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Abstract Robots are increasingly being used to provide
motivating, engaging and personalised support to learners.
Robotic tutors have been able to increase student learning
gain by providing personalised hints or problem selection.
However, they have never been used to assist children in
developing self regulated learning (SRL) skills. SRL skills
allow a learner to more effectively self-assess and guide their
own learning; learners that engage these skills have been
shown to perform better academically. This paper explores
how personalised tutoring by a robot achieved using an open
learner model (OLM) promotes SRL processes and how this
can impact learning. It presents a study where a robotic tutor
supports reflection and SRL processes with an OLM. An
OLM allows the learner to view the model that the system
holds about them. In this study, participants take part in a
geography-based task on a touch screen with different lev-
els of adaptive feedback provided by the robot. The robotic
tutor uses an OLM to prompt the learner to monitor their
developing skills, set goals, and use appropriate tools. Results
show that, when a robotic tutor personalises and adaptively
scaffolds SRL behaviour based upon an OLM, greater indi-
cation of SRL behaviour and increased learning gain can be
observed over control conditionswhere the robotic tutor does
not provide SRL scaffolding. We also find that pressure and
tension in the activity increases and perception of the robot is
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less favourable in conditions where the robotic tutor makes
the learner aware that there are issues but does not provide
specific help to address these issues.
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1 Introduction

Robots are increasingly being used to provide motivating,
engaging and personalised support to learners [26]. Robotic
tutors havebeen able to increase problemsolving timebypro-
viding personalised hints [21] or increase learning gain by
personalised problem selection [9]. Yet, they have never been
used to assist children in developing self-regulated learning
(SRL) skills. SRL is the meta-cognitive process where a stu-
dent uses self-assessment, goal setting, and the selecting and
deploying of strategies to acquire academic skills [44]. The
use of SRL strategies are significantly correlated with mea-
sures of academic performance [44]. By supporting these
skills students may be able to learn more effectively, even
outside of the tutoring session.

This paper explores how personalised tutoring by a robot
achieved using an open learner model (OLM) promotes SRL
processes and how this can impact learning in primary school
children (Fig. 1). We describe a study where a robotic tutor
provides different levels of personalised SRL scaffolding
to primary school children. The autonomous robotic tutor’s
behaviour builds upon information provided to a student in
an OLM. OLM externalise the model that the system has of
the learner in a way that is interpretable by the learner [5].
An OLM can support SRL by promoting reflection to raise
awareness of understanding or developing skills, which can
help planning and decision-making [6].
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Fig. 1 Robot highlighting OLM to a primary school student

To date robots have not aimed to support the development
of SRL processes. The benefits of a personalised robotic tutor
may motivate and engage students to utilise SRL process in
the learning activity. We adopt an OLM as the basis for the
personalisation as this is a simple and intuitive way of dis-
playing to the learners their developing skills; anOLMallows
us to ensure that the learner has all relevant information on
which to base their reflections and SRL processes upon.

We hypothesise that more personalised and adapted scaf-
folding of SRL processes via OLM will lead to higher
learning gain and improvement in SRL processes. Results
show that more personalised and adaptive scaffolding lead
to a greater indication of SRL processes and higher learning
gains.

This paper is organised as follows. First we present the rel-
evant background research on educational robots, SRL, and
OLM (Sect. 2). After describing the methodology employed
to conduct the study, we present the results based on the
domain tests and activity logs of the learning activity. We
conclude the paper with a discussion of how a robotic tutor
can scaffold SRL (Sect. 5) and how this can impact child
learning (Sect. 6).

2 Related Work

2.1 Educational Robots

There is an increasing amount of research that investigates
how robots can be of benefit in an educational context.
When comparing the presence of a robotic tutor to a virtual
agent or on-screen feedback, there is a preference for the
robotic embodiment with reference to social presence [17],
enjoyment [43], trust [14], performance [12], and learning
gain [22]. A key benefit of a robotic tutor (and its physical
embodiment) is that it can motivate students to engage in the
learning activity [22].

The social capabilities of the robot play a large part in the
interaction and can be quite complex and counterintuitive.
For example, it has been shown that a robotic tutor that is too

social may negatively impact learning [16]. An alternative
approach is to reverse the social dynamic and teaching roles
so that the learner is the one to teach a robot peer [9,40]; this
can lead to a strong social bond [40] and motivate the learner
to learn more words in a verb-learning game [41].

There is increasing interest in how human-robot interac-
tion (HRI) can personalise or adapt to the learner. A robotic
peer that requests help on problems estimated to optimise
information gain can lead to greater learning gains [9]. A
robotic tutor that personalises hints based on a student’s puz-
zle solving skills can lead to a more successful interaction
with reduced problem solving time and a more motivated
learner [21]. Prompts personalised to a specific level of detail
based on the ability and performance of the learner can be
more effective and less frustrating [10]. Robot behaviours
adapted to a learner’s engagement can increase recall lev-
els [39].

There is increasing interest and amount of proposed
research in exploring how personalisation can make HRI
more effective by adapting difficulty levels [31], responding
to affective states [15,32], learning styles [7], and help-
seeking behaviours [33]. Yet, there is no work looking at
how HRI can impact SRL or meta-cognition in an educa-
tional context.

2.2 Scaffolding SRL and OLM

Scaffolding is support or feedback that is given in a timely
manner to help a learner achieve a goal that they may not
have without that support [8,19]. It is important to encour-
age or scaffold SRL processes as students may not always be
meta-cognitively or motivationally active during the learning
process [2]. Scaffolding of SRL can be part of the feed-
back provided by an intelligent tutoring system (ITS); ITS
that support meta-cognition can increase meta-cognition and
learning outcomes [18]. Research indicates that real-time
monitoring and adaptive or personalised scaffolding of help
seeking behaviour within an ITS can improve student’s help
seeking behaviour in the system [33,35].

One of the tools used in an ITS to support SRL is an
OLM. An OLM frequently takes the form of a series of skill
meters [4,25,28]. Previous studies suggest that an OLM can
help students better allocate efforts [4] and improve problem
selection [29]. OLM used as a basis for reflective self-
assessment activities can increase learningoutcomes [25,30].

Teachers are important in support of reflective and meta-
cognitive processes [34]. SRL scaffolding from a teacher
can take the form of hints, feedback, and motivation [2].
When teachers scaffold SRL with a personalised or adaptive
approach it can lead to a learner adopting better SRL skills
as compared with conditions where fixed or no scaffolding
is offered [3].
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3 Method

To investigate how personalised scaffolding via OLM with
a robotic tutor impacts learning gain and SRL processes, we
conducted an experiment with four different levels of robot
personalisation. We hypothesise that more personalised and
adapted scaffolding of SRL processes via OLM will lead to
higher learning gain and improvement in SRL processes.

3.1 Participants

There were 80 (34 female, 46 male) participants of mixed
ability levels, all of the students within the year group were
able to take part without exclusion or preference for higher
ability students. The learners were aged between 10 and 12
and attended the same primary school in the U.K.

3.2 Scenario

3.2.1 Experimental Setup

The robotic tutor was an Aldebaran Robotics NAO torso and
was fully autonomous during the activity. The activity runs
on a 27 in. touchscreen laid flat on a desk. The learners were
standing up to enable them to comfortably reach all areas of
the touchscreen. The robotwas positioned on a stand opposite
the touchscreen in order for it to be at a similar height to the
learner. The setup is shown in Fig. 1.

3.2.2 The Task

The robotic tutor supported individual learners in a geogra-
phy task, namely map reading. The task enables the learner
to exhibit SRL skills and processes, i.e. self-monitoring,
goal setting, and help seeking. The activity was designed
to test compass reading, map symbol knowledge, and dis-
tance measuring competencies. The learner had a choice of
activities of varying difficulty that allowed them to prac-
tice the competencies; the menu for this is visible in the
lower left of Fig. 2. The learner was provided with three
tools to assist them with the activity. They had the option
to open a map key, use a distance tool, display a com-
pass on screen, and to view previous clues in a scrap book;
the buttons to enable these tools are in the lower right of
Fig. 2.

3.3 Learner Model and OLM

Webuild a learnermodel as the basis for theOLMskillmeters
and the robotic tutor’s SRL scaffolding behaviour.

The model of the learner’s map reading competencies is
created using constraint basedmodelling. This is an approach
whereby competency values are calculated by checking the

Fig. 2 Learning task, OLM (upper-left), activity menu (mid-left),
instructions (lower-left), tools (lower-right)

learner’s actions against a set of relevant constraints [29].
Distance and direction are evaluated based on the learner
identifying a point on a map that is at a particular distance
and/or direction from a starting point. Symbol knowledge is
tested by selecting a particular symbol from a choice on a
map. It is possible for the learner to provide a partially cor-
rect answer by meeting the distance constraint but breaking
the direction and symbol constraint; this is reflected in the
model with distance competency increasing and the direc-
tion and symbol competency decreasing. To ensure that the
competency values are current, we use a weighted average
so that recent evidence is given a higher weighting than older
evidence in determining the overall level of the competency.
Additionally the task gives basic feedback when an answer is
given; the area of the task that displays the objectives flashes
green if the answer given is correct or red if the answer given
is incorrect.

An expanded view of the OLM is shown in Fig. 3. The
OLM allows the student to see a visualisation of the learner
model that the student can understand their developing skills
and identify areas where they have strong or weak knowl-
edge. The OLM shows skill meters for each competency and
is visible at all times in the top left of the screen. Changes to
the skill meters are made visible with animation and there are
indicators to show the previous values [25]. The learner can
inspect a history of the most recent 10 pieces of evidence for
each individual competency by clicking on the correspond-
ing skill meter. For example, if the learner expands the skill
meter for distance then they will see evidence broken into
north, east, south, west, e.g. they may see that they have met
the north and south constraints correctly but not the west and
the east constraints. This enables the learner to see exactly
in which aspect of the competency their strengths and weak-
nesses lie. The OLM should enable the student to plan their
learning by helping them identify knowledge gaps, based on
this they can then fill their knowledge/skill gaps by selecting
an appropriate activity or tool.
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Fig. 3 Expanded OLM, overall compass competency (high), level of
the compass competency over the session (0–100%), 5 correct answer
attempts for ‘north’ (A value of 1 with green), 3 incorrect answer
attempts for ‘west’ (A value of 0 and red), overall distance competency
(low), overall symbol competency (medium). (Color figure online)

3.4 SRL Scaffolding

The aim of scaffolding SRL skills is to enable a student to
develop their skills by reflecting on their current abilities, to
identify strengths andweaknesses so that they can effectively
plan their learning through selecting appropriate strategies,
goals, activities, and using the tools and resources available.
The most basic level of scaffolding is to provide access to
the OLM. To provide more support, static scaffolding can be
provided whereby the learner is prompted to use SRL skills
at appropriate points in the activity [3,18]. The highest level
of scaffolding would be adaptive scaffolding where support
is provided based upon the learner’s state [3,18].

To support adaptive SRL scaffolding we have created
an idealised SRL model for our learning context. Such an
approach has been used in another meta-cognitive tutoring
system that focuses only on when the student should ask for
help [1]. We base the SRL model and SRL scaffolding pro-
cedures on a previous study [13]. We observed that teachers
can scaffold SRL skills by drawing attention to the learner’s
developing competencies using the OLM, then encourag-
ing reflection on why the competencies are changing and
using this as a basis to suggest appropriate tools, goals, and
strategies for the learner [13]. Based on our previous study
appropriate SRL behaviours in the learning task include:

– Learners should aim to ‘master’ an activity, this means
that they have covered all of the content and are confident
in correctly answering the content.

– Learners shouldmove on to a different activity when they
‘mastered’ an activity.

– Learners should use an appropriate tool to the problem
at hand or use the OLM if not confident or incorrectly
answering a questions in an activity.

– Learners should stop relying on a tool when they have
shown evidence of being proficient at that type of ques-
tion, if the learner is using the compass tool when
estimated to be proficient at direction questions then this
is deemed inappropriate tool use.

We record the learners’ behaviours in the activity and if a
learner is not following the appropriate SRL behaviours out-
lined above then this is used as a basis for the robotic tutor’s
behaviours. The robot uses the OLM to prompt the learner to
reflect on their developing skills and to use appropriate task
strategies and to work at an activity of an appropriate diffi-
culty level. We detail the scaffolding procedures in Table 1.
We also base the robots gestures and speech on recordings
from the previous study [13].

3.5 Procedure

The study was conducted in a meeting room in the primary
school. Each student was brought in to the room, given a
overview of the study, and asked to complete a pre-activity
domain test. The autonomous robotic tutor introduced the
learning task and then explained how the task and tools work.
Each student then carried out the activity which was limited
to 11 min. Each student was then asked to complete a post-
activity domain test and a questionnaire with questions about
their perception of the robot and the learning scenario. The
students were randomly split across conditions, described in
the next section, while keeping a balance between age, sex,
class, and ability.

3.6 Hypothesis and Conditions

We have devised four conditions to explore our overall
hypothesis. In all cases the robotic tutor is present and gives
an introduction to the task and the tools. The robot is fully
autonomous. The different robot behaviours and the events
that trigger them are summarised by condition in Table 1.
There are a number of events that can trigger the robot to
execute a behaviour, these are: Answer attempt, when the
learner answers a step in the activity; Timeout, when there
has been no robot or learner activity in the preceding 15 s;
and Tool selection, when the learner selects a tool to use.
When one of these events occurs the system evaluates if the
robot should execute a behaviour according the condition.
To avoid repetition or the robot talking too much we have
alternative phrases for the robot behaviours and an utter-
ance is not executed if that utterance has been delivered
by the robot recently. For example the “Let’s keep going
we have not covered everything”? utterance may be trig-
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Table 1 Robot behaviour and triggers in each condition

Robot behaviour Trigger event Conditions met

SRL_SCAFFOLD

Well done, you have mastered this, shall we move on? Timeout or answer Correct answer and activity is mastered

Let’s keep going we have not covered everything Timeout or answer Correct answer and activity not mastered

Let’s keep going we need to focus on south Timeout or answer Incorrect answer and activity not mastered

We need to focus on south; Is there a tool that can help? Timeout or answer Incorrect answer and activity not mastered

We need to focus on south; Should we do an easier task? Timeout or answer Incorrect answer and activity not mastered

This tool should help! Tool selected Appropriate tool selected

Is there another tool that can help you? Tool selected Inappropriate tool selected

You know this! Do you still need the tool? Tool selected Inappropriate tool selected

Positive beeping and gestures Answer Correct answer

Sympathetic beeping and gestures Answer Incorrect answer

SRL_PROMPT

Do you think you have mastered this activity? Timeout

Is there a tool that can help you? Timeout

Should we do an easier activity? Timeout

Let’s look at the evidence to see what you should focus on? Timeout

Positive beeping and gestures Answer Correct answer

Sympathetic beeping and gestures Answer Incorrect answer

OLM_ONLY

Idle behaviours Continuous

CONTROL

Idle behaviours Continuous

gered by a timeout, if the learner has not carried out an
action for over 15 s, or by an answer attempt, but only if
the learner has not mastered the activity, meaning they have
not shown evidence of correctly answering each aspect of an
activity.

SRL_SCAFFOLD—In this condition the autonomous
robotic tutor personalises and adapts its SRL scaffolding
based on the learner’s skill levels, task performance, and
rules for appropriate SRL behaviour for the current state of
the learner encoded in our pedagogical model described in
Sect. 3.4. This is considered an adaptive or dynamic SRL
scaffold as it provides feedbackonmeta-cognitive errors such
as using an inappropriate tool or continuing with an activity
that is too easy or too challenging [18].

SRL_PROMPT—In this condition the autonomous
robotic tutor offers static reflective SRL prompts that are trig-
gered by certain actions of the learner. The SRL scaffolding
is considered static as it is not dependant on the state of the
student’s meta-cognition as it is in the above condition [18].
The feedback is still personalised as feedback is contingent
on the learner’s actions.

OLM_ONLY—This control condition contains limited
personalised feedback in the form of an OLM. After intro-
ducing the activity and tools the robot simply performs idle
behaviours. This condition will allow us to investigate the

impact of the adaptive and static SRL scaffolding over the
OLM feedback.

CONTROL—In this control condition the learner has no
OLM and is only informed if the answer that they have pro-
vided is correct or incorrect by on-screen feedback. After
introducing the activity and tools the robot simply performs
idle behaviours.

In all conditions the robot introduces the learning activ-
ity, tools, and performs idle motions throughout the session.
The robot only uses pointing in the SRL_SCAFFOLD and
SRL_PROMPT conditions and only towards the OLM and
not at any other time. Therefore we do not believe that this
prompts greater engagement or focus in the activity.

Our specific hypotheses are as follows:

Hypothesis 1 (H1) Adaptive SRL scaffolding will lead to a
greater increase in learning gain and more appropriate SRL
learning behaviour than static SRL scaffolding.

Hypothesis 2 (H2) Adaptive SRL scaffolding will lead to a
greater increase in learning gain and more appropriate SRL
learning behaviour than an OLM alone.

Hypothesis 3 (H3) Adaptive SRL scaffolding will lead to a
greater increase in learning gain and more appropriate SRL
learning behaviour than no scaffolding.
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Table 2 Participant details

Condition Total Less able More able

SRL_SCAFFOLD 24 12 12

SRL_PROMPT 20 7 13

OLM_ONLY 15 9 6

CONTROL 21 11 10

Hypothesis 4 (H4) Static SRL scaffolding will lead to a
greater increase in learning gain and more appropriate SRL
learning behaviour than access to an OLM alone.

Hypothesis 5 (H5) Static SRL scaffolding will lead to a
greater increase in learning gain and more appropriate SRL
learning behaviour than no scaffolding.

Hypothesis 6 (H6) Access to an OLM alone will lead to a
greater increase in learning gain and more appropriate SRL
learning behaviour than no scaffolding.

We would expect to see these effects in less able students
to a greater degree than in more able students that might
already have strong domain knowledge and good SRL skills,
which would be similar to findings in OLM research [28].

We have asked a number of questions in the post-activity
questionnaire based on the Intrinsic Motivation Inventory
(IMI) [27,36]. We believe that the differences in the robot’s
behaviour will impact the perception of the robot and the
task.

Hypothesis 7 (H7) The perception of the robotic tutor will
differ between activities. The robot’s behaviour will affect
the learner’s perception of the robot, the role of the robot,
and the learner’s attitude towards the robot.

Hypothesis 8 (H8) The perception of the activity will differ
between conditions. The robot’s behaviour will affect the
learner’s perception of their competence in the activity, the
importance/value/interest in the activity, and the perception
of the OLM skill meters.

4 Results

The results presented here are derived from the analysis of
the log data and domain pre-activity and post-activity domain
tests and questionnaires. We have broken down the analysis
to investigate differences between more able and less able
students based on if the learner was above or below the mean
of the pre-activity domain test score as has been done in
other OLM research [28,30]. The breakdown is presented in
Table 2.

Significant differences (lower than .05) between condi-
tions are highlighted with a connecting black line (Fig. 4) in
the figures below.

4.1 Learning Gain

Learning gains were calculated using Normalised Learning
Gain [11], based on the difference between the pre-activity
domain test and the post-activity domain test, the calculation
is presented in Fig. 5. In both the pre and post test the learners
were asked 14 questions that cover compass reading, distance
measurement, and map symbols. A one-way ANOVA was
used to determine whether there was any statistically signif-
icant difference between the Normalised Learning Gain of
the groups.

The results in Fig. 4 show that there was a statisti-
cally significant difference between groups as determined
by one-way ANOVA (F(3,70) = 3.916, p = .012) when con-
sidering all students. A Tukey post hoc test revealed that the
learning gain in the SRL_SCAFFOLD condition (M = .58,
SD = .3) is significantly higher than OLM_ONLY condi-
tion (M = .20, SD = .3, p = .009) when considering all
students. There were no other statistically significant dif-
ference between the groups. We see a general trend when
considering all students, more able students, and less able
students that learning gain is highest for SRL_SCAFFOLD
followed by SRL_PROMPT then CONTROL and finally
OLM_ONLY.

4.2 SRL Indicators in Task Performance Data

The indicators we have extracted from the logs aim to
measure SRL behaviours. One-way ANOVAs were used to
determine whether there was any statistically significant dif-
ference between the indicators of the groups.

Learner model final value This is the average of all the
skill levels from the learner model at the end of the activity.
It is an indicator of howwell the student is at the content in the
activity that they have attempted to answer. If the learners are
using the OLM to reflect and SRL processes are used, then
the students should be looking to ensure that their actions
lead to an increase in the OLM skill meters. To do this the
students should be working on getting answers correct by
using the tools rather than guessing and getting lower learner
model values. This value is based on the evidence provided, it
shows performance on the questions attempted by the learner.
It does not consider coverage of the content of the activity.
It is possible to have a high learner model value by answer-
ing simple questions so it is not an indicator of total level
of knowledge or ability. The results in Fig. 6a show that in
the CONTROL condition the learner model value is gener-
ally lower than all other conditions. However, there are no
statistically different results.

Number of questions answered This gives an indication of
how long a learner spends on each question; A learner could
complete fewer questions because that learner is struggling,
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Fig. 4 Normalised Learning
gain: all learners (left), more
able (centre) and less able
students (right)

NormalisedLearningGain =
posttest− pretest

1− pretest

Fig. 5 Normalised Learning Gain

distracted, reflecting more, or making use of tools. So we
must take this indicator into account with the indicators that
follow in this section.

The results in Fig. 6b show a statistically significant dif-
ference between groups as determined by one-way ANOVA
when considering all students (F(3,76) = 15.72, p = .000) and
more able students (F(3,35) = 12.888, p = .000). A Tukey
post hoc test revealed the following statistically significant
differences. When considering all students the learning gain
SRL_SCAFFOLD (M= 48.16, SD = 12.1) learners complete
significantly fewer questions than OLM_ONLY (M = 81.00,
SD = 31.9, p = .000) and CONTROL (M = 90.61, SD = 27.8,
p = .000) conditions, the SRL_PROMPT (M = 56.70,
SD = 20.0) learners complete significantly fewer questions
than OLM_ONLY (M = 81.00, SD = 31.9, p = .015) and
CONTROL (M = 90.61, SD = 27.8, p = .000) learners.
When considering more able students SRL_SCAFFOLD
(M = 48.19, SD = 11.8) learners complete significantly
fewer questions than OLM_ONLY (M = 105.83, SD = 37.1,
p = .000) and CONTROL (M = 88.60, SD = 26.8, p = .001),
SRL_PROMPT (M = 63.15, SD = 19.7) learners complete
significantly fewer questions thanOLM_ONLY(M=105.83,
SD = 37.1, p = .003).

Percentage of questions answered correctly This gives an
indication of how deliberately the students are answering
questions. If this is high then it shows that the student is
getting most question attempts correct, however this may not
always be desirable because it can indicate that the student is
focusing on questions that theymay already know the answer
to and are not pushing themselves. The results in Fig. 6c show
there are no statistically different results.

Attempts until a successful answer This measures on aver-
age how many attempts it takes for a learner to answer
successfully. If this is high it is an indication that a stu-
dent is not thinking carefully enough about how they are
answering questions or indicates that the learner is not

aware that they need to work on a skill. The results in
Fig. 6d do not show statistically significantly different values
between conditions, however in the CONTROL condition
learners take more attempts to get a correct answer, par-
ticularly the less able learners. This may indicate that
learners in the control condition are not taking appropri-
ate SRL actions when they are getting questions incor-
rect.

Tool useThis is a count of tool use in the activity. In Fig. 6e
we do not see statistically significant differences between
conditions, however in the CONTROL condition the tool use
is lower than the other conditions. This may indicate that the
students do not realise that they have issues or that the tools
can help them with address the issues.

When we look at all of the indicators together we can see
some general trends between the conditions. In the adaptive
scaffolding condition SRL_SCAFFOLD indicates a greater
adoption of SRL behaviours. More time is taken over fewer
questions, the number of steps to get a correct answer are
fewer; however, the percentage of correct answers is lower,
which may indicate that the learner is working on more chal-
lenging questions. This may be a factor in the higher learning
gains for this group.

In the static scaffolding condition SRL_PROMPT the
adoption of SRL behaviours seems similar to SRL_SCAF
FOLD, however this does not translate to as high a degree
of learning gain.

The OLM_ONLY condition indicates a lesser degree of
SRL behaviours, less time is taken over more questions, and
we see a slightly higher percentage of questions correct that
indicates that the students are spending more time on ques-
tions that they find comfortable. So the learners performwell
but appear to not push themselves.

The control condition CONTROL appears to have the
least degree of SRL behaviours; learners take the least time
over the greatest number of questions, they have a lower
percentage of questions correct, and takemore attempts to get
a successful answer, and the tool use is low.The learnermodel
final values are also lower. This indicates that the learners
are not aware of where they have issues and do not work to
address these issues with the tools available.
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Fig. 6 SRL indicators

4.3 Questionnaire Results

The questions asked in the post-activity questionnaire are
based on the Intrinsic Motivation Inventory (IMI) [27,36].
We ask the questions as we wanted to understand how the
differences in robot’s behaviour affected the perception of

the robot and the activity. Specifically, we wanted to explore
if there were differences in the learner’s enjoyment, engage-
ment with the activity and the robot. We also wanted to see
if the learner could perceive the robot’s understanding of the
learner. Each question was asked on a 7 point scale ranging
from 0, “not at all true”? to 1, “very true”. Themean values of
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Fig. 7 Questionnaire results

each sub-scale of the IMI and the individual items were anal-
ysed by comparing each condition against each other using a
Mann-WhitneyU test. The significant values (lower than .05)
were then further investigated. We also report the reliability
of these sub-scale using Cronbach’s alpha.

Learner’s perception of the robot This sub-scale consists
of questions about the learner’s perception of the robot. The

Cronbach’s Alpha for this grouping was .864. We see in
Fig. 7a that the value for the perception was significantly
higher in the CONTROL condition than the OLM_ONLY
condition (U = 66.000; p = .010).

The question that contributes the most to this is the ques-
tion “the robot was helpful”. We see in Fig. 7b that the
robot was rated significantly less helpful in the OLM_ONLY
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Fig. 8 Questionnaire results

than the CONTROL (U = 72.500; p = .013) and the
SRL_PROMPT (U = 85.000; p = .041).

It also appears that the learners did not enjoy the
SRL_SCAFFOLDcondition asmuch as theCONTROLcon-
dition.We see in Fig. 7c that for the question “I enjoyed inter-
acting with the robot very much”? the SRL_SCAFFOLD is
significantly lower than the SRL_PROMPT(U = 110.000;
p = .025) and CONTROL(U = 125.000; p = .027).

We see in Fig. 7d that for the question “While I was
interacting with the robot I was thinking about how much
I enjoyed it”? the SRL_PROMPT condition is lower than the
CONTROL condition(U = 130.500; p = .047).

Learner’s perception of the robot’s perception of the
learner This sub-scale consists of questions about how the
learner felt the robot perceived them. The Cronbach’s Alpha
for this groupingwas .575,which is a rather lowvalue.We see
in Fig. 7e that the OLM_ONLY condition is significantly less
than the SRL_SCAFFOLD condition (U = 77.500; p = .028)
and CONTROL (U = 53.000; p = .002).

The OLM_ONLY is consistently and significantly lower
across the questions than all of the other conditions. These

questions were “I feel that the robot understands me”, “The
robot was happy for me when I was doing well”, “The robot
felt sorry for me when I was having problems”. This indi-
cates that the learners were aware that the robot was not
helping them when their issues were highlighted by the
OLM.

Role of the robot This sub-scale consists of questions about
the learners’ perception of the role of the robot. The learner
was asked to mark on a scale from 1 to 7 howmuch the robot
was like a classmate, friend, or teacher. We see in Fig. 8a that
the only significant difference between conditionswas for the
question “I thought the robot was like a friend”?; the CON-
TROL condition is given a significantly higher value than the
OLM_ONLY condition (U = 63.000, p = .005). When we
look at the role that was given the highest rating we see that
the role of teacher Fig. 8cwas the highest rated role in all con-
ditions. The robot is perceived as a teacher more frequently
in the SRL_PROMPT condition. The robot is perceived as
a friend more frequently in the CONTROL condition. The
robot is perceived as a classmate Fig. 8b more frequently in
the SRL_SCAFFOLD condition.
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Fig. 9 Questionnaire results

Pressure and tension This sub- scale measures the pres-
sure and tension the learner perceives in the activity. The
Cronbach’s Alpha for the questions that compose the pres-
sure/tension sub-scale from the IMI activity evaluation
questionnaire was .629. We see in Fig. 9a that the pres-
sure sub-scale is significantly higher in the SRL_PROMPT
condition than the SRL_SCAFFOLD condition for less able
students (U = 9; p = .033).

We see in Fig. 9b that for the question “I felt very
tense while doing this activity”? for less able students the
SRL_SCAFFOLD is significantly lower than the SRL_PRO-
MPT condition (U = 7; p = .016) and the OLM_ONLY
condition (U = 15.5; p = .044).

This indicates that In the SRL_SCAFFOLD and
OLM_ONLY conditions the learner is made more aware of
issues but has less support from the robotic tutor. The less able
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students are less able to identify how to solve the problems or
may not be as used to engaging in SRL processes that are now
required which could explain the increased pressure that they
feel. The SRL_PROMPT condition gives the learner specific
personalised strategy that can reduce the pressure that the
learner feels.

Following the robot This sub-scale consists of questions
about whether the learner followed advice from the robot.
The Cronbach’s Alpha for this grouping was .861. We see in
Fig. 9c that the value for OLM_ONLY is significantly lower
than the SRL_SCAFFOLD (U = 78.000; p = .030) and CON-
TROL (U = 59.500; p = .005) conditions. The OLM_ONLY
is consistently and significantly lower across the questions
than all of the other conditions. These questions were “The
robot helped me decide what to do next”, “The robot helped
me choose the right tools”.

Interest in the activity This sub-scale measures how much
interest or enjoyment the learner perceives in the activity.
The Cronbach’s Alpha for the questions that compose the
interest/enjoyment sub-scale from the IMI activity evaluation
questionnaire was .793. We see in Fig. 9d that the interest
and enjoyment is fairly similar between all conditions. There
is higher interest/enjoyment with the CONTROL condition
overall (U = 105; p = .047). This might be linked with how
the learners in the control condition perceived the role of the
robot.

Perceived competence This sub-scale measures the how
competent the learner thinks they are at the activity. The
Cronbach’s Alpha for the questions that compose the per-
ceived competence sub-scale from the IMI activity evaluation
questionnaire was .700. There are no significant differences
between the conditions in the sub-scale.

We see in Fig. 9e that one interesting results is that
for the question “I think I did pretty well at this activity
compared with other students”? for less able students the
SRL_SCAFFOLD is significantly lower the SRL_PROMPT
(U = 9.000, p = .031) . This indicates that the weaker stu-
dents are noticing an improvement in their skills based on
the feedback from the robot.

Importance and value of activity There are two sub-
scales from the IMI activity evaluation questionnaire that
measure the how important and valuable the task was to
the learner. The Cronbach’s Alpha for the questions that
compose the importance sub-scale was .700 and the value
sub-scale was .817. There are no significant differences
between the conditions in these sub-scales. This indicates
that there is no difference in levels of motivation to do the
task.

Skill meters This sub-scale measures the learners’ percep-
tion of how the skill meters helped them. The Cronbach’s
Alpha for this grouping was .859. There are no significant
differences between the conditions.

5 Discussion

There is some evidence to support our hypothesis that a more
personalised and adapted scaffolding of SRL processes via
OLM lead to higher learning gain and improvement in SRL
processes.

H1 is not supported, as there are not statistically significant
higher learning gains between students in the personalised
conditions for adaptive scaffolding SRL_SCAFFOLD and
static scaffolding SRL_PROMPT. In terms of SRL indica-
tors there does not appear be a difference.

H2 is supported, as we see that personalised adaptive
SRL scaffolding SRL_SCAFFOLD as comparedwith a per-
sonalised OLM_ONLY alone leads to significantly higher
learning gains and more time spent on fewer questions. They
key difference appears to be that the OLM alone does not
prompt the learner to push on to more difficult questions as
can be seen with the higher percentage of questions correct.

H3 is supported, as personalised adaptive SRL scaffolding
SRL_SCAFFOLD as comparedwith a theCONTROL con-
dition leads to significantly higher learning gains and more
time spent on fewer questions. The learners in the control
conditions show the least indication of SRL behaviours; they
do not appear to be aware of or able to act on their weaknesses
in the activity.

H4 is supported, as we see that personalised static SRL
scaffolding SRL_PROMPT as compared with an OLM
alone OLM_ONLY leads to significantly higher learning
gains when considering all students. As with H2 the key dif-
ference appears to be that the OLM alone does not prompt
the learner to push on to more difficult questions as can be
seen with the higher percentage of questions correct.

H5 is not supported, as we do not see a statistically signifi-
cant difference in learning gain in the personalised static SRL
scaffolding SRL_PROMPT as compared with the CON-
TROL condition.

H6 is not supported, as learning gain does not differ sig-
nificantly between the OLM only OLM_ONLY and the
CONTROL condition. In fact there appears that there might
even be more learning gain in the CONTROL condition.

With regard to the questions to ascertain the learner’s per-
ception of the learning activity and the role of the robot.

H7 is supported as the different conditions appear to
have affected the way that learners perceive the robot and
if they would listen to the robot in the future. In the
SRL_SCAFFOLD condition the robot is perceived mainly
as a teacher but is more frequently referred to as a classmate
than the other conditions. In theOLM_ONLY condition the
robot is perceived the least favourably. In the CONTROL
condition the robot was perceived surprisingly positively, the
robot did exactly the same behaviour as the OLM_ONLY
condition but as the students were not as aware of their dif-
ficulties the robot is perceived as a friend.
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H8 is supported as the different conditions appear to have
affected the way that learners perceive the task. The students
in the SRL_PROMPT condition feltmost like they have per-
formed better in the task than other students. This could be
because theywere aware of overcomingproblems themselves
without much assistance. These students also felt some stress
due to the lack of assistance when they were aware of their
weaknesses. The students in the OLM_ONLY condition
were aware that the robot was not helping them and con-
sequently had a low perception of the robot. These students
also felt tense. We see no difference in the importance and
value of activity but this may be due to the novelty of the task.

Below we summarise the main results, key findings, and
limitations of this study.Ahigher level of personalisation and
adaptive scaffolding of SRL seems to lead to greater adoption
of SRLbehaviours andan increase in learning gain.Less able
students in the SRL conditions appear to have been helped
the most. All students should be familiar with the material as
it is part of the National Curriculum we see that on average
the pre-test domain scores were 6.4 out of 10 (SD.1.83) and
post-test domain scores were 7.6 out of 10 (SD. 1.79).

Without anySRL support in the control condition, learners
do not appear to engage many SRL processes. The presence
of a robot maymotivate the students to engage in the learning
scenario, in fact the robot in the control condition is the most
well perceived in terms of enjoyment, motivation, and being
thought of as a friend. However this does not necessarily
foster SRL processes, appropriate scaffolding must still be
made available.

An OLM on its own does not lead to students engaging in
SRL processes. Making the learner aware of their issues via
anOLMbut not providing specific help can increase the pres-
sure experience by the learner as we can see with the higher
levels reported in the SRL_PROMPT and OLM_ONLY
conditions. Some pressure and tension is good for learning
as it will prompt the learner to take some action, however we
would need to be careful as toomuch pressure could cause the
learners to become disengaged. If the robot is present with
an OLM it should offer some support to assist the learner.
Otherwise the learner will perceive the robot poorly and may
not follow its advice in the future.

This study shows the importance of how the robot’s
behaviours can be perceived within the context of the activity
and the importance of finding a balance between appropriate
social support and SRL support to successfully scaffold SRL
skills. Social support is essential for reducing pressure and
tension and supporting engagement in the activity. It appears
from the results that in the case of the control condition that
the robot is perceived as a friend due to its behaviour being
non judgemental, however, this same behaviour in the OLM
condition is seen as unhelpful. This is a new finding in OLM
research as no other research uses a pedagogical agent and
OLM a similar way.

The different robotic behaviours in the static and adap-
tive SRL conditions may make the robot seem more like a
teacher or classmate but appear to offer enough social and
SRL support to reduce pressure and tension but still allow
the learner to push themselves and learn. This shows how
important social interaction such as encouragement or sup-
portive interaction is to the development of SRL. We can
also argue that the personality of the robot must match the
role that the robot plays to the learner. If the robot has an
overly social personality in a tutoring role then it may in fact
harm the performance of the user [16]. This is an example
how a social robot tutor could be argued to have as a basis
the socio-constructivist approach to learning, where the cog-
nitive development of the individual is supported by social
interaction [42]. It is believed that socially assistive robots
can support the best practises of socio-constructivist learning
theories [7], which we believe could lead to the adoption of
SRL skills. For example, adoption of good SRL processes
can be influenced by members of a social network in a learn-
ing planning application [23].

It may be that SRL scaffolding of a less social nature
may have been effective coming from on screen prompts
or a virtual agent as with ITS research [18]. We decided
not to compare virtual to physical feedback as it has been
shown before that a physical embodiment is preferred to a
virtual embodiment [22], and learners prefer explanations
of a simple OLM via a robotic tutor rather than text based
explanations displayed on-screen [14].

It is possible that other forms of scaffolding SRL that are
not based upon an OLM would be effective. For example,
providing SRL prompts when an OLM was not present. We
chose an OLM as it is one of the most effective ways to show
the learner their developing skill levels and assist them with
reflection. Alternatives might have been to allow other mech-
anisms for reflection in the activity such as skill diaries [24]
or other note taking tool [37].

We would also like to further investigate the SRL indi-
cators described in this study. The indicators that we have
investigated here are high level and not granular over the
interaction. Unfortunately due to previous familiarity with
material, the amount of material we have available in our
activity, and the time available for this study we were
unable to measure a baseline of a learners SRL indicators or
behaviours. In the future a more long-term study may allow
us to better understand how SRL indicators may change over
time or even perform some within-subject studies.

6 Conclusion

This paper explores how personalised tutoring by a robot
achieved using an OLM promotes SRL processes and how
this can impact learning in primary school children. We see
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significant differences between the learning gain in the the
adaptive SRL scaffolding and the OLM only and the control
conditions.We believe that the differences are due to the sup-
port of SRL behaviour in the conditions chosen in the study.
The main benefit of the support given by the robot and OLM
in the adaptiveSRLscaffold condition is to prompt the learner
to reflect and to motivate the students to choose appropriate
task strategies. We see that for a learner to engage SRL prac-
tises they must be aware that they have issues with the task
and also motivate them to engage meta-cognitive processes
to fix those issues. As we see in the OLM only condition it is
not enough to make the learners aware of issues. These dif-
ferences can be seen in the high level indicators of SRL from
the task data between the conditions that appears to support
this conclusion.

We see here the possibility of a robotic tutor tomotivate the
students to engage in SRL processes. We have seen in previ-
ouswork that the robotic tutormay increase trust, enjoyment,
and understanding in explanations of an OLM as compared
to on-screen feedback alone [14], which could motivate the
students to make more use of the feedback. In this work we
see that the robot in the adaptive condition appears to be able
to motivate the students to use SRL processes with it well
placed suggestions. The robot in the static scaffolding condi-
tion appears to raise awareness of issues while adding stress
to the learner which does not necessarily help, however this
may help the learners in the long run. In the OLM only con-
dition the students are aware that the robot does not help. We
see that the robot in the control group is generally engaging
and well liked by the students but it does does little to moti-
vate meta-cognitive processes. This indicates that students
do look to the robot for and would likely accept assistance.

Further, this study shows the importance of adapting to
a learner when scaffolding SRL processes. This reflects
the findings from human-human interactions where adaptive
scaffolding has led to improved learner understanding com-
pared with fixed or no scaffolding [3]. The need to adapt to
student’s SRL skills is highlighted with more able students,
at best static and less personalised scaffolding does not pro-
vide any greater degree of support to these learners, at worst
it could be dangerous to continue to scaffold basic SRL pro-
cesses as this support could start to become distracting, less
effective, and frustrating for the learner [10]. Removing sup-
port when it is no longer needed is one of the principles of
scaffolding [19]. Fading or removing scaffolding based on an
OLM to assist in problem selection can increase the ability
for students to selectmore appropriate problems [28]. Conse-
quently we need to be able to model the students’ SRL skills
to be able to decide when to reduce the SRL scaffolding.

There are open questions around adapting to the learners
meta-cognitive state, finding appropriate social behaviours
for the robotic tutor, and investing the scaffolding of SRL
in longer term studies. We aim to investigate how we can

better adapt to SRL skills, including identifying the factors
that can indicate the level of SRL skills possessed by the
learner. Based on previous research the indicators of SRL
behaviour are pre test scores [38], ability at problem selec-
tion [28], and the frequency of tool or resource use [38].
In this study we have seen how important the robotic tutors
social behaviours are to the interaction, which is in line with
a review of long-term interactions with robots [20], which
recommends that a robot should be able to display an aware-
ness of and respond to the user’s affective state and also adapt
to the individual’s preferences in order to build a good social
interactionwhich is essential for long-term support. This type
of long term interaction is essential to investigate if this type
of SRL scaffolding can lead to long term changes in SRL
behaviour, as such changes can be difficult to achieve with
an ITS [18]. Examples of more social supportive behaviour
would be calling the learner by name, referring back to pre-
vious interactions, and commenting on the development of
the learner, and other supportive and motivating statements.

In summary, we have found that adaptive SRL scaffolding
delivered by a social robotic tutor can lead to greater SRL
behaviours and learning gains. However, care must be taken
with the delivery of SRL scaffolding as highlighting issues
but not providing sufficient level of support can make the
learners feel higher levels of stress and pressure, which may
cause learners to become disengaged.
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