
trolled dry and wet conditions (Madella et al. 2009) and
Triticum durum and Hordeum vulgare grown in agricultural
fields (Jenkins et al. 2011, 2016). This pattern has been dem-
onstrated to apply to rice using modern field samples from
India (Weisskopf et al. 2015) and China (Huan et al. 2018),
as well as archaeological samples from both field and cultural
contexts in Neolithic China by Weisskopf et al. 2015).
‘Sensitive” morphotypes have been proven to be represented
in higher proportions from archaeological sites with irrigated
rice cultivation systems compared to drier rice cultivation sys-
tems (Weisskopf et al. 2015). The sites included in this study
were Tianloushan (wetland decrue), Caoxieshan (small, fre-
quently drained fields) and Maoshan (large, intensive, irrigat-
ed fields). A sensitive to fixed phytolith index (where a higher
value = wetter growing conditions) correlated with the archae-
ological, geoarchaeological and macrobotanical evidence for
field cultivation systems, with Tianloushan showing 2.5,
Caoxieshan showing 0.7 and Maoshan showing 2.0.
Additionally, the production of multi-cell panels (conjoined
cells) appears to occur more frequently in Triticum dicoccum,
Triticum aestivum, Hordeum vulgare and Hordeum
spontaneum grown in wet conditions (Jenkins et al. 2011;

Rosen and Weiner 1994). However, the processes of disartic-
ulation in archaeological contexts are not clear (Jenkins et al.
2011 p. 370), and my personal observations suggest that there
may be an increased rate of post-depositional disarticulation in
more water-rich environments. Nevertheless, ‘other grass
multi cells’ were categorised separately, as potential indicators
of wet land environments (based on Jenkins et al. 2011 and
Rosen and Weiner 1994), but also as potential indicators of
dryland cultivation systems (as per Fig. 3). Cyperaceae are
more prevalent in wet cultivation systems than dry cultivation
systems, although are by no means exclusive to wet ecologies.
Dicotyledons are more prevalent within dry cultivation sys-
tems, e.g. Amaranthus sp., and grasses tend to be more prev-
alent within the middle of the water-availability spectrum
(such as rainfed systems), although again this is not exclusive.
Examining these different categories of data in parallel, as
opposed to focusing on a single category, should allow for a
comprehensive analysis of the results.

Sampling, processing and identification of phytoliths

Phytolith samples were collected at 10-cm intervals from
a single trench section that spanned the entire chronolog-
ical sequence of the site at Golbai Sasan. At Tokwa, Perur
and Kodumanal phytolith samples were collected from the
same stratigraphic layers as macrobotanical samples.
Phytolith samples were processed at the UCL Institute
of Archaeology using the heavy liquid separation method
developed by Arlene Rosen (see Piperno 2006). 0.8 g of
fine sediment was processed per sample and samples were
mounted to slide using Entellen. Identifications were done
using a biological microscope with a cross-polarising fil-
ter at x 400 magnification. A minimum of 300 single cells
and 100 multi-cell panels were counted per sample, when
possible. Identifications were made using reference slides
and relevant literature (for example Eichhorn et al. 2010;
Lu et al. 2009; Piperno 2006). Analysis of the phytolith

Table 5 Categories of phytoliths used in correspondence analysis
Rice Hydrophilic Cyperaceae Fixed Sensitive Other grass multi- Dicotyledon
cells
Oryza Bulliform Long rods All grass short cells All grass long cells Indeterminate Smooth spheroid
bulliform Cuneiform Cones (bilobate, rodel, (smooth, sinuous, leaf/culm Platey
cf. Oryza bulliform Sedge achene trapezoid, crenate, dendritic) Leaf/culm bilobate ~ Perforated sheet
bilobe Leaf/culm cells cross, etc.) Leaf/culm cross Single polyhedron
Leaf/culm Phragmites Cyperaceae leaf Leaf/culm rondels Scalloped
Oryza Leaf/culm reed Cyperaceae Leaf/culm saddles Single jigsaw
cf. Oryza husk Leaf/culm square husk Leaf/culm long cells  Polyhedral hair
cell Indeterminate husk base
cf. Setaria husk Multi
cf. Panicum husk polyhedrons
Millet type 1 Two-tiered
Millet type 2 Multi-tiered
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data was done using correspondence analysis, which has
been shown to provide an effective means to distinguish
between different rice cultivation systems across Asia
(Weisskopf et al. 2013; Weisskopf 2017). Canoco for
Windows 4.5 and CanoDraw for Windows 4.1 (ter
Braak & Smilauer 1998) were used to analyse and plot
the data.

Results

Figure 4 shows the results of the correspondence analy-
sis. In Fig. 4 a, a clear separation between the samples
from Kodumanal (located towards the positive end of the
X axis), Golbai Sasan (located towards the positive ends
of the X and Y axes) and Tokwa (located towards the
negative ends of the X and Y axes) can be seen. The
samples from Perur plot closely together towards the
middle of both axes.

Figure 4 b shows the same plot; however, each sam-
ple is represented by a pie chart. The pie charts are
colour coded according to the classifications of
phytoliths in Table 4. This figure shows that samples
plotted towards the positive end of axis X have a higher
quantity of ‘other grass multi-cell’ phytoliths and that
samples plotted towards the negative end of axis X have
a higher quantity of ‘hydrophilic’ phytoliths. Along axis
Y samples with a higher quantity of ‘fixed’ and
‘Cyperaceae’, morphotypes are plotted towards the neg-
ative end. In general, samples with a more equal ratio of
fixed to sensitive morphotypes and a lower frequency of

hydrophilic morphotypes are plotted at the positive end
of axis X, on the right hand side of the chart. This
includes all of the samples from Kodumanal and Perur,
as well as three samples from Gobai Sasan and two from
Tokwa. On closer examination, these samples from
Golbai Sasan and Tokwa have a higher proportion of
sensitive to fixed morphotypes. Table 6 shows the ratio
of sensitive to fixed morphotypes from each site and
demonstrates that Kodumanal and Perur have lower
values than Golbai Sasan and Tokwa.

Discussion

The results indicate that the rice at Kodumanal and Perur
was grown in an environment with lower water availabil-
ity than at Tokwa and Golbai Sasan. Kodumanal and
Perur both have higher quantities of ‘other grass multi-
cells’ to dicotyledon phytoliths, suggesting a higher pro-
portion of grass weeds (and that these correlate with dry-
land cultivation system ecology and not water availabili-
ty), as well as lower sensitive to fixed ratios and a lower
quantity of Cyperaceae phytoliths, suggesting lower water
availability during the growing season. This is consistent
with a ground water/lowland rainfed cultivation system
(Fig. 3). Conversely, the samples from Golbai Sasan and
Tokwa show a high quantity of sensitive morphotypes and
dicotyledon phytoliths. Golbai Sasan in particular shows a
very high quantity of hydrophilic morphotypes. This is
consistent with wet-rice agriculture (Fig. 3, ‘flooded/
decrue’, ‘irrigated’ or ‘deepwater’).

Rice
Hydrophilic
Cyperaceae
Sensitive
Fixed

Other grass multi-cells
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Fig. 4 Correspondence analysis plots of phytolith data from Tokwa, Golbai Sasan, Kodumanal and Perur. a Samples classified by site. b Samples
represented as pies, classified according to Table 4
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Table6  Sensitive to fixed morphotypes ratios for Tokwa, Golbai Sasan,
Perur and Kodumanal

Tokwa Golbai Sasan Kodumanal Perur

S:F 2.17 2.03 1.12 1.25

As mentioned above, neither Neolithic-Chalcolithic
Golbai Sasan or Tokwa had irrigation systems. The rice
grown at both of these sites was therefore rainfed and so
these samples represent flooded/decrue cultivation. This is
consistent with the high quantity of dicotyledon
phytoliths, representative of crop weeds, whose growth
is suppressed in more intensively managed cultivation
systems such as paddy fields by controlled and timed
flooding (Caton et al. 2010; Weisskopf et al. 2013).
Both sites are situated in low-lying areas next to rivers
that see significant seasonal flooding with the monsoons,
and this result is unsurprising. However, the samples from
both Perur and Kodumanal are very dry in contrast. This
data suggests that deep-water cultivation, and by exten-
sion, irrigation systems were not used for rice agriculture
at Kodumanal or Perur ¢.500 BC-500 AD. Additionally,
the samples from Kodumanal plot as slightly drier than
those from Perur, reflecting rainwater availability (Fig. 5).
This also supports the interpretation that rainfed cultiva-
tion was employed at these sites and suggests that the role
of irrigation in the Iron Age-Early Historic South India
should be re-examined.

Fig. 5 Map showing average
annual rainfall levels at Perur and
Kodumanal (based on the average
monthly precipitation data in
WorldClim v2 (Fick and Hijmans
2017))

Reevaluating the evidence for irrigation in South
India pre-500 AD

The modification of natural rock pools and reservoirs, in order
to retain more water, has been identified at several Early Iron
Age sites in Karnataka and (coupled to the recovery of rice,
banana, wheat and barley) has been posited to represent the
initial phase of the development of irrigation systems in South
India, leading to tank, canal and dam construction in the Early
Historic period (Bauer and Morrison 2008; Morrison, in
press). However, it is important to question the likelihood that
the altered natural ponds and reservoirs found across the cen-
tral Southern Peninsula were primarily used for crop irriga-
tion. They are often located on hill tops, without channels to
feed water to agricultural fields, and, like Johansen and Bauer
(2018), I would argue that a more likely agricultural use would
be livestock watering. Pastoralism remains an important econ-
omy during the Iron Age. There is the suggestion that it saw a
resurgence during the drier periods of the Early Iron Age
based on the reoccupation of temporary hunting-pastoral sites
such as Birappa post-1300 BC (Roberts et al. 2016; Shipton
et al. 2012), and a decline in the number of sedentary settle-
ment sites across the Southern Peninsula ¢.1200 BC (Roberts
et al. 2016, p. 592). The value of having a protected and
relatively secluded water source for watering herds of animals
during a period of climatic fluctuations would have been high.
This is especially true if there was risk of conflict with other
groups (both mobile pastoralists and nearby settled pastoral-
ists) during periods of water stress (see, for example Jia et al.

133,000 km
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2017). If the hypothesis of protected hilltop settlement sites is
expanded, associated megalithic features could potentially be
seen as monuments delineating regional territories, construct-
ed to be visible within the wider landscape. It is clear that
water is symbolically important during the Iron Age, with
the association of modified ponds with megalithic burial sites
(Morrison 2015); however, the construction of monumental
architecture is evidently incredibly nuanced (e.g.
MacEachern and David 2013).

The argument that banana, wheat, barley and rice needed to
be grown with supplemental watering provided by Iron Age
reservoirs suggests that these crops were grown within an
intensive, irrigated cultivation system (Morrison in press;
Bauer and Morrison 2008). However, all of these crops could
have been grown within other areas of seasonally waterlogged
land, in a similar way to tank cultivation, without additional
irrigation. In the absence of evidence for crop irrigation, and
the work of Roberts et al. (2016) which shows a shift in set-
tlement towards reliable rivers and alluvial plains, this low
labour input scenario should be more readily considered.
Prior to the development of agricultural irrigation in this re-
gion, larger and larger areas of seasonally flooded catchments
could have been transformed into agricultural fields
(extensification). It would be very interesting to see whether
the larger Iron Age-Early Historic settlements tend to have been
located next to larger areas of seasonally waterlogged land or
not, and it is anticipated that the next decade of archaeological
survey, settlement and landscape analysis will shed light on this.

The specific regional impacts of increased monsoon vari-
ability in the Late Holocene and more recent changes in re-
gional climates also need to be considered in relation to set-
tlement distribution and agricultural adaptation. Whilst it has
been suggested that adopting or developing irrigation systems
allowed for past societies to mitigate against fluctuating or
decreasing rainfall levels in other parts of the world (e.g.

[C] Parenchyma [ ] Oryzasp. [l Millets Pulses

75

50

25

Perur Kodumanal Mangudi

Fig. 6 Relative abundance of main crop types identified by Cooke et al.
(2005)
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Weber et al. 2010b; Castillo et al., 2019), it seems likely that
in South India, mitigation strategies included maintaining crop
diversity by cultivating a wide range of regionally adapted
drought resilient millets, pulses and tubers.

Rice as a symbolic crop in the Iron Age-Early Historic
South India

Without irrigation, yields of rice would have been lower than
in other, wetter, areas of India, but it is unclear whether this
holds significance for population growth and urban develop-
ment. There is a limited amount of archaeobotanical data for
the Iron Age-Early Historic South India (Table 1; in particular,
note the large reduction in published data from 0 BC/AD), and
so it is hard to assess the relative abundance of the different
grain crops grown. The simple presence of rice does not mean
that rice was the most frequently and abundantly consumed
foodstuff. Where good archaeobotanical work has been done
for this period, rice is shown to be a supplementary crop to
tubers, millets and pulses (Cooke et al. 2005; Morrison et al.
2017) (Fig. 6). The data from the early urban sites of Mangudi
and Kodumanal (Cooke et al. 2005) suggests that significant
population growth was achieved and sustained via tuber, pulse
and millet cultivation. In this case, South India can draw par-
allels with other regions of the world where millet and tubers
were the primary crops, such as island Southeast Asia and
West Africa (Fuller and Hildebrand 2013). Whether these tu-
bers would have required irrigation is largely unknown. Taro
(Colocasia esculenta) and a species of yam, Dioscorea
bulbifera, are two tuber crops thought to be native to South
Asia, and potentially domesticated here (Chair et al. 2016;
Fuller 2006). Whilst they are largely grown under irrigation
today, there are several records of drought tolerant cultivars,
particularly cultivars grown in upland agricultural systems
(Spencer 1988). Genetic diversity for taro is particularly high
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Fig. 7 Motif from a pot fragment recovered from Adichanallur. (Drawing
by D. Keshavarz, from an image reported by Subramanian (2005))
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in Indian accessions (Chair et al. 2016; Ebert and Waqainabete
2018) supporting the possibility that a wider variety of
drought tolerant tuber crops existed in the past (cf. Lebot
2009; Spencer 1988 pp. 111-5).

Large bulk finds of rice have been found dating to this
period, however. Excavations at Porunthal cemetery uncov-
ered several ceramic vessels filled with a large quantity of rice
still in the husk, which has been radiocarbon dated to 490—
450 BC (BETA 2018; Schug and Walimbe 2016 p. 331).
These jars were recovered from burial contexts and have been
interpreted as grave goods. No other crops were reported from
the site. This discovery, as well as the similar discovery at
Adichanallur, with urn burials dated to between 1500 and
400 BC (Sasisekaran et al. 2010), suggests that rice was a
symbolic crop with a clear ceremonial use. Within this con-
text, it is possible to think of rice as a special food, grown in
small quantities for specific social occasions. The symbolic
roles of rice across Asia are well documented (see for, e.g.
Ammayao and Hamilton 2003), but the plant’s use as ‘social
capital’ should also be considered in the context of South India
(cf. Barton 2009; Madella 2014). It is possible that rice was
grown initially in the Iron Age South India as a ‘boutique
crop’ (as per Morrison in press, et al. 2017), alongside and
perhaps equal to, sugarcane and banana, for specific ceremo-
nial or social purposes (and with a high economic value),
before becoming a more widely cultivated staple crop in the
Historic period. The beautiful motif identified on pottery from
Adichanallur appears to represent sugarcane (Fig. 7), hinting
at the cultural significance of these boutique crops.

Conclusion

Much more work needs to be done in order to accurately
reconstruct the agricultural systems of ancient South Asia,
but this study serves to demonstrate that a more nuanced and
critical approach needs to be applied to discussions of agricul-
tural systems in the Prehistoric and Early Historic South Asia.
A ‘one size fits all” theoretical model (in this case, ‘presence of
rice = presence of irrigation’) can rarely be applied over such a
large geographical and environmental gradient. The data pre-
sented in this study, although limited, casts some doubt over
the notion that rice in South India was irrigated prior to
500 AD and has allowed for a discussion of alternative inter-
pretations related to rice cultivation systems and the role of
rice in this area. It is increasingly seems likely that there was a
continuation in agricultural traditions in South India, from the
Neolithic to well into the Early Historic period. This focused
on the production of drought resilient crops (local small mil-
lets and pulses), with more water thirsty crops (including rice,
cotton and sugar cane) the focus of more limited, but
specialised, ‘boutique’ production.

As more archaeological survey and, crucially, more
archaeobotanical work is conducted within South Asia, it is
expected that increasing evidence will be found for regional
variability within the Prehistoric and Early Historic South
Asia, both within agricultural systems and related pathways
to urbanisation. Within this context, and to allow our under-
standing to develop, more critical applications of the theories
of intensification and the development of urban states must be
incorporated into our analyses of South Asian archacology.
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