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Abstract
This paper presents some results devoted to providing network analysis function-
alities for vulnerability assessment in public transportation networks with respect to 
disruptive events and/or targeted attacks to stations. The results have been obtained 
on two public transportation networks: the bus network in Florence, Italy, and the 
transportation network in the Attika region, Greece. The analysis implements a top-
ological approach, based on graph theory, using a multi-graph to model public trans-
portation networks and analyse vulnerabilities with respect to the removal of one or 
more of their components. Both directed attacks and cascading failures are consid-
ered. While the first type of disruptive events is related to a static analysis, where 
nodes are removed according to a rank related to some centrality measures, the sec-
ond type is related to a dynamic analysis, where a failure cascade is simulated mak-
ing unavailable the node with the highest betweenness value. Vulnerability measures 
are computed as loss of connectivity and efficiency, with respect to both the two dif-
ferent types of disruptive events considered. This study allows to evidence potential 
vulnerabilities of the urban networks, that must be considered to support the plan-
ning process into the creation of resilient structures.
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1  Introduction

In these last years, the planning processes for urban transport have focused the 
attention on the creation of urban networks characterized by high connectiv-
ity and interrelation between their components. However, this can cause poten-
tial vulnerabilities because the functionality of each component now depends 
on an ever-increasing number of other infrastructure components. The fail of an 
infrastructure component can cause significant damages, in terms of temporary 
disconnection of parts of the networks and/or decrease of the level of its effi-
ciency. The protracting of failure can carry the original failure over to successive 
components.

This paper stems from the activities of the European H2020 project RESO-
LUTE (RESilience management guidelines and Operationalization applied to 
Urban Transport Environment), whose general aim is the operationalization of 
the resilience/vulnerability concepts into a set of guidelines and related software 
for assessing vulnerability and resilience in a wide variety of conditions (Bellini 
et al. 2017).

The term resilience, from its Latin root “resilire”, means—loosely speaking—
the capability of a system, both natural or man-made, to resist, rebound or spring 
back in response to endogenous events (e.g. component failures) or exogenous 
(natural or man-made) attacks. Resilience means different things to different 
scientific and professional communities and is being addressed under different 
names; indeed, it came to define a set of properties of a much broader socio-
technical framework to cope with infrastructure threats and disruptions including 
preparedness, response, recovery and adaptation. Thus, different tools are needed 
to analyse and support decisions for anticipation, prevention, mitigation and res-
toration, depending on different types of disruptions (Ferreira and Simoes 2015; 
Gaitanidou et al. 2015; Gaitanidou and Tsami 2016; Archetti et al. 2015).

This paper is focused on public transportation networks (PTNs) using tools 
from network science and OR to analyse vulnerability and a restricted meaning of 
resilience, namely the levels of flexibility and capacity to ensure the persistence 
of key functions even in the presence of cascading failures. Vulnerability in its 
different forms is the key concept we use to analyse the network structure (Matts-
son and Jenelius 2015). In the last years, studies on the vulnerability of the PTNs 
attract a growing attention because of the possible repercussions that incidents 
can have on the day-to-day functioning of a city. Recent studies about vulnerabil-
ity of PTN can be found in Rodríguez-Núñez and García-Palomares (2014), Cats 
and Jenelius (2015, 2018), Zhang et al. (2015) and Cats et al. (2016).

Methods of representation and analysis of vulnerability come from several dif-
ferent communities like water distribution systems (Soldi et al. 2015; Candelieri 
et al. 2015), transportation systems (Berdica 2002), optimization (Ash and Newth 
2007), internet (Cohen et al. 2000) and engineering design (Agarwal et al. 2003).

Coherently with the aim of RESOLUTE to provide a toolbox of wide utiliza-
tion, a topological approach has been adopted in this paper, based on the descrip-
tion of a PTN using graph theory. To model multiple lines/routes between two 
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stations/stops, a multi-graph representation of a PTN is used (Von Ferber et  al. 
2009b), and specific attributes/labels are adopted to distinguish two or more 
edges connecting two nodes. This approach offers the benefit of not requiring a 
huge amount of data—typically the only information about the interconnections 
is needed to create the graph associated to the PTN infrastructure and still they 
can provide fundamental insights about the vulnerability of a transport network.

The term vulnerability is related to the capability of a PTN to resist to a dis-
rupting event, consisting of the removal of one or more of its components. In the 
extensive literature about attack strategies, an attack is done removing nodes (Von 
Ferber et al. 2009a; Berche et al. 2010) or edges (Jenelius and Cats 2015; Jenelius 
and Mattsson 2015), using both randomly and targeted selection, and considering a 
static (Von Ferber et al. 2009a) or dynamic (Zou et al. 2013) analysis. In this paper, 
we focus on targeted attacks based on the removal of a node or a group of nodes. In 
the static approach we specifically remove subsequently nodes according to a list 
defined a priori. In the dynamic approach we remove a specific node and, under the 
condition of a network capacity limit, we analyse the consequently cascading failure 
(Zou et al. 2013) caused by the possible redistribution of the load on the whole net-
work. In this last case, the removal of a node is done but the routes passing through 
it are maintained, as described in Sect. 5.2. To measure the variations of the graphs, 
the network efficiency (Latora and Marchiori 2001) and the relative size of the larg-
est component (Von Ferber et al. 2009a) are considered.

In this paper, we analyse the urban PTNs of Florence (Italy) and the Attika region 
(Greece), the use cases of the RESOLUTE project. An a priori-vulnerability anal-
ysis of the two PTNs is done using different elements from network analysis and 
spectral analysis. Then two different attack simulations are considered. The first is a 
targeted attack in which the nodes are removed according to two different lists meas-
uring different values of the centrality measures in descending order; the second is a 
cascading failure starting from the node with the highest betweenness value.

The main contribution of this study is to analyse two real-complex PTNs study-
ing their vulnerability and the resilience to different attack strategies by means of 
graph theory and network analysis. The used graph representation can be general-
ized to any PTN, if the interconnection data are provided by, e.g. the GTFS reposi-
tory (Google 2018). The computational results can be obtained using any program-
ming code able to threat efficiently information coming from graph representation. 
In this study, the GraphStream (University de le Havre 2010) library was particu-
larly used to model a PTN, while the attack strategies and the network’s analysis 
were implemented in Java.

Another important contribution is about the way to simulate the cascading fail-
ure in the dynamic approach. The choice to maintain the routes passing through an 
unavailable station has been made to simulate a real-transport situation in which it is 
possible to simply “jump” that station moving from one station to another one of a 
line/route. This fact implies the re-computation of the nodes loads of the networks, 
in a different way from the traditional approaches to the cascading failure.

The structure of this paper is as follows. Sect. 2 presents the main elements of 
the graph model and in particular basic tools like spectral analysis and the central-
ity measures. Section  3 introduces the concept of vulnerability and its different 
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mathematical models. Section  4 introduces attack strategies to networks, consid-
ering in particularly targeted attacks and cascading failures. Section 5 shows how 
the previous modelling tools can be used to model a PTN focusing on two-real life 
PTNs. A contextualization of the attack strategies for real PTN is provided. Finally, 
Sect. 6 is about the computational analysis of efficiency and resilience, among other, 
in static conditions and subsequently in the failure cascading framework.

2 � Background info

2.1 � Basic concepts and notation

From a mathematical point of view, a graph is a mathematical object G = (V ,E) , 
where V = {1, 2,… , n} is the set of nodes and E is the set of edges. Each edge of 
G is represented by a pair of nodes (i, j) with i ≠ j , and i, j ∈ V  and i, j = 1,… , n . If 
(i, j) ∈ E , i and j are called adjacent, or neighbours. Any of the edges having i as 
one of its nodes is called incident on i . In case of multiple edges between a pair of 
nodes (multi-graph), it is not possible to identify an edge only by its nodes, but it 
is necessary to use specific attributes, e.g. names, that characterize and distinguish 
each edge by another edge, represented by the same pair of nodes.

The number of neighbours of a node i , denoted by di , is called node degree. We 
denote with �(G) and Δ(G) the minimum and the maximum degree of the nodes of 
G, respectively.

The adjacency relationship between the nodes of G is represented through a non-
negative n × n matrix A , called Adjacency Matrix of G . The entry Ai,j = 1 if i and 
j are adjacent nodes, and 0 otherwise. The adjacency matrix can be used also for 
multi-graphs and graphs with loops, by storing the number of edges between two 
vertices in the corresponding matrix element, and by allowing nonzero diagonal 
elements.

If all the nodes of G are pairwise adjacent, then G is called complete. A graph G 
is undirected if (i, j) and (j, i) represent the same edge, and it is simple if it is undi-
rected, without self-loops (edges starting from a node and ending on the same node) 
and only one edge can exist between each pair of nodes (i, j) , with i ≠ j . Undirected 
graphs have the properties that Ai,j = Aj,i if i ≠ j ∀i, j ∈ V  . Simple graphs have the 
properties that Ai,i = 0, ∀i ∈ V .

A measure that quantifies how much the nodes of the graph are connected among 
them, is the density (q). Given a graph G = (V ,E), its density is simply computed as 
the ratio between the number of edges of the graph, m = |E| , and the overall possi-
ble number of connections among the n = |V| nodes of G (i.e. n(n − 1)∕2 in case of 
undirected graphs):

The metric structure of a complex graph is related to the topological distance 
between its nodes, written in terms of walks and paths in the graph. A walk (of length 

(1)q =
2m

n(n − 1)
,
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k ) in G is a non-empty alternating sequence {i1, l1,… , ik−1, lk−1, ik} of nodes and edges 
such that lr = (ir, ir + 1) for all r < k . If i1 = ik the walk is closed. A path from i to j 
is a sequence of distinct adjacent nodes starting from i and ending to j , in which each 
node is visited only twice.

A connected graph is a graph where a path exists between each pair of nodes 
i, j ∈ V , otherwise it is called disconnected. The length of a path is the number of edges 
of that path. If i, j ∈ V , a geodesic between i and j is a path of the shortest length that 
connects i and j . The length of a geodesic between i and j is called distance di,j . The 
maximum distance D(G) between any two vertices in G is called the diameter of G.

A subgraph G� = (V �,E�) of G is a graph such that V ′ ⊆ V and E′ ⊆ E ; a connected 
component of G is a maximal connected subgraph of G.

2.2 � Spectral analysis

The use of spectral methods in graph theory has a long tradition (Bonacich 1972). 
Specifically, spectral graph theory studies the eigenvalues of matrices that embody the 
graph structure. One of the main objectives in spectral graph theory is to deduce struc-
tural characteristics of a graph from such eigenvalue spectra.

In case of undirected graphs, the adjacency matrix A(G) is symmetric and all its 
eigenvalues are real. The eigenvalues �1(G) ≤ �2(G) ≤ ⋯ �n(G) of A(G) are called the 
spectrum of G. The eigenvalue spectra of a graph provide valuable information about 
its structure and static properties. The largest eigenvalue of the adjacency matrix �n(G) 
is called spectral radius of G and is denoted by �(G) . An important property is given by 
the following inequality

that relates the spectral radius with the maximum degree of the nodes.
The difference s(G) = �(G) − �n−1(G) between the spectral radius of G and the sec-

ond eigenvalue of the adjacency matrix A(G) is called the spectral gap of G (Estrada 
2006). A small value of s(G) is usually observed through low connectivity, and the 
presence of bottlenecks and bridges whose removal cut the graph into disconnected 
parts.

The Laplacian matrix of G is an n × n matrix L(G) = D(G) − A(G) , where 
D(G) = diag(ki) and ki denotes the degree of the node i . The matrix L(G) is positive 
semi-definite in case of a simple graph. The eigenvalues of L(G) are called the Lapla-
cian eigenvalues of G. The Laplacian eigenvalues �1(G) = 0 ≤ �2(G),⋯ ≤ �n(G) are 
all real and nonnegative. The smallest eigenvalue is always equal to 0 with multiplicity 
equaling the number of connected components of G . The second smaller eigenvalue 
is called the algebraic connectivity of G . Algebraic connectivity is one of the most 
broadly extended measures of connectivity. Larger values of algebraic connectivity rep-
resent higher robustness against efforts to disconnect the graph, so the larger it is, the 
more difficult it is to cut a graph into independent components. An important inequality 
for the algebraic connectivity is given by

(2)
√
Δ(G) ≤ �(G) ≤ Δ(G),

(3)�2(G) ≤
n

n − 1
�(G),
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that relates it with the minimum degree of the nodes. In case of connected graphs, 
also the following inequality can be found

that relates the algebraic connectivity with the diameter of the graph and its size.

2.3 � Network‑based centrality measures

In computer science and network science, network theory is a part of graph theory. 
A network can be defined as a graph in which nodes and/or edges have attributes 
(e.g. names). Networks from different domains share some properties that can be 
measured by a set of indices, called centrality measures (Albert and Barabási 2002), 
which can take specific ranges of values in correspondence of each specific domain. 
Centrality concepts were first developed in social network analysis, and many of 
the terms used to measure centrality reflect their sociological origin. These indices 
answer the question “What characterizes an important vertex?”. The answer is given 
in terms of a real-valued function on the nodes of a graph, where the values pro-
duced are expected to provide a ranking which identifies the most important nodes.

Historically the first and conceptually simplest measure is degree centrality based 
on the idea that important nodes are those with the largest number of links to other 
nodes in the graph. The degree centrality of a node i is defined as

The degree can be interpreted in terms of the immediate risk of a node for catch-
ing whatever is flowing through the network (such as a virus, or some information).

Another important centrality measure is the betweenness centrality (Freeman 
1977) that quantifies the number of times a node acts as a bridge along the shortest 
path between two other nodes. The betweenness can be represented as

where �jk is the total number of shortest paths from the node j to node k and �jk(i) is 
the number of those paths that pass through i.

3 � Vulnerability analysis of a network

The concept of vulnerability in a complex network aims at quantifying its security 
and stability under the effects of any type of dysfunctions. Different approaches 
from different branches of knowledge can be introduced to quantify the vulnerability 
of a complex network.

In complex transportation systems, the vulnerability can be related to the suscep-
tibility to disruptions giving a considerable reduction in network serviceability as a 

(4)�2(G) ≥
4

n ⋅ D(G)
,

(5)Dc(i) = di.

(6)Bc(i) =
1

n(n − 1)

∑

j≠i≠k

�jk(i)

�jk
,
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result (Mattsson and Jenelius 2015). An often cited and representative definition of 
vulnerability in a road transportation system can be found in (Berdica 2002): “Vul-
nerability in the road transportation system is a susceptibility to incidents that can 
result in considerable reductions in road network serviceability”. This definition can 
be generalized to other modes of transport and emphasises that there is an initiating 
disruptive event, that the fundamental purpose of the transport system is hurt, and 
that the adverse consequences are significant.

An important way to deal with the vulnerability analysis of transport networks 
is the topological approach. In this approach a real transport network is repre-
sented in the form of an abstract graph, in which the nodes and links have specific 
counterparts in the real network. The used graph can be directed or undirected and 
unweighted or weighted according to the application in mind.

The performance of the network after the removal of nodes/links is often evalu-
ated as the change of the important quantities. The first is the Latora and Marchiori 
network efficiency (E) (Latora and Marchiori 2001) and is defined as

where dij represents the distance between nodes i and j . Normalization by n(n − 1) 
ensures that E ≤ 1 , in case of an unweighted graph. The maximum value, E = 1 , is 
assumed only when the graph is complete. However, graphs representing real-world 
networks can, nevertheless, assume high values of E . A significant vulnerability of 
a network will correspond to a significant decrease of E , in case of the removal of a 
node or some nodes.

The second and complementary performance indicator is the relative size of the 
largest component ( S ) (Von Ferber et al. 2009a; Berche et al. 2010; Mattsson and 
Jenelius 2015), that considers the relative size of the largest connected component

where N and N1 are the numbers of nodes of the network and of its largest compo-
nent, respectively. As we will see, a vulnerable network will correspond to a signifi-
cant decrease of S , in case of the removal of a node or some nodes.

3.1 � Vulnerability analysis using the degree distribution

A useful property to analyse the vulnerability of a network is to consider its degree 
distribution: if it follows a power-law, at least asymptotically, it means the fraction 
P(d) of nodes in the network with a degree d goes from large to low values of d as

where � is a parameter whose value is typically in the range 2 < 𝛾 < 3 . If the degree 
distribution follows a power law then the network is called scale-free (Onnela et al. 

(7)E =
1

n(n − 1)

∑

i,j∈V ,i≠j

1

dij
,

(8)S =
N1

N
,

(9)P(d) ≈ d−� ,
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2006), and many man-made and natural complex networks have been reported to 
be scale-free (Virkar and Clauset 2014). The most notable characteristic in a scale-
free network is the relative commonness of nodes, named hubs, with a degree that 
greatly exceeds the average. These hubs are thought to be important in the analy-
sis of vulnerability of the network. Indeed, the removal of a few major hubs could 
cause the disconnection of the network and the creation of a set of rather isolated 
graphs.

3.2 � Vulnerability analysis based on fall of efficiency

A way to measure the vulnerability of the network is using the loss of efficiency 
(Latora and Marchiori 2007; Criado and Romance 2012) observed when we remove 
some nodes that potentially increase the value of the distances between the nodes 
of the network. These types of measures are based on the idea that the importance 
of a node, or a group of nodes, is related to the ability of the network to respond 
to the removal of that node, or group of nodes, from the network. If G is the graph 
representing the network, the relative drop in the network efficiency caused by the 
removal of a node i from the graph is defined as

where G�{v} denotes the network G without the node i . The loss of efficiency of the 
graph G is defined as

that measures the worst performance of Eq.  (10) in case of a possible attack 
on a node of the network. In this case, the greater the value VE , the greater is its 
vulnerability.

3.3 � Vulnerability analysis based on centrality measures

A second way to measure the vulnerability of the network is based on the measures 
related to betweenness centrality and, as in (Criado and Romance 2012) and (Boc-
caletti et al. 2007), is defined as

where p ∈ [1,+∞] . These p-functions are based on the idea that the distribution of 
the number of minimal paths between the nodes influences the vulnerability of the 
network. In this case, the greater the value VB,p , the lower is its robustness.

(10)CE
Δ
(i) =

E(G) − E(G�{i})

E(G)
,

(11)VE(G) = max
i∈V

CE
Δ
(i),

(12)VB,p(G) =

(
1

n

∑

i∈V

B(i)p

)1∕p

,
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3.4 � Vulnerability analysis using spectral analysis

There is no specific formula, contrary to those reported in the previous subsections, 
linking spectral analysis to a measure of vulnerability related to the removal of a 
node. However, both algebraic connectivity �2 and spectral gap s are indicators of 
difficulty to split the graph (Criado and Romance 2012). The larger the algebraic 
connectivity, the more difficult it is to disconnect the graph. A large value of the 
spectral gap, together with a uniform degree distribution results in higher structural 
sturdiness and robustness against node and link failures. On the contrary, low values 
of the spectral gap indicate a lack of good expansion properties usually represented 
by bridges, and network bottlenecks. Since the measure of spectral analysis can be 
related to the connectivity, they can be related to S.

4 � Directed attacks and cascading failure

In general, from the perspective of structural vulnerability, it is possible to study 
how the characteristics of a complex network change when some of its elements are 
removed. Below, we will call such removal an attack (Berche et al. 2010).

In practice, the origin of the attack and its scenario may differ to large extent, 
ranging from a random attack, when a node or a group of nodes is removed at ran-
dom to a targeted attack, when one or more of the most influential network nodes 
are removed according to their operating characteristics.

Once a node, randomly or targeted, is attacked and removed from the net-
work, there are two different ways to continue and/or analyse the attack: the 
static approach (Von Ferber et al. 2009a), and the dynamic approach (Zou et al. 
2013).

In the static approach, the failure of a node is assumed not to cause other nodes to 
fail. In this case, to analyse the possible collapse of the whole network, it is possible 
to remove all the nodes one by one, choosing randomly or according to a certain 
criterion, preparing a list of the nodes for the initial network and removing the nodes 
according to this list (Holme et al. 2002; Berche et al. 2010; Latora and Marchiori 
2005). To quantify such importance of a node i and, so, its position in the list, it is 
possible to consider measures related to the degree or the betweenness centrality, 
previously analysed in Sect. 2.3. The use of such measures can be justified by the 
fact that we have seen their importance in the definition of the vulnerability of a 
network.

During an attack, one can single out different impacts related to the effectiveness 
of a network and its vulnerability during an attack. This can be done measuring, for 
example, the values of E and S till all nodes in the network are removed, obtaining 
two curves, S(c) and E(c) , where c represents the fraction of the removed nodes.

In the dynamic approach of a network attack, it is assumed that the removal of 
the node can cause other nodes to fail. Under the condition of a network capacity 
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limit, a node failure will lead to load redistribution of the whole network, thus mak-
ing a load of some nodes exceed its capacity and causing the possible failure of 
other nodes. In particular, infrastructure networks with complex interdependencies 
are known to be vulnerable to cascading failures (Ash and Newth 2007; Gutfraind 
2012; Zou et al. 2013).

A cascading failure is a domino effect which originates when the failure of a 
given node triggers subsequent failures of one or several other nodes, which in turn 
trigger their own failures. Thus, the number of failed or stressed nodes increases, 
propagating throughout the network. Examples of cascading failures in the real 
world are, for example, a wide-scale power outage or the previous global economic 
crisis.

A simple model for a cascading failure on a network assumes that each node 
transmits one unit of some quantity (energy, information, the volume of passenger, 
etc.) to every other node through the shortest path between them. As a result, each 
node i is characterized by a certain load Li , that describes some quantity able to 
describe the importance of the node in the network. Example of these quantities 
can be the centrality measures. In particular, a common choice is to use the value 
of the betweenness centrality Bi , which represents the number of shortest paths 
passing through that node, as we see in Sect. 2.3.

Each node i is characterized by a given capacity �i , which is the maximum load 
that can be handled by that node. A natural assumption is that the capacity assigned 
to a node is proportional to the load that it is expected to handle, since cost con-
straints prohibit indiscriminately increasing a node’s capacity

where � ≥ 0 is a tolerance parameter which quantifies the excess load that a given 
node can handle, and V0 is the set of nodes of the original graph.

Cascading failures are initiated when a heavily loaded node is lost for some 
reason, and the load on that node must be redistributed to other nodes in the net-
work. The removal of the node simulates the loss of the node. The redistribution 
of the load to the other nodes in the network requires the re-computation of the 
load value Li(t + 1) for each node i . This re-computation can radically alter the 
values of the loads on the network. Certain nodes can have a load smaller than 
their previous value, and some others can have a higher one. In particular, if a 
node i has a new load Li(t + 1) > 𝜓i , then this node also fails. These failures can, 
in turn, trigger more failures, thus leading to a cascade. The process iterates until 
no more nodes must be removed from the network, that means when an iteration 
t̄ exists, for which

where Vt is the set of nodes of the network, at iteration t̄ , with Vt̄ ⊆ ⋯ ,⊆ V0.

To describe the severity of a cascade, during and at the end of the process, it is 
possible to consider the value of E and S , computed for each step t of the cascade, 
obtaining two curves, S(t) and E(t).

(13)�i = (1 + �) ⋅ Li(0)∀i ∈ V0

(14)Li(t̄ + 1) ≤ 𝜓i ∀i ∈ Vt̄
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5 � PTNs as graphs and networks

5.1 � Modelling a PTN as a complex network

The main elements of a PTN can be mapped into graph elements, basically nodes and 
edges. Although everyone has an intuitive idea of what a PTN is, it appears that there 
are numerous ways to define its topology (Berche et al. 2010). A straightforward rep-
resentation of a PTN as a graph, models every station by a node while edges corre-
spond to the links that exist between stations according to the PT routes servicing them 
(Fig. 1, a)). By this way, the full information about the network of N stations and R 
routes is given by the set of ordered lists each corresponding to one route or one of 
the two directions of a given route. Multiple entries of a given station in such a list are 
possible and do occur. A simple graph that represents the situation is in Fig. 1a). This 
graph represents each station by a node, a link between nodes indicates that there is at 
least one route that services the two corresponding stations consecutively. No multiple 
links are allowed. The space of such type of graphs is called L-space. Extending the 
notion of L-space one may either introduce multiple edges between nodes depending 
on the number of services between them. Such graph-space is called L′-space (Fig. 1, 
b)) (Von Ferber et al. 2009b), and it is the space we use in this paper.

The network-based centrality measures represent important characteristics of a PTN. 
The degree centrality measures the importance of a station in terms of possible inter-
connection between other stations and/or lines. The betweenness centrality is inter-
preted as a measure of the volume of passengers that transit through it if we imagine 
that a passenger chooses the shortest path to go from one point to another one of the 
PTN. Note that a high volume of passengers (high value of betweenness centrality) 
does not always imply a high level of interconnection (high value of degree centrality). 
A possible case can be a bridge station connecting the central part of a city with one of 
its peripherical parts.

5.2 � Disrupting events in a PTN

Disruptions of a PTN can be of different types (accidents, infrastructure collapses and 
attacks…) and can lead to impacts of different severity: injuries, fatalities. Common 

Fig. 1   A piece of public transport map, in which Stations A-F are serviced by two lines (the black solid 
and red dashed line, respectively). Such map is represented using a the L-space, and b the L’-space
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disruptions, such as a blocked road link, a rail service interruption, a strike, and so 
forth, have an impact on lower severity.

In the following, a relevant real-world event towards graph modifications is con-
sidered: the closure of a station/stop. The simulation of such closure is classically 
done by removing the corresponding node and all the links having this node as ver-
tex. Let G =< V ,E > denote the original graph associated to the PTN and k ∈ V  
the target node (i.e. the station/stop to close). The resulting graph after this event is 
G� =< V �,E� > where: V � = V�{k} and

where:

Another possible way to simulate the closure of a station can be done remov-
ing a node but maintaining the transport lines/route passing through it. There-
fore, new possible links are built to maintain all the lines after the removal of 
the nodes (Fig. 2b). The resulting graph after this event is G� =< V �,E� > where: 
V � = V�{k} and

where:

While the first case is the classical way to analyze the effect of a targeted attack 
in a static context (Von Ferber et al. 2009a), the latter is considered in a dynamic 
context, as we will see in the next section. In this last case, if a station is unavail-
able the urban transport simply “jumps” that station.

In the context of urban transport, the cascading failure can represent an example 
of domino effect related to the disablement/closure of a station characterized, e.g. 
by a high volume of passengers (high value of betweenness), that transit through 
it. The closure of a station modifies the passengers’ routes (shortest parths)  

(15)E� = E�Ė

Ė = {(i, j) ∈ E ∶ i = k ∨ j = k}.

(16)E� =
(
E�Ė

)
∪ Ë

Ė = {(i, j) ∈ E ∶ i = k ∨ j = k}

Ë = {(i, j)|i, j ∈ V ∧ (i, k) ∈ E ∧ (k, j) ∈ E}

Fig. 2   A piece of public transport line, before (a) and after (b) the closure of the station C, but maintain-
ing the routes, as described in Eq. (16)
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deeply and, in case of preservation of the routes (Eq. 16), the volume of passen-
gers of the disabled station is re-distributed between the other stations of the line/
route. In this case, if one station exceeds the maximum quantity of passengers 
(load), also this station could be disabled, creating a cascading failure.

5.3 � Case studies

In this section, we describe the two PTNs analyzed in this paper. Besides, the 
two PTNs are modelled through a directed multi-graph, because more than one 
route/line may connect two stations. The first PTN considered is the public bus 
transportation in Florence. This city is one of the biggest towns in central Italy, 
with a population of about 400,000 inhabitants and a surface of about 100 km2. 
The public transportation system is done by a single operator, named ATAF, and 
consists of about 50 bus lines, for a total number of 999 bus stops. Figure 3, a) 
and b) shows the corresponding graph, consisting of 999 nodes and 3226 edges. 
To improve the visualization, we did not draw multiple edges between two nodes.

The second PTN considered is bigger than the first one and consists of the 
public transportation network of the Attika region. This region is located on the 
eastern edge of Central Greece and covers about 3.808 km2. In addition to Ath-
ens, it contains within its area the cities of Piraeus, Eleusis, Megara, Laurium, 
and Marathon, as well as a small part of the Peloponnese peninsula and some 
islands. About 3,750,000 people live in the region, of whom more than 95% are 
inhabitants of the Athens metropolitan area.

The PTN of the Attika region includes bus, tramway and subway, for a total 
number of about 277 lines and 7681 stops. Figure 3a, b shows the corresponding 
graph, consisting of 7681 nodes and 18,128 edges. Again, to improve the visuali-
zation, we did not draw multiple edges between two nodes.

The two networks analyzed are either operated by a single operator (Flor-
ence) or by a small number of operators (Attika) with an appropriate coordina-
tion. Rather than artificially dividing these centrally organized networks into 

Fig. 3   a The graph associated to the PTN of Florence. The black points correspond to the nodes (stops) 
of the network, whereas the red lines represent the edges (links). b The graph associated to the PTN of 
the Attika region
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subnetworks of different means of transport like bus and metro or in an ‘urban’ 
and a ‘sub-urban’ part, we treat each full PTN as an entity.

Figure  4a, b shows the two graphs in which the value of node between-
ness is highlighted. The biggest red points indicate the nodes with the highest 
betweenness.

In Attika’s PTN, the peculiar location of the node with highest betweenness 
depends on the fact that the PTN has more branches towards peripheral regions, 
with many sub-graphs (i.e. clusters) associated with the peripheral areas, connected 
to the center of the network by nodes characterized by high values of betweenness 
(all the paths between two clusters pass through them). Thus, several nodes with 
high betweenness values are located on the branches connecting peripherals.

6 � Analysis of two real‑world PTNs

6.1 � A priori vulnerability analysis

To start the analysis of the two PTNs, we compute some quantities associated to 
their original graph, without considering any possible damage, or faultless. For sim-
plicity, for these analyses, we have threaded the two PTNs as undirected graphs.

Table  1 reports some values previously described in Sect.  2.1. Both the PTNs 
have a minimum degree equal to 1, and a similar value of the maximum degree. 

Fig. 4   The value of betweenness for the nodes associated to the PTN of Florence (a) and Attika (b). 
From yellow to blue and for small to large size of the nodes the value of the betweenness increases. The 
bigger red points indicate the nodes with the highest betweenness

Table 1   The value of the minimum, the maximum, the average and the standard deviation of the degree 
distribution of the two networks, and the value of density and the diameter

City min(d
k
) max(dk) d̄

k
�2(d

k
) q D

Florence 1 40 6.46 5.23 0.006 53
Attika region 1 38 4.72 3.86 0.001 142
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However, the average degree and standard deviation of Florence’s PTN is greater 
than the Attika’s one, according to the greater value of density.

Figure 5 shows the degree distribution of the two PTNs. Both the PTNs have a 
degree distribution like a power-law distribution, more evident in the case of Attika.

Regarding the connectivity, at first glance both PTNs have a low value of the 
algebraic connectivity: 0.008 for Florence and 0.001 for Attika. Thus, even if 
the associated graphs are connected, they are not very robust to node or edge 
failures. Indeed, to disconnect the graph, it is sufficient to remove just one node.

An important difference between the two networks is the value of the spectral 
gap s : 2.21 for Florence and 0.32 for Attika, respectively; the lower value of s for 
Attika is in accordance with the presence of many bottlenecks and bridges (for 
example, the nodes that link the southern and the northern parts of the graph to 
the central part), whose removal cut the network into significant disconnected 
parts.

We also measure the value of VE and VB,1 , as described in Sect. 4. For the first 
quantity, we obtained a value of 0.0577 and 0.0084 for Florence’s and Attika’s 
PTN, respectively. This means that Florence’s network results are more vulner-
able than Attika’s in terms of decrease of efficiency due to the removal of one 
single node. However, it is important to remember that Attika has almost eight 
times the number of nodes of Florence. Then, the damage caused by the removal 
of a single node is higher in Attika rather than in Florence, in proportion.

For the second quantity, we obtain a value of 0.0022 and 0.0005 for Flor-
ence’s and Attika’s PTN, respectively, coherent with a lower distribution of the 
number of the shortest paths between the nodes for the Attika’s PTN, and the 

Fig. 5   a Degree distribution of the PTN of Florence. b Degree distribution of the PTN of the Attika 
region
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presence of many links connecting different sub-graphs (i.e. cluster) within the 
network and having a large value of edge-betweenness.

In conclusion, an a priori analysis of the two PTNs results in a major vulner-
ability of the Attika’s network compared to the Florence’s one: the presence of 
many links towards peripherical regions could cause, in case of an attack to these 
targets, the disconnection of the network into large disconnected components.

6.2 � Simulation of a targeted attack in a static context

To simulate a possible targeted attack in a static context, we simulate the closure of 
a certain number of the stations/stops, as described in Eq. (15), according to two dif-
ferent lists ordered by:

1.	 decreasing degree centrality;
2.	 betweenness centrality.

Such lists were either prepared at the begin of the attack. The results of these 
attack scenarios are reported in Fig. 6. There, we show changes in S and E for the 
PTN as a function of the removed nodes fraction c for the above-described attack 
scenarios. The blue curve and the red curve represent the attacks done using the 
degree centrality and the betweenness centrality, respectively. The results are shown 
until the 50% mark of the fraction of the removal nodes.

The more significant decrease of E occurs for the degree curves, which means 
that a targeted attack has greater success to break up the level of efficiency of the 

Fig. 6   Changes in E and S for the two PTNs during a possible attack scenario based on a subsequent 
removal of the nodes according to a list. Each curve corresponds to a different scenario as indicated in 
the legend. Lists of removed nodes were prepared according to their degree (blue curves), betweenness 
(red curves), from the highest value to the lowest one, before the beginning of the attack
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network, when the target is the highest degree nodes. In particular, the decrease of 
E appears to be exponential for both the PTNs and the attacks, and faster for the 
Attika’s PTN compared to the Florence’s one.

The behaviour of S appears quite different. In this case, the value of S decreases 
linearly, but with the presence of different harmful peaks of decrease. For both 
the attacks, such decrease is very similar until a certain fraction of the removed 
nodes (about 0.08 for both the PTNs). Then the decrease of degree curves is more 
significant.

Finally, Figs.  7 and 8 report the resulting graphs of Florence and Attika, 
respectively, at the end of a targeted attack, which addresses only the 0.1 frac-
tion of the nodes. The red nodes are those belonging to the largest connected 
component. For both the PTNs, the attacks related to the nodes with the highest 
degree—Figs.  7b, 8b lead to the creation of new important connected compo-
nents (high decrease of S). Vice versa, the attacks related to the nodes with the 
highest betweenness—Figs. 7b and 8b—lead to the removal of many important 
communication edges (i.e. having a high value of edge-betweenness). This results 

Fig. 7   Graph of Florence’s PTN at the end of the targeted attack related to the 0.1 fraction of nodes with 
a highest degree, and b with the highest betweenness. The red points indicate the nodes belonging to the 
largest connected component

Fig. 8   Graph of Attika’s PTN at the end of the targeted attack related to the 0.1 fraction of nodes with a 
highest degree, and b with the highest betweenness. The red points indicate the nodes belonging to the 
largest connected component
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in a high increase of the length of the minimal paths between the remained nodes 
of the graph (decrease of E).

From the results of this test, it is possible to conclude that both the PTNs 
appear to be more vulnerable to an attack based on the degree centrality rather 
than an attack based on the betweenness centrality. In particular, the removal of 
just a small fraction of the nodes (about 0.1) might result in a significant decrease 
of the efficiency of the PTNs. Both the PTNs appear to be quite resilient to any 
type of attacks, since the connectivity (S) does not change significantly with 
respect to its value computed before the attack. When a consistent fraction of the 
high degree nodes is removed, many large disconnected components appear.

6.3 � Simulation of a failure cascade

To simulate a possible capacity cascade for the two networks, we simulate the clo-
sure of the station with the highest value of betweenness, as described in Eq. (16). 
So, we remove this node according to the mechanism described in Sect. 3.2, setting 
the capacity to � = 0.01.

The re-computation of the betweenness for each node permits to identify the 
new failing nodes in the cascade (i.e. nodes with the capacity lower than the current 
load). These nodes are removed, and the process iterated until no more nodes fail, as 
described in Sect. 4.

Figure 9a, b show the two final networks at the end of the cascade, respectively, 
in which the red points represent the nodes removed from the network. Most of the 
nodes in both the networks are removed because they exceed their initial capacity. In 
Florence’s PTN most of the removed nodes are localized in the center, near the start-
ing node of the cascade, and in the southern and northern part of the city. Some new 
edges are created in the graph to maintain the routes, for example, in the northern 
part of the city. In case of Attika’s PTN, even if the starting node of the cascade is 
localized in one of the external branches, it can be noted that almost all the nodes to 
be removed are located in the center of the graph, which corresponds to the city of 
Athens.

Fig. 9   a Graph of the Florence PTN after the cascade effect. b Graph of the Attika PTN after the cascade 
effect. In the figures the red points represent the removal nodes
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Figure  10 summarizes the values of E and S computed during the cascade. 
The red and black curves represent the Florence’s PNT, and the Attika’s PTN, 
respectively. 

In the first case (Florence PTN) we note a decrease of the value of S and E , that 
passes from 1 to 0.35, and from 0.044 to 0.007, respectively, and the length of the 
cascade is 17. In particular, we note a high decrease of E and S from the 1st to the 
10th iteration, followed by a slow decrease until the last iteration. The removal of 
the starting node causes an important re-distribution of the load at the beginning and 
the consequent removal of all the nodes exceeding the initial capacity, starting from 
the center of the city—Fig. 11a—towards the northern and southern part—Fig. 11b. 
Then, in the second part of the cascade such a re-distribution is lower and only few 
nodes per iteration are removed.

Fig. 10   Values of E (a), S (b) during the cascade. The black curves refer to the Florence PTN. The red 
curves refer to the Attika PTN

Fig. 11   a Graph of the Florence’s PTN at the 5th iteration of the cascade. b Graph of the Florence’s PTN 
at the 10th iteration of the cascade. In the figures the red points represent the removed nodes
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Also, in the second case (Attika PTN) we note a decrease of the values of S and 
E , that pass from 1 to 0.32 and from 0.023 to 0.002, respectively, and the length of 
the cascade is 37. Specifically, a phase with no significant variations of E and S, 
from the 1st to the 4th iteration, followed by a phase of high decrease from the 5th 
to the 11th iteration, and by a last phase of low decrease from the 12th until the last 
iteration of the cascade. Such a diverse behaviour can be explained by the position 
of the initial node of the cascade. At the beginning, the peripherical position of the 
node causes only a local redistribution of the load and the removed nodes are few 
(Fig. 12a). Then, when the cascade propagates toward the centre, the re-distribution 
of the load and the consequent number of the removed nodes increase (Fig. 12b). 
Then, in the final part, the cascade propagates towards the other parts of the net-
work, but its effect is minor.

To conclude the analysis, even if the Attika’s PTN seems to be more resistant to 
the cascading effect at the beginning, this is only due to the peripherical position of 
the starting node. Indeed, at the end of the cascade, after the cascading effect has 
spread towards the center, the values of E and S of Attika are lower than Florence’s 
ones.

7 � Conclusions, results and perspectives

In this paper, graph theory and network analysis are used to model PTN and to 
analyse their possible vulnerability to a relevant disrupting event, such as the clo-
sure/unavailability of one or more of their stations. Such event is considered both 
in a static and dynamic setting. In the first case, a certain fraction of the nodes is 
removed subsequently as a function of a list defined a priori according to the degree 
and the betweenness centrality. In the second case, a cascading failure is triggered 
starting from the node with the highest betweenness value and all the nodes having 
a load (re-computed at each iteration of the cascade) exceeding their initial capacity 
are removed at each iteration of the cascade.

Main studies about attack strategies on public transport are based on a static 
approach, while in this paper we choose to consider both static and dynamic 

Fig. 12   a Graph of the Attika’s PTN at the 5th iteration of the cascade. b Graph of the Attika’s PTN at 
the 10th iteration of the cascade. The red points represent the removed nodes
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approaches to analyse the possible vulnerabilities of a PTN. In addition, the use of 
the multi-graph approach allowed to have a more significant representation of the 
PTNs modelling multiple lines/routes between two stations/stops. Besides, main-
taining the routes passing through an unavailable station, we simulate a real-trans-
port situation in which, different from the traditional approaches, it is possible to 
“jump” that station moving from one station to another one on the same line/route.

To analyse the possible modifications in the network, the size of the largest con-
nected component and the efficiency are considered to describe the possible impacts 
on the whole network. While the first quantity describes how the largest connected 
component is altered, the second one indicates how efficiently (a.k.a. lengths of min-
imal paths) the nodes of the network remain connected.

Relevant results obtained on two different and relevant urban environments, 
the public transport of the city of Florence and the public transport of the Attika’s 
region, have been presented. Considering the different sizes and forms of the two 
networks allowed for identifying different characteristics in terms of resilience, 
vulnerability and efficiency. More important, the proposed analytical framework 
computes a set of measures in both static and dynamic contexts, proving relevant 
information on the vulnerability of any PTN with respect to targeted attacks and cas-
cading failures, respectively.

The results allowed to evidence potential vulnerabilities of the urban networks. 
A targeted attack addressing the highest degree nodes of the network can cause the 
creation of many connected sub-graphs, disconnected from the largest connected 
component, whereas an attack addressing the highest betweenness nodes causes the 
removal of important links of the two networks, with a consequent reduction of effi-
ciency. Furthermore, a cascading failure can cause severe damages to PTNs, both 
in terms of decrease of the level of E and S. The position of a starting node, in the 
center of a network (Florence) or in a peripherical position (Attika) is important in 
terms of velocity of cascade propagation. However, the final level of damage to the 
PTN can be serious, even in the presence of quite slow cascading effects.

Generally, the planning processes for urban transport focus the attention on the 
creation of urban networks characterized by high connectivity and interrelation 
between their components. The results of this paper can support the planning pro-
cess in the study of possible vulnerabilities of a PTN and in the creation of resilient 
infrastructures against directed attacks and cascading failures.

Ongoing research is addressing the integration of optimization strategies, from 
the operative research field, aimed at optimizing the structure of the PTN to improve 
one or more vulnerability measures.

Regarding targeted attacks, it is possible to analyse which part of the graph 
implies an important decrease of E and S. This information could be exploited to 
improve the design of the PTN through the creation of new links and/or stations to 
avoid the disconnections of the networks into components (decrease of S) and/or as 
well as the increase of path lengths (decrease of E).

Regarding the cascading failures, it is possible to study which level of tolerance 
( � ) can be useful to avoid new possible failures of the nodes due to their capacity. 
It is specifically possible to identify which nodes of the PTN are the most important 
ones to guarantee low impacts of a cascading failure. More precisely, a challenging 
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optimization goal is the identification of optimal node capacity, under budgetary 
constraints, to improve the resilience of a PTN.
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