REVIEW

A Review of Subthreshold Micropulse Laser for Treatment of Macular Disorders

Paula Scholz · Lebriz Altay · Sascha Fauser

Received: March 30, 2017 / Published online: May 24, 2017 © The Author(s) 2017. This article is an open access publication

ABSTRACT

Micropulse laser treatment is an alternative to the conventional continuous-wave laser for the treatment of retinal or macular diseases. In contrast to the conventional laser, the therapeutic effect of the subthreshold micropulse laser is not accompanied by thermal retinal damage. This fact is of particular importance when a treatment near the fovea is required. Micropulse treatment is applied in indications such as central serous chorioretinopathy (CSC), diabetic macular edema (DME), or macular edema due to retinal vein occlusion (RVO). This review outlines and discusses the published literature of subthreshold micropulse laser treatment for CSC, DME, and macular edema after RVO.

Keywords: Central serous chorioretinopathy; Diabetic macular edema; Micropulse laser;

Enhanced content To view enhanced content for this article go to http://www.medengine.com/Redeem/484 8F0600C509A9C.

P. Scholz $(\boxtimes) \cdot L$. Altay \cdot S. Fauser Department of Ophthalmology, University Hospital of Cologne, Cologne, Germany e-mail: paula.scholz@uk-koeln.de

S. Fauser F. Hoffmann-La Roche, Basel, Switzerland Ophthalmology; Retinal vein occlusion; Subthreshold laser

INTRODUCTION

Traditional laser photocoagulation has been used to treat different retinal diseases for many years [1–5]. Here, the endpoint is a visible whitening of the retina due to thermal damage of the retinal pigment epithelium (RPE) and the inner retina. However, apart from the favored therapeutic effect, the treatment can lead to undesirable side effects like visual field defects, epiretinal fibrosis, and choroidal neovascularization (CNV) in the area of the laser scar [6–10]. The mechanisms which are responsible for the therapeutic effect are still poorly understood.

Scarring seems not to be necessary to achieve a therapeutic effect. It might be the stimulation of the RPE alone and not the destroying of the photoreceptors that is needed to reach a therapeutic effect of laser photocoagulation [11]. The laser energy stimulates the RPE, which leads to repair of the inner blood retinal barrier [12]. A modification of the gene expression initiated by the wound healing response after laser photocoagulation could be responsible for the benephotocoagulation. ficial effect of laser Sublethally injured RPE cells induce an up- and downregulation of various factors [pigment epithelium-derived factor (PEDF), vascular endothelial growth factor (VEGF) inhibitors,

VEGF inducers, permeability factors, etc.] which restores the pathologic imbalance. RPE cells destroyed by thermal heat are not capable of inducing this biologic activity [13, 14]. Inagaki et al. [15] showed that sublethal photothermal stimulation with a micropulse laser induces heat shock protein expression in RPE cells without cellular damage in a model of human RPE.

In subthreshold micropulse laser (SML), diffusion of heat to surrounding tissues is minimized and thereby scarring is prevented.

The neural retina can be spared by applying the minimum laser irradiance (watts per square meter) needed to raise the temperature of the RPE, but without exceeding the protein denaturation threshold. This leads to the required activation of the RPE cells, but the thermal wave will only reach the neural retina at temperatures beneath the protein denaturation threshold. Since the RPE and the neural retina are close together, the laser pulse has to be in the microsecond range and not in the millisecond range like the traditionally used supra threshold laser. For safety reasons it is not possible to deliver the required energy in one short enough laser pulse. A single laser pulse would require so much energy that there would be a high risk of bubble formation and micro-explosions, accompanied by retinal hemorrhages [16]. Those side effects can be avoided by using a repetitive series of very short pulses with low energy instead of a continuous-wave laser pulse [17–19].

The micropulse operating mode and terminology were described by Dorin [20]. In the traditional continuous-wave mode, a single laser pulse of 0.1-0.5 s delivers the preset laser energy. In the micropulse mode, a train of repetitive short laser pulses delivers the laser energy within an "envelope" whose width is typically 0.1-0.5s. The normal length of each pulse is 100-300 µs. The "envelope" includes "ON" time, which is the duration of each micropulse, and "OFF" time, which is the time between the micropulses. The "OFF" time is important since here the originated heat can cool down. The sum of the "ON" and "OFF" times is the period T and its reciprocal 1/T is the frequency (pulses per second) f in hertz (Hz).

The duty cycle in percent is the ratio between "ON" time and the period T.

DIFFERENT LASERS AVAILABLE WITH MICROPULSE MODE

810-nm Diode Laser

The commercially available diode lasers emit at a wavelength of 810 nm, which is in the near-infrared range of the spectrum. A feature of the 810-nm wavelength is its deep penetration into the choroid, but it is not clear if this characteristic is relevant in micropulse treatment. For all indications requiring a treatment near the foveal avascular zone, the 810-nm laser has the advantage that the laser energy will relatively spare the inner neurosensory retina and affect mainly the deeper layers [21–24]. The deep penetration is a possible benefit especially for central serous chorioretinopathy (CSC) since the choroid may play a role in the pathogenesis of CSC. A potential disadvantage of the 810-nm laser is a possible sensation of pain during treatment with a diode laser [24, 25], although this is a rare problem in the micropulse mode.

577-nm Yellow Laser

Another laser type which is available for micropulse treatment is the 577-nm yellow laser. The yellow laser has the advantage that xanthophyll, the pigment which is located in the inner and outer plexiform layers of the macula, absorbs the yellow light only minimally so treatment near the fovea is relatively safe [26].

APPLICATIONS FOR SUBTHRESHOLD MICROPULSE LASERS

In this article we will review the applications for micropulse laser in macular diseases, namely CSC, diabetic macular edema (DME), and retinal vein occlusion (RVO). We will give an overview of the available literature and outline the current evidence for micropulse laser treatment in each field.

The literature search was performed in English language in the PubMed database. We used pairings of the terms "micropulse", "laser", "subthreshold", and "central serous chorioretinopathy", "chorioretinopathy", "central serous retinopathy", or "diabetic macular edema", "macular edema" and "retinal vein occlusion", "branch retinal vein occlusion", "central retinal vein occlusion". Additionally, the references of the resultant articles were checked for publications missing in the primary search. Until February 2017 we found 18 articles [27–44] concerning micropulse laser in CSC; no articles were excluded and all articles are listed in Table 1. As a result of the high number of publications related to DME and micropulse treatment, we only listed the 11 prospective studies [45-55] in Table 2. We found four studies [56-59] investigating micropulse laser for RVO, which are all listed in Table 3.

As a result of different study designs, uneven inclusion and exclusion criteria, different laser types, treatment parameters, and various outcome measures, a direct comparison of the studies is limited. We looked for similarities referring to the outcome measures for making comprehensive conclusions regarding the treatment outcome. In Tables 1, 2, and 3, all studies are listed, but individual studies were excluded from the calculations as a result of missing information or prior treatment. The studies had a high variety regarding the follow-up visits. If available, after calculation of the decrease in central retinal thickness (CRT) in optical coherence tomography (OCT) in all individual studies, a weighted average value was calculated on the basis of the number of patients in each study. The best corrected visual acuity (BCVA) was not consistently presented in the different studies. To compare the BCVA, we converted all visual acuity data to Early Treatment Diabetic Retinopathy Study (ETDRS) letters equivalent using the formula ETDRS letters = $85 + 50 \times \log$ (Snellen fraction) [60]. If a large enough number of studies provided information about a control group, we additionally analyzed the control group regarding CRT, BCVA, and treatment outcome.

This article was based on previously conducted studies and did not involve any new studies of human or animal subjects performed by any of the authors.

CENTRAL SEROUS CHORIORETINOPATHY (CSC)

In CSC a serous detachment of the neurosensory retina leads to decreased vision [61]. The acute form of CSC is often self-limiting so that treatment is not always necessary. But some patients develop the chronic form of CSC with impending permanent structural damage and vision loss [62–64]. For patients with extrafoveal leakage, a continuous-wave laser photocoagulation is a treatment option. Studies showed an acceleration of subretinal fluid (SRF) resolution but no change in final visual acuity or recurrence rate after conventional laser. Furthermore, adverse events like CNV, scotomas, enlargement of the laser spot, and reduction of contrast sensitivity can occur [3, 62, 65-67]. Another treatment option is photodynamic therapy (PDT) which is used also in juxtafoveal or subfoveal leakage. But even with reduced treatment settings, complications like RPE atrophy, choroidal hypoperfusion, transient reduction of macular function, and CNV can occur [68–71].

Bandello et al. [72] presented the first pilot study investigating SML treatment for CSC in 2003. They reported a high treatment success with complete resorption of SRF in five out of five eyes within 1 month and no recurrence of SRF during follow-up of 2–6 month after non-visible subthreshold micropulse diode laser (810 nm) treatment. No evidence of RPE or retinal changes was discernible at fluorescein angiography (FA) or fundus biomicroscopy after laser treatment.

Table 1 shows all identified studies investigating micropulse laser treatment for CSC. In Table 4, the treatment outcome after SML, PDT, and observation for CSC is presented.

Treatment Response

Most studies defined a treatment response as a reduction in CRT measured in spectral domain

Table 1	Overvi	ew of the studies investigating subthreshold	micropulse laser treatment	: for central serous chorioretinopatl	λι
Authors	Year	Eyes	Disease duration	Laser type and parameters	Study design
Ricci	2004	1 eye	Chronic, ≥6 months	Iris Medical Oculight SLx	Case report, SML after ICG injection
et al. [27]				810 nm, Ø not shown, 10% DC, 0.5 s, power: 500 mW	
Ricci	2008	7 eyes	Chronic, ≥6 months	Iris Medical Oculight SLx	Prospective, interventional, non-comparative
et al. [28]				810 nm, Ø 112.5 µm, 10% DC, 0.5 s, power: 500 mW	case series, SML after ICG injection
Chen	2008	26 eyes	Chronic, >4 months	Iris Medical Oculight SLx	Prospective, non-comparative, interventional
et al. [29]		Group 1: Source leakage without RPE atrophy, $n = 6$		810 nm, Ø 125 µm, 15% DC, 0.2 s, power: titration	case series
		Group 2: Source leakage with RPE atrophy, $n = 9$			
		Group 3: Diffuse RPE decompensation with indeterminate source leakage, $n = 11$			
Lanzetta	2008	24 eyes	Chronic, >3 months	Iris Medical Oculight SLx	Prospective, interventional, non-comparative
et al. [30]				810 nm, Ø 200 µm, 15% DC, 0.2 s, power: 1000–2000 mW, mean 1350 mW	case series
Gupta	2009	5 eyes	Chronic, ≥4 weeks	Iris Medical Oculight SLx	Retrospective, non-comparative, case series
et al. [31]				810 nm, Ø 125 µm, 15% DC, 0.2 s, power: titration	
Koss et al.	2011	52 eyes	Chronic, >3 months	Iris Medical Oculight SLx	Prospective, comparative, nonrandomized
[32]		SML: $n = 16$		810 nm, Ø 125 μm, 15% DC, 0.2 s,	interventional case series
		BCZ: $n = 10$		power: tutration	
		Observation: $n = 26$			
Roisman	2013	15 eyes	Chronic, >6 months	Opto FastPulse	Prospective, randomized, double-blind,
et al. [33]		SML: $n = 10$ SHAM: $n = 5$		810 nm, Ø 125 µm, 15% DC, 0.3 s, power: 1.2× threshold	sham-controlled pilot trial, cross over after 3 months
Malik	2015	11 eyes	Chronic, >3 months	Iris Medical Oculight SLx	Retrospective, interventional,
et al. [34]				810 nm, Ø not shown, 5% DC, 0.2–0.3 s, power: 750–1000 mW	non-comparative case series
Kretz	2015	62 eyes	Chronic, >3 months	Iris Medical Oculight SLx	Prospective, randomized, interventional,
et al. [35]		SML: $n = 20$		810 nm, Ø 75–125 µm, 15% DC,	comparative trial
		HdPDT: $n = 24$		u.s s, power: average 1500 m W	
		Observation: $n = 18$			

Table 1	contin	hued			
Authors	Year	Eyes	Disease duration	Laser type and parameters	Study design
Elhamid [36]	2015	15 eyes	Chronic, >3 months	Iridex IQ577	Prospective, interventional, non-comparative clinical endu
[oc]				577 nm, Ø 200 μm, 10% DC, 0.2 s, power: titration	
Scholz	2015	38 eyes	Chronic, >6 weeks	Quantel Medical	Retrospective, non-comparative case series
et al. [37]				Supra Scan	
				577 nm, Ø 160 µm, 5% DC, 0.2 s, power: 50% of threshold	
Kim et al.	2015	10 cyes	Chronic, >6 months	Quantel Medical	Retrospective, non-comparative case series
[3 8]				Supra Scan	
				577 nm, Ø 100 µm, 15% DC, 0.2 s, power: 50% of threshold	
Gawęcki	2015	1 eye	Chronic, (disease duration	Model not mentioned	Retrospective case report
[39]			not defined)	577 nm, Ø 160 μm, 5% DC, 0.2 s, power: 550 mW	
Yadav	2015	15 eyes	Chronic, >3 months	Quantel Medical	Retrospective, non-comparative case series
et al.				Supra Scan	
				577 nm, Ø 100 μm, 10% DC, 0.2 s, power: 50% of threshold	
Breukink	2016	59 eyes	Chronic, (disease duration	Iris Medical Oculight SLx	Prospective, interventional non-comparative,
et al. [41]		(All eyes received HdPDT, 10 eyes with persistent SRF after up to 2 HdPDT sessions received SML)	not defined)	810 nm, Ø 125 μm, 5% DC, 0.2 s, power: ≤1800 mW	case series
Özmert	2016	33 eyes	Chronic, >6 months	Quantel Medical	Retrospective, comparative case series
et al. [42]		SML: $n = 15$		Supra Scan	
71		HfPDT: $n = 18$		577 nm, Ø 160 μm, 5% DC, 0.2 s, power: titration	
Ambiya	2016	10 eyes	≥ 3 months without signs of	Navilas	Prospective, interventional noncomparative,
et al. [43]			KPE atrophy or diffuse leakage	577 nm, Ø 100 µm, 5% DC, 0.1 s, power: 30% of threshold	case series
Scholz	2016	100 eyes	Chronic, ≥6 weeks	Quantel Medical	Retrospective, comparative, interventional
et al. [44]		SML: $n = 42$		Supra Scan	case series
-		HdPDT: $n = 58$		577 nm, Ø 160 μm, 5% DC, 0.2 s, power: 50% of threshold	

Authors	FU	Treatment response	Central retinal thickness	Best corrected visual acuity	Safety	Laser sessions
icci et al. [27]	8 weeks	 week: SRF was reduced (1/1) weeks: Complete resolution (1/1) 	Not shown	BL: 0.3 logMAR 1 week: 0.0 logMAR 8 weeks: -0.1 logMAR	No signs of laser treatment were visible on FA	-
icci [28]	Minimum 12 months	Response*: 2 weeks: 7/7 (100%) 8 weeks: 7/7 (100%) Complete*: 5/7 (71%) *12 months: no recurrence in patients with complete resolution of SRF in patients worsening of SRF in patients	Not shown	2 weeks: all patients showed improvement 12 months: no worsening of the BCVA Change: $+0.19 \log MAR$ Significant increase of BCVA after 12 months ($p < 0.05$)	No laser lesions were visible via funduscopic examination and on FA	_
hen et al. [29]	Minimum 6 months (9.5 ± 2.6 months)	FFU response: Group 1: 6/6 (100%) Group 2: 8/9 (89%) Group 3: 5/11(46%) All eyes: 19/26 (73%) FFU complete: Group 1: 6/6 (100%) Group 2: 8/9 (89%) Group 3: 5/11 (46%) All eyes: 19/26 (73%)	Group 1: BL: 339 ± 67 μm FFU: 136 ± 26 μm Group 2: BL: 342 ± 84 μm FFU: 139 ± 34 μm Group 3: BL: 340 ± 121 μm FFU: 192 ± 103 μm FFU: 192 ± 103 μm Significant CRT decrease in all patients (<i>p</i> < 0.001)	Group 1: BL: 0.18 \pm 0.08 logMAR FFU: 0.00 \pm 0.00 logMAR Group 2: BL: 0.38 \pm 0.19 logMAR FFU: 0.07 \pm 0.06 logMAR FFU: 0.07 \pm 0.06 logMAR Group 3: BL: 0.41 \pm 0.28 logMAR FFU: 0.24 \pm 0.22 logMAR FFU: 0.24 \pm 0.22 logMAR FFU: 0.24 \pm 0.22 logMAR	No patients developed laser-related scotoma	
anzetta et al. [30]	3–36 months (mean 14 months)	Response: 1 month: 16/24 (67%) FFU: 18/24 (75%) Complete: 1 month: 9/24 (38%) FFU: 17/24 (71%)	BL: 328 μm (range 162–720 μm) 1 month: 197 μm (range 93–403 μm) FFU: 168 μm (range 107–340 μm) Significant CRT decrease at 1 month (p = 0.0003) and FFU (p < 0.0001)	BL: 20/32 Snellen 1 month: 20/25 Snellen FFU: 20/25 Snellen No significant increase in BCVA at 1 month ($p = 0.64$) or FFU ($p = 0.062$)	-5/24 eyes showed RPE changes at the site of SML spots No complications	1-5

Table 1	continued					
Authors	FU	Treatment response	Central retinal thickness	Best corrected visual acuity	Safety	Laser sessions
Gupta et al. [31]	Minimum 6 months	FU response: 5/5 (100%) FU complete: 4/5 (80%)	Not shown	Improvement in BCVA in all patients	No complications mentioned	1-2
Koss et al.	10 months	FU response: not shown	SML:	SML:	No ocular adverse events, i.e., intraocular inflammation.	1-3
(132]		FU complete: not shown	BL: 419 ± 59 μm	BL: $45.4 \pm 7.2 \text{ ETDRS}$	bleeding, or IOP rise, were	
,		Leakage activity in FA	6 weeks: $387 \pm 94 \mu m$	6 weeks: 47.8 ± 6.8 ETDRS	observed	
		10 months:	6 months: $329 \pm 69 \ \mu m$	6 months: $50.5 \pm 7.3 \text{ ETDRS}$		
		SML: 2/16 (12.5%)	10 months: $325 \pm 93 \ \mu m$	10 months: $51.6 \pm 7.0 \text{ ETDRS}$		
		BCZ: 6/10 (60%)	BCZ:	BCZ:		
		Observation: 24/26 (92%)	BL: $393 \pm 84 \mu m$	BL: 44.1 ± 10.8 ETDRS		
		SML leads to significantly more leakage activity	6 weeks: $355 \pm 114 \ \mu m$	6 weeks: 41.9 ± 11.3 ETDRS		
		reduction than BCT	6 months: $334 \pm 59 \ \mu m$	6 months: $42.4 \pm 13.6 \text{ ETDRS}$		
		(p = 0.0239) and	10 months: 355 ± 73 μm	10 months: $43.5 \pm 14.5 \text{ ETDRS}$		
		observation ($p = 0.0034$)	Observation:	Observation:		
			BL: $388 \pm 59 \ \mu m$	BL: $46.4 \pm 6.1 \text{ ETDRS}$		
			6 weeks: $396 \pm 57 \mu m$	6 weeks: $46.3 \pm 6.9 \text{ ETDRS}$		
			6 months: $388 \pm 63 \ \mu m$	6 months: 44.9 ± 5.1 ETDRS		
			10 months: $415 \pm 53 \ \mu m$	10 months: $44.3 \pm 5.2 \text{ ETDRS}$		
			Significant decrease in CRT at $(p = 0.0098)$ but not after BCZ or observation	SML better than BCZ ($p = 0.000047$) and observation ($p = 0.0054$) at 10 months		
Roisman	Minimum	Not shown	SML:	SML:	No laser scars observed at	1–2
et al.	6 months		BL: $420 \pm 112 \ \mu m$	BL: 35.4 ± 11.6 ETDRS	funduscopic examination or on FA	
			1 month: $307 \pm 55 \ \mu m$	1 month: 44.4 ± 8.1 ETDRS		
			3 months: $265 \pm 98 \ \mu m$	3 months: $47.9 \pm 8.0 \text{ ETDRS}$		
			SHAM:	SHAM		
			BL: $350 \pm 61 \ \mu m$	BL: $26.6 \pm 6.8 \text{ ETDRS}$		
			1 month: $351 \pm 94 \ \mu m$	1 month: $26.8 \pm 7.6 \text{ ETDRS}$		
			3 months: $290 \pm 78 \ \mu m$	3 months: $25.6 \pm 8.9 \text{ ETDRS}$		
			No significant decrease in CRT at 3 months after SML ($p = 0.091$) or SHAM treatment ($p = 0.225$)	Significant BCVA increase at 3 months after SML ($p = 0.008$) but not after SHAM treatment ($p = 0.498$)		

ד אחזר ד						
Authors	FU	Treatment response	Central retinal thickness	Best corrected visual acuity	Safety	Laser sessions
Malik et al. [34]	Minimum 2 months (2–12 months)	FU response: 8/11 (72%) FU complete: not shown	BL: 414 ± 137 µm FFU: 316 ± 97 µm Significant CRT decrease after SML ($p = 0.0046$)	BL: 39.2 ± 15.1 ETDRS FFU: 45.5 ± 12 ETDRS	No evidence of RPE damage in FAF or in FA	1-2
Kretz et al. [35]	4 months	 4-month response (reduction of leakage activity): SML: 12/20 (60%) HdPDT: 16/24 (67%) Observation: 7/18 (38%) Significant reduction of leakage activity in both treatment groups compared to the control group 	Change BL/4 months: SML: —69.7 µm HdPDT: —109.8 µm Observation: —89 µm	Change BL/4 months: SML: +6.7 ETDRS HdPDT: +8.5 ETDRS Observation: +1.5 ETDRS	No evidence of secondary RPE damage in FAF after both treatments	1–3
Elhamid [36]	6 months	Response: 3 months: 15/15 (100%) Complete: 3 months: 11/15 (73%) 6 months: 13/15 (86%)	BL: $390 \pm 46 \ \mu m$ 6 months: $264 \pm 24 \ \mu m$ Significant CRT decrease after SML ($p < 0.05$)	BL: 0.67 ± 0.10 Snellen 6 months: 0.85 ± 0.10 Snellen Significant BCVA increase after SML ($p < 0.05$)	No sign of laser-induced lesions	1-2
Scholz et al. [37]	Minimum 6 weeks (mean 5 ± 3 months)	Response: 6 weeks: 24/38 (63%) 3 months: 20/23 (87%) 6 months: 11/14 (79%) FFU: 28/38 (74%) Complete: 6 weeks: 5/38 (13%) 3 months: 7/23 (30%) 6 months: 2/14 (14%) FFU: 9/38 (24%)	BL: $402 \pm 139 \ \mu m$ 6 weeks: $309 \pm 86 \ \mu m$ FFU: $287 \pm 75 \ \mu m$ Significant CRT decrease after SML ($p < 0.001$)	BL: 0.36 \pm 0.24 logMAR 6 weeks: 0.33 \pm 0.24 logMAR FFU: 0.30 \pm 0.25 logMAR Significant BCVA increase after SML (p = 0.039)	No laser burns were detected with any imaging modality	

T ADJC T						
Authors	FU	Treatment response	Central retinal thickness	Best corrected visual acuity	Safety	Laser sessions
Kim et al. [78]	Minimum 3 months	There were 2 patients who had recurrent CSC. One at 6 months, one at 10 months. One patient had persistent SRF for 3 months despite total of 4 laser sessions	BL: $349 \pm 53 \mu m$ 3 months: $251 \pm 29 \mu m$ FFU: $261 \pm 38 \mu m$ Significant CRT decrease at 3 months ($p = 0.009$) and FFU ($p = 0.009$)	BL: 0.21 \pm 0.21 logMAR 3 months: 0.06 \pm 0.09 logMAR FFU: 0.04 \pm 0.06 logMAR Significant BCVA increase at 3 months ($p = 0.020$) and FFU ($p = 0.012$)	No laser scar was detected in color fundus photographs, SDOCT, or near-infrared images	1-5
Gawęcki [39]	Not specified	Response: 0/1 Complete: 0/1	After 1st treatment: no change After 2nd treatment: "significant amount of SRF present in the macular area"	BL: 0.63 decimal FU 1st*: no change FU 2nd*: 0.32 decimal treatment*	FAF showed hyperfluorescent punctate areas referring to multispot SML pattern	7
Yadav et al. [40]	Minimum 4 weeks (4–19 weeks)	FU: Response: 15/15 (100%) Complete: 6/15 (40%)	CRT not shown SRF (high): BL: 232 μ m FU: 49 μ m Significant decrease in SRF (p < 0.001)	Change: 1 line BL: $20/40$ Snellen FU: $20/30$ Snellen Significant BCVA increase (p = 0.015)	No evidence of RPE or retinal damage on SDOCT, FA, or on FAF	Т
Breukink et al. [41]	8–118 weeks	After mean 8.7 weeks, (range: 4–18 weeks) Complete after: 1st HdPDT: 37/59 (63%) 2nd HdPDT: 7/19 (37%) 1st SML: 1/10 (10%)	Not shown	BL (all): 0.28 logMAR FFU (all): 0.16 logMAR No difference in cycs after HdPDT or SML		1–2 HdPDT 1 SML
Özmert et al. [42]	Minimum 12 months	SML: Response: 13/15 (87%) Complete: 12/15 (80%) HfPDT: Response: 14/18 (78%) Complete: 13/18 (72%)	SML: BL: 287.3 \pm 126 µm 12 months: 138.0 \pm 40 µm HfPDT: BL: 242.8 \pm 80 µm 12 months: 156.9 \pm 60 µm Significant CRT decrease after SML ($p = 0.003$), but not after hfPDT ($p = 0.098$)	SML: BL: 67.3 ± 14.2 ETDRS 12 months: 71.5 ± 21.4 ETDRS HfPDT: BL: 60.7 ± 16.3 ETDRS I2 months: 64.4 ± 24.9 ETDRS No significant increase in both groups SML: $p = 0.285$, hfPDT: $p = 0.440$	No visible retinal scarring	1-2

 Δ Adis

Table 1	continued					
Authors	FU	Treatment response	Central retinal thickness	Best corrected visual acuity	Safety	Laser sessions
Ambiya et al. [43]	6 months	Response: 1 month: 10/10 Complete: 1 month: 4/10 (40%) 3 month: 6/10 (60%) 6 months: 6/10 (60%)	BL: 298 \pm 129 µm 1 month: 200 \pm 72 µm 3 months: 179 \pm 53 µm 6 months: 215 \pm 90 µm Significant CRT decrease at 6 months ($p = 0.03$)	BL: $73.3 \pm 16.1 \text{ ETDRS}$ 1 month: $73.1 \pm 16.3 \text{ ETDRS}$ 3 months: $75.8 \pm 14.0 \text{ ETDRS}$ 6 month: $76.9 \pm 13.0 \text{ ETDRS}$ No significant increase in BCVA ($p = 0.59$)	No evidence of laser spots via funduscopic examination, on SDOCT, and on FAF No complications	1-2
Scholz ct al. [44]	6 weeks	SML 6 weeks: Response: $33/42$ (79%) Complete: $15/42$ (36%) HdPDT 6 weeks: Response: $34/58$ (59%) Complete: $12/58$ (21%) SML showed higher treatment response than HdPDT ($p = 0.036$)	SML: BL: 445 \pm 153 µm 6 weeks: 297 \pm 95 µm HdPDT: BL: 398 \pm 88 µm 6 weeks: 322 \pm 93 µm Significant decrease in both groups (SML: $p < 0.001$) hdPDT: $p < 0.001$) CRT decrease better after SML (p = 0.041)	SML: BL: 0.39 \pm 0.24 logMAR 6 weeks: 0.31 \pm 0.27 logMAR HdPDT: BL: 0.35 \pm 0.24 logMAR 6 weeks: 0.31 \pm 0.24 logMAR 5ignificant BCVA increase after SML Significant BCVA increase after SML ($p = 0.003$), but not after HdPDT ($p = 0.07$)	No laser spots detectable by funduscopic examination or on FA	-
<i>BCVA</i> best Diabetic R fluence phy pigment ep	t corrected vi etinopathy St otodynamic t sithelium, <i>SD</i>	sual acuity, <i>BCZ</i> bevacizu tudy Group letters, <i>FA</i> flu therapy, <i>ICG</i> indocyanin <i>OCT</i> spectral domain O	mab (intravitreal), <i>BL</i> baseline, orescein angiography, <i>FAF</i> fund green, <i>IOP</i> intraocular pressure CT, <i>SML</i> subthreshold micropi	<i>CRT</i> central retinal thickness, <i>CSC</i> central serous c us autofluorescence, <i>FU</i> follow-up, <i>FFU</i> final follow <i>z</i> , <i>logMAR</i> logarithm of the minimum angle of res ulse laser, <i>SRF</i> subretinal fluid, Ø spot size	horioretinopathy, <i>DC</i> duty cycle, <i>ETDRS</i> Early -up, <i>HdPDT</i> half dose photodynamic therapy, <i>I</i> olution, <i>OCT</i> optical coherence tomography, <i>I</i>	Treatment <i>HPDT</i> half <i>RPE</i> retinal

Authors	Year	Eyes	Inclusion criteria	Laser type and parameters	Study design
Fazel et al. [45]	2016	68 eyes	DME*	Quantel Medical	Prospective, single-blind, randomized
		SML: $n = 34$	CRT <450 µm	810 nm, Ø 50-100 µm, 0.1 s, power: adjusted	clinical trial
		CL: $n = 34$	Without PDR	Quantel Medical	
			Without previous IVT or any retinal	810 nm, Ø 75–125 µm,	
			laser	15% DC, 0.0003 s, power: 2× threshold	
Inagaki et al. [46]	2015	53 eyes	DME*, type II	Iris Medical IQ577	Prospective,
		810 nm: $n = 24$	with or without NPDR/PDR	577 nm, Ø 200 µm	non-randomized, interventional case
		577 nm: $n = 29$	No IVT or laser within the last 3 months	15% DC, 0.2 s, power: 2× threshold, (mean 204 mW)	series Additional micro-aneurysm
			Patients with isolated local FA dye were	Iris Medical	closure in both groups at BL
			excluded	OcuLight SLX, 810 nm, Ø 200 µm	
				15% DC, 0.2 s, power: 2× threshold, (mean 955 mW)	
Vujosevic et al. [47]	2015	53 eyes	DME* <400 μm , type I/II diabetes	Iris Medical IQ577	Prospective, masked, randomized,
		810 nm: $n = 27$ 577 nm: $n = 26$	No macular therapy, IVT, laser, ppV previously	577 nm, Ø 100 μm, 5% DC, 0.2 s, power: 250 mW, HD treatment Iris Medical	comparative pilot study
				OcuLight SLX,	
				810 nm, Ø 125 µm, 5% DC, 0.2 s, power: 750 mW, HD treatment	
Othman et al. [48]	2014	220 eyes	DME* without PDR and foveal	Iris Medical	Prospective, single-center,
		Group 1 Primary treatment (n = 187) Group 2 Secondary treatment	Group 1 without prior treatment, BCVA at least 20/80	OcuLight SLX 810 nm, Ø 75-125 µm, 15% DC, 0.3 s, power: 650-1000 mW confluent	interventional case series
		(n = 33)	Group 2 with prior CL, BCVA at least 20/200		

∆ Adis

Table 2 continue	g				
Authors	Year	Eyes	Inclusion criteria	Laser type and parameters	Study design
Venkatesh et al. [49]	2011	46 eyes	DME* without PDR	Iris Medical	Prospective, randomized
		SML: $n = 23$ CL: $n = 23$	No prior medical or laser treatment within the last 6 months	OcuLight SLX, 810 nm, Ø 125 µm, 10% DC, 2 s, power: 80-130 mW	interventional study
				Zeiss Visulas	
				Nd: YAG LC	
				532 nm, Ø 50-100 μm, 0.1 s, power: 90-180 mW	
Lavinsky et al. [50]	2011	123 eyes	DME* with CRT \geq 250 µm	Opto FastPulse	Prospective, randomized, controlled,
		ND-SLM: $n = 39$	No prior macular laser or IVT for DME	810 nm, Ø 125 µm, 15% DC, 0.3 s	double-masked clinical trial
		HD-SLM: $n = 42$	No panretinal laser within last 4 months	0.3 s, power: 1.2× threshold	
		CL: $n = 42$		ND-SML: 2 invisible burn widths apart	
				HD-SML: Confluent invisible burn	
				Iridex, Nd:YAG LC	
				532 nm, Ø 75 μm, 0.05–0.1 s, power: titration mETDRS grid	
Ohkoshi and Yamaguchi [51]	2010	43 eyes	DME* with CRT ≤600 µm without PDR Type II	Iris Medical OcuLight SLX 810 nm, Ø 200 µm, 15% DC, 0.2–0.3 s,	Prospective, nonrandomized interventional study
			Patients with isolated local FA dye were excluded	power: 520-100 mW confluent	
			No prior medical or laser treatment within last 6 months		
Nakamura et al. [52]	2010	28 eyes	DME*	Iris Medical	Prospective
			No prior laser or surgical therapy within last 6 months	Ocultight SLX 810 nm, Ø 200 µm, 15% DC, 0.2 s, power: titrated,	
				gru patterii was useu	

Authors Vuiosevic et al. [53]					
Vuiosevic et al. [53]	Year	Eyes	Inclusion criteria	Laser type and parameters	Study design
	2010	62 eyes SML: $n = 32$ CL: $n = 30$	DME*, type II No prior medical/laser/surgical treatment within last 6 months	Coherent Novus Omni laset, 514 nm, Ø 100 µm, 0.1 s, power: 80–100mW mETDRS grid CL Iris Medical OcuLight SLX 810 nm, Ø 125 µm 5% DC, 0.2 s, power: 750mW	Prospective, randomized clinical trial (retreatment after 3 months if: CMT 250 µm or CMT reduction 550% or BCVA decrease >5 ETDRS letters)
Figueira et al. [54]	2009	84 cyes SML: $n = 44$ CL: $n = 40$	Both cyes DME*, type II, <80 years without PDR No prior laser treatment	Iridex Oculite GLx argon green 514 nm, Ø 100–200 μm 0.1 s, power: titration Iris Medical OcuLight SLX 810 nm, Ø 125 μm 15% DC, 0.3 s, power: titration	Prospective, randomized, controlled, double- masked trial
Laursen et al. [55]	2004	23 cycs SML: $n = 12$ (Diffuse, $n = 6$; focal: $n = 6$) CL $n = 11$ (Diffuse, $n = 6$; focal, $n = 5$)	DME* without PDR Without prior LC Without retinal surgery	Iris Medical OcuLight SLX 810 nm, Ø 125 µm 5% DC, 0.1 s, power: titration Novus 200 argon green 514 nm, Ø 100 µm, 0.1 s, power: titration	Prospective, randomized
Authors	FU (m	onths) Central retinal thicknes	s Best corrected visual acuit	ity Safety	Additional treatments
Fazel et al. [45]	4	810 nm SML: BL: $373 \pm 56 \mu m$ 4 months: $344 \pm 60 \mu m$ 810 nm CL: BL: $355 \pm 53 \mu m$ 4 months: $350 \pm 54 \mu m$ SML superior to CL ($p = 0.001; 4 months$)	 810 nm SML: BL: 0.59 ± 0.3 logMAR 4 months: 0.52 ± 0.3 logM 810 nm CL: BL: 0.58 ± 0.3 logMAR 4 months: 0.60 ± 0.3 logM SML superior to CL (p = 0.015; 4 months) 	No laser scars after SML Laser scars after CL MAR MAR	Not mentioned

Authors	FU (months)	Central retinal thickness	Best corrected visual acuity	Safety	Additional treatments
Inagaki et al. [46]	12	810 nm:	810 nm:	No laser scars in either group	810 nm: 12.5% Re-SML,
		BL: $488 \pm 176 \mu m$	BL: $0.59 \pm 0.41 \log MAR$		4.2% IVT
		3 month: 404.5 μm	3 months: 0.57 logMAR		(bevacizumab)
		6 months: 394.4 µm	6 months: 0.53 logMAR		5-577 nm: 3.4% Re-SML
		12 months: 361.8 µm	12 months: 0.54 logMAR		
		577 nm:	577 nm:		
		BL: 417 ± 113 μm	BL: $0.31 \pm 0.31 \log MAR$		
		3 months: 345.8 µm	3 months: 0.32 logMAR		
		6 months: 340.6 µm	6 months: 0.32 logMAR		
		12 months: 335.2 µm	12 months: 0.28 logMAR		
		No significant difference	BCVA stable in both		
		between groups after 12 months	groups, intergroup differences were not evaluated		
Vujosevic et al. [47]	6	810 nm:	810 nm:	No laser scars or visible	810 nm: 85.2% Re-SML
		BL: $340 \pm 36 \mu m$	BL: 78.6 \pm 7.5 ETDRS	secondary effects of laser	5–577 nm: 88.5% Re-SML
		6 months: $335 \pm 55 \mu m$	3 months: $79.3 \pm 6.8 \text{ ETDRS}$	spots in citici group	
		577 nm:	6 months: $77.3 \pm 8.2 \text{ ETDRS}$		
		BL: $358 \pm 46 \mu m$	577 nm:		
		6 months: $340 \pm 56 \mu m$	BL: 79.7 ± 6.1 ETDRS		
		Significant decrease for 577 nm	3 months: 79.4 ± 7.6 ETDRS		
		group at 6 months ($p = 0.009$) and not for 810 nm ($b = 0.45$)	6 months: 78.7 ± 7.4 ETDRS		
		No significant difference between the groups at 6 months	No significant difference of BCVA between groups at 3 months $(p = 0.3)$ and at 6 months $(p = 0.62)$		

Authors	FU (months)	Central retinal thickness	Best corrected visual acuity	Safety	Additional treatments
Othman et al. [48]	12	810 nm: Primary treatment (1)	810 nm: primary treatment (1)	Laser marks seen as pigmentary	Group 1:
		BL: 353 ± 80 µm	BL: 0.21 logMAR	changes were noted 3.3% via	23% Re-SML (median 2 \times SML)
		4 months: $257 \pm 51 \mu\text{m}$	4 months: 0.15 logMAR	runduscopic examination and 5.7% via FA	11.7% IVT
		12 months: $215 \pm 27 \ \mu m$	12 months: 0.18 logMAR		(triamcinolone)
		810 nm: Secondary treatment (2)	810 nm: secondary treatment (2)		3.2% ppV
		BL: $429 \pm 69 \ \mu m$	BL: 0.50 logMAR		Group 2:
		4 months: $356 \pm 64 \ \mu m$	4 months: 0.44 logMAR		33% IVT
		12 months: $263 \pm 59 \ \mu m$	12 months: 0.46 logMAR		(triamcinolone)
		In both groups, CRT decrease was significant at 4 and 12 months $(p < 0.05)$	In group 1, $BCVA$ improved at 4 months ($p = 0.017$) and was stable at 12 months for 85% of the eyes		
			In group 2, no significant BCVA change was observed		
Venkatesh et al. [49]	6	810 nm SML:	810 nm SML:	In mfERG:	Not mentioned
		BL: $299 \pm 50 \mu m$	BL: $0.41 \pm 0.3 \log$ MAR	810 nm SML: 4/23 eyes	
		3 months: $287 \pm 53 \ \mu m$	3 months: $0.41 \pm 0.3 \log$ MAR	with focal void regions	
		6 months: $275 \pm 63 \mu m$	6 months: $0.43 \pm 0.3 \log MAR$	532 nm YAG-CL: 18/23 evec with focal void regions	
		532 nm YAG CL:	532 nm YAG CL:	ches with total total tegrans	
		BL: $313 \pm 47 \mu m$	BL: $0.33 \pm 0.2 \log MAR$		
		3 months: $296 \pm 34 \ \mu m$	3 months: $0.36 \pm 0.2 \log MAR$		
		6 months: $287 \pm 33 \ \mu m$	6 months: $0.41 \pm 0.3 \log MAR$		
		No difference between SML and CL (p = 0.064)	No difference between SML and CL ($p = 0.77$) for BCVA. Better preservation of retinal sensitivity in SML group		

 Δ Adis

Table 2 continu	red				
Authors	FU (months)	Central retinal thickness	Best corrected visual acuity	Safety	Additional treatments
Lavinsky et al. [50]	12	810 nm ND-SML:	810 nm ND-SML:	SML: No laser scars or visible laser	810 nm ND-SML:
		BL: 379 (279–619) µm	BL: 0.70 (0.4–1.3) logMAR	burns after SML, although some	21% re-SML (once)
		3 months: 332 (223–610) µm	3 months: 0.80 (0.4–1.3) logMAR	very light laser-muuced restous could be identified	77% Re-SML (twice)
		6 months: 316 (215–627) µm	6 months: 0.80 (0.4–1.3) logMAR	CL: laser scars after CL	810 nm HD-SML:
		12 months: 311 (207–599) µm	12 months: 0.80 (0.3–1.3) logMAR		38% Re-SML (once)
		810 nm HD-SML:	810 nm HD-SML:		13% Re-SML (twice)
		BL: 371 (297–879) µm	BL: 0.90 (0.3–1.3) logMAR		532 nm CL:
		3 months: 301 (203–698)μm	3 months: 0.70 (0.2–1.3) logMAR		32% Re-CL (once)
		6 months: 291 (201–577) µm	6 months: 0.60 (0.2–1.3 logMAR		24% Re-CL (twice)
		12 months: 226 (187–513) µm	12 months: 0.52 (0.2–1.3) logMAR		
		532 nm YAG mETDRS CL:	532 nm YAG mETDRS CL:		
		BL: 370 (269-710) µm	BL: 0.80 (0.3–1.3) logMAR		
		3 months: 306 (209–512) µm	3 months: 0.75 (0.3–1.3) logMAR		
		6 months: 290 (208–501) µm	6 months: 0.70 (0.2–1.3) logMAR		
		12 months: 249 (199–475) μm	12 months: 0.65 (0.3-1.3) logMAR		
		HD-SML, CL were superior to ND-SLM group $(p < 0.001)$	HD-SML with significant BCVA increase 12 months ($p = 0.009$),		
		No difference between HD-SDM and CL groups $(p = 0.75)$	ND-SML and CL group: No improvement		
Ohkoshi	12	810 nm SML:	810 nm SML:	No laser scars,	19% re-SML (once)
and Yamaguchi		BL: 342 ± 119 μm	BL: $0.12 \pm 0.2 \log MAR$	no evidence of loss reatment	7% 1× grid CL
		3 months: $301 \pm 124 \ \mu m$	3 months: $0.12 \pm 0.2 \log MAR$	After 1 year one	2% 1× CL of microaneurysm
		6 months: $292 \pm 122 \ \mu m$	6 months/12 months: N/A	patient showed	2% IVT
		12 months: 290 \pm 123 μ m	Stable BCVA until 12 months	pigmentary changes	4% ppV
		CRT reduction was significant at 3 months ($p = 0.05$) and stable afterwards			

Table 2 continu-	ed				
Authors	FU (months)	Central retinal thickness	Best corrected visual acuity	Safety	Additional treatments
Nakamura	3	810 nm SML, CFT changes:	810 nm SML	No laser scars,	Not mentioned
et al. [52]		BL: $481 \pm 110 \ \mu m$	BL: $0.47 \pm 0.2 \log MAR$	no evidence of	
		3 months: $388 \pm 127 \ \mu m$	3 months: $0.40 \pm 0.2 \log MAR$	lasci licalilicili	
		Significant CFT reduction at 3 months ($p = 0.004$)	Significant BCVA improve at 3 months $(p = 0.03)$		
Vujosevic et al. [53]	12	810 nm SML:	810 nm SML:	SML: No signs of laser treatment	Number of treatments:
		BL: 358 ± 94 μm	BL: $0.21 \pm 0.30 \log MAR$	via funduscopic examination	SML: 2.03 \pm 0.75
		3 months: $341 \pm 114 \ \mu m$	3 months: $0.23 \pm 0.29 \log MAR$	and OILTA	CL: 2.10 ± 1.0
		6 months: $346 \pm 113 \ \mu m$	6 months: $0.24 \pm 0.32 \log MAR$		
		12 months: $312 \pm 76 \mu m$	12 months: $0.24 \pm 0.25 \log$ MAR		
		514 nm argon CL:	514 nm argon CL:		
		BL: $378 \pm 95 \mu\text{m}$	BL: $0.29 \pm 0.30 \log MAR$		
		3 months: $338 \pm 72 \ \mu m$	3 months: $0.32 \pm 0.33 \log MAR$		
		6 months: $327 \pm 77 \ \mu m$	6 months: $0.29 \pm 0.27 \log MAR$		
		12 months: $310 \pm 87 \ \mu m$	12 months: $0.30 \pm 0.30 \log MAR$		
		No significant difference between CL and SML	No significant difference between CL and SML		
Figueira et al. [54]	12	810 nm SML:	810 nm SML:	SML: 13.9% of	Not mentioned
		BL: 249 ± 59 μm	BL: 78.4 ± 8.1 ETDRS	the treated eyes chowed locar corre	
		12 months: $291 \pm 104 \ \mu m$	12 months: 71.8 ETDRS	CI · 59% of the treated	
		514 nm Argon CL:	514 nm argon CL:	eyes showed laser scars	
		BL: $255 \pm 62 \ \mu m$	BL: 78.0 ± 7.8 ETDRS		
		12 months: $284 \pm 105 \ \mu m$	12 months: 70.70 ETDRS		
		No significant differences between CL and SML ($p = 0.81$)	No significant differences between CL and SML ($p = 0.88$)		

SIGINA	FU (months)	Central retinal thickness	Best corrected visual acuity	Safety	Additional treatments
Laursen et al. [55]	5-8	Focal LC/diffuse LC	BL BCVA cannot be extracted!	No laser complications	Not mentioned
		Central retinal thickness	810 nm SML focal LC $(n = 6)$	were observed in	
		810 nm SML focal LC ($n = 6$):	3 months: +2.8 ETDRS	squurg mou	
		BL: 275 µm	6 months: +3.5 ETDRS		
		3 months: 250 µm	810 nm SML diffuse LC $(n = 6)$		
		6 months: 256 µm	3 months: -0.8 ETDRS		
		810 nm SML diffuse LC: $(n = 6)$	6 months: -1.6 ETDRS		
		BL: 293 µm	514 nm Argon focal LC: $(n = 5)$		
		3 months: 318 µm	3 months: $+4.6$ ETDRS		
		6 months: 341 µm	6 m: +3.5 ETDRS		
		514 nm argon focal LC (n = 5)	514 nm argon diffuse LC ($n = 6$):		
		BL: 325 µm	3 months: -1.7 ETDRS		
		3 months: 338 µm	6 months: +0.6 ETDRS		
		6 months: 330 µm	No significant		
		514 nm argon diffuse LC ($n = 6$):	differences between groups		
		BL: 272 µm			
		3 months: 308 μm			
		6 months: 90 μm			
		In all patients with focal edema CRT decrease significant $(p = 0.02)$			

.5 angiography, *FU* follow-up, *HD-SLM* high density subthreshold micropulse laser, *logMAR* logarithm of the minimum angle of resolution, *IVT* intravitreal drug therapy, *mJERG* multifocal electrocetinography, *mETDRS* modified ETDRS (Early Treatment Diabetic Retinopathy Study Group) Grid, *ND-SLM* normal density subthreshold micropulse laser, *NdXAG* neodymium–yttrium–aluminum garnet laser, *PDR* proliferative diabetic retinopathy, *ppV* pars plana vitrectomy, *OCT* optical coherence tomography, *SML* subthreshold micropulse laser, *Ø* spot size + Clinically significant DME + Clinically significant DME

Authors	Year	Eyes	Inclusion criteria	Laser type and parameters	Study design
Parodi	2015	35 eyes	ME to due BRVO	Iris Medical	Prospective, randomized,
et al. [56]		Group 1:	$CFT>250~\mu m$	OcuLight SLX	interventional
		SML: $n = 18$ Group 2: IVT Bevacizumab (PRN after 3 initial injections) n = 17	Without non-perfusion ≥ 5 disc areas All eyes were previously treated with conventional grid laser	810 nm, Ø 125 μm, 15% DC, 0.3 s, power: titration	
Inagaki et al. [57]	2014	32 eyes Group 1: BCVA $\leq 20/40$ n = 15 Group 2: BCVA $\geq 20/40$ n = 17	ME due to BRVO (ischemic/ non-ischemic) CRT <600 μm No prior macular therapy (LC, IVT etc.) within last 6 months	Iris Medical OcuLight SLX, 810 nm, Ø 200 μm, 15% DC, 0.2 or 0.3 s, Power: 750–1500 mW (90%) for 0.2 s or 360–2000 mW (60%) for 0.3 s	Retrospective, single-center, nonrandomized, interventional case series
Parodi et al. [58]	2008	24 eyes Group 1: SML only n = 13 Group 2: SML + IVT Triamcinolone n = 11	ME due to BRVO CRT >212 μm No prior laser treatment Without non-perfusion ≥5 disc areas	Iris Medical OcuLight SLX, 810 nm Ø 125 μm 15% DC, 0.3 s Power: titration	Prospective randomized pilot clinical trial
Parodi et al. [59]	2006	36 eyes Group 1: SML grid n = 17 Group 2: Krypton grid n = 19	ME due to BRVO CRT >210 μm No prior laser treatment Without non-perfusion ≥5 disc areas	Iris Medical OcuLight SLX 810 nm Ø 125 μm, 10% DC, 0.2 s, power: titration Novus Omni Krypton Ø 100 μm, 0.1 s	Prospective, randomized clinical trial

Table 3 Overview of the studies investigating subthreshold micropulse laser treatment for macular edema after branch retinal vein occlusion

Table 3 continued

Authors	FU (months)	Central retinal thickness	Best corrected visual acuity	Safety	Additional treatments
Parodi et al.	12	SML group (CFT):	SML group:	No laser	Not mentioned
[56]		BL: 485.5 μm	BL: 0.92 logMAR	scars	
		3 months: 472.0 µm	3 months: 0.89 logMAR		
		6 months: 475.0 µm	6 months: 0.89 logMAR		
		9 months: 475.0 μm	9 months: 0.94 logMAR		
		12 months: 445.0 µm	12 months: 0.99 logMAR		
		IVT group (CFT):	IVT group:		
		BL: 484.2 μm	BL: 0.94 logMAR		
		3 months: 305.0 µm	3 months: 0.88 logMAR		
		6 months: 266.0 µm	6 months: 0.88 logMAR		
		9 months: 265.0 µm	9 months: 0.85 logMAR		
		12 months: 271.0 µm	12 months: 0.72 logMAR		
		IVT group significantly better $(p = 0.001)$	IVT group significantly better $(p = 0.0085)$		
Inagaki et al. [57]	12	Group 1: (BCVA ≤20/40 Snellen)	Group 1: (BCVA $\leq 20/40$ Snellen)	No laser scars	Group 1: n = 8 (53.3%)
		BL: 409.3 μm	BL: 0.59 logMAR		Group 2:
		1 month: 394.3 μm	1 month: 0.54 logMAR		n = 3 (17.6%)
		3 months: 371.3 µm	3 months: 0.54 logMAR		
		6 months: 313.5 µm	6 months: 0.58 logMAR		
		12 months: 303.5 µm	12 months: 0.51 logMAR		
		Group 2: (BCVA >20/40 Snellen)	Group 2: (BCVA >20/40 Snellen)		
		BL : 373.3 μm	BL: 0.13 logMAR		
		1 month: 353.5 μm	1 month: 0.09 logMAR		
		3 months: 313.1 µm	3 months: 0.13 logMAR		
		6 months: 294.1 µm	6 months: 0.09 logMAR		
		12 months: 320.1 µm	12 months: 0.12 logMAR		
		Significant CRT decrease at 3, 6,			
		and 12 months for both groups. No			
		significant difference between the			
		groups at any time point			

BRVO branch retinal vein occlusion, *BL* baseline, *CFT* central foveal thickness, *CRT* central retinal thickness, *DC* duty cycle, *FA* fluorescein angiography, *IVT* intravitreal drug therapy, *logMAR* logarithm of the minimum angle of resolution, *ME* macular edema, *PRN* pro re nata, *SML* subthreshold micropulse laser

Authors	FU (months)	Central retinal thickness	Best corrected visual acuity	Safety	Additional treatments
Parodi	12	SML only:	SML only:	No	Not
et al.		BL: 429 μm	BL: 0.76 logMAR	Laser	mentioned
[38]		3 months: 364 µm	3 month: 0.78 logMAR	scars	
		6 months: 320 µm	6 months: 0.78 logMAR		
		9 months: 290 μm	9 months: 0.73 logMAR		
		12 months: 278 µm	12 months: 0.65 logMAR		
		SML + IVT (triamcinolone):	SML + IVT (triamcinolone):		
		BL: 476 μm	BL: 0.67 logMAR		
		3 months: 269 µm	3 months: 0.50 logMAR		
		6 months: 276 µm	6 months: 0.45 logMAR		
		9 months: 260 µm	9 months: 0.36 logMAR		
		12 months: 283 µm	12 months: 0.35 logMAR		
		Combined SML + IVT showed better response at 3 months (p < 0.001). No difference between groups from 9th month on	Combined SML + IVT showed significant better response at 9th and 12th months ($p < 0.009$, p = 0.011, respectively)		
Parodi	24	SML grid:	SML grid:	No	Not
et al.		BL: 480 μm	BL: 0.70 logMAR	laser	mentioned
[,,,]		6 months: 457 µm	6 months: 0.70 logMAR	after	
		12 months: 217 µm	9 months: 0.55 logMAR	SML	
		18 months: 215 µm	12 months: 0.51 logMAR		
		24 months: 208 μm	24 months: 0.49 logMAR		
		Krypton grid:	Krypton grid:		
		BL: 454 μm	BL: 0.69 logMAR		
		6 months: 252 μm	6 months: 0.60 logMAR		
		12 months: 226 µm	9 months: 0.58 logMAR		
		18 months: 229 μm	12 months 0.57 logMAR		
		24 months: 217 μm	24 m: 0.56 logMAR		
		Krypton showed better response at 3 months and 6 months $(p < 0.001)$. SML showed better response from 12th month on $(p < 0.001)$	No statistical difference between groups		

	Treatment	Change in CRT (µm)	Change in BCVA (ETDRS letters)
CSC	SML	-131 (range -69.7 to -204) ^a	$6.34 \text{ (range } -15 \text{ to } 20)^{d}$
	PDT	-85 (range -76 to -109.8) ^b	3.87 (range 2 to 8.5) ^b
	Observation	-25 (range 26 to -89) ^c	$0.67 \text{ (range } -2.1 \text{ to } 2.5)^{c}$
DME	SML	-74.9 (range -138 to 48) ^e	$1.26 \text{ (range } -6.6 \text{ to } 19)^{e}$
	Conventional laser	-43.6 (range -145 to 28.7) ^f	-0.29 (range -7.3 to 7.5) ^f
BRVO	SML	-122.59 (range -272 to -40.5) ^g	2.98 (range -3.5 to 9.5) ^g

Table 4 Treatment outcome after SML, PDT, observation and conventional laser for CSC, DME, and BRVO

CSC central serous chorioretinopathy, DME diabetic macular edema, BRVO branch retinal vein occlusion, BCVA best corrected visual acuity, CRT central retinal thickness, ETDRS Early Treatment Diabetic Retinopathy Study Group letters, PDT photodynamic therapy, SML subthreshold micropulse laser

^a 199 patients from 11 studies, 7 studies excluded from the calculations, one due to prior PDT treatment [37], six due to absence of information about the CRT

- ^b 100 patients from 3 studies
- ^c 49 patients from 3 studies

 d 216 patients from 14 studies, two studies excluded due to prior PDT [37, 41], two due to absence of information about the concrete BCVA [28, 31]

- ^e 613 patients from 11 studies
- ^e 195 patients from 7 studies

^f 80 patients from 3 studies, one study excluded from the calculation due to prior conventional laser treatment [56]

OCT (SDOCT). A complete resolution of SRF in SDOCT was defined as a complete treatment response. Two studies measured the leakage activity in FA as a parameter for treatment response [32, 35]. For simplicity reasons we do not distinguish between the different definitions for treatment response in our calculations. Few studies did not mention the amount of patients with treatment response. If we were able to work out the treatment response from the data shown in the paper, we quote the response; otherwise the studies were excluded from the calculations [33, 38]. One case report was excluded from the calculation because of prior bevacizumab treatment [39], and two studies were excluded since they included patients with prior PDT [37, 41]. Few studies mentioned only the response or the complete response, and those studies were included in the calculations.

We included 191 patients from 12 studies for the calculations of the treatment response and 176 patients from 11 studies for the complete response. A total of 156 (79.6%) of the 191 patients showed a treatment response at the last mentioned follow-up: 112 (63.6%) of the 176 patients had a complete resolution of SRF. Only two studies showed data concerning the improvement rate in an untreated control group: a complete resolution of SRF was seen in 2 (8%) out of 26 eyes at the last follow-up and a reduction in SRF in 7 (39%) out of 18 eyes.

Four studies had a control group consisting of patients receiving PDT treatment (half dose PDT in three studies and half fluence PDT in one). The treatment response could be calculated from 100 patients in three studies and the complete treatment response from 135 patients in three studies. A total of 64 (64%) of the 100 patients responded to PDT and 62 (46%) of 135 patients showed complete response.

Safety

The majority of studies described no visible retinal changes after the micropulse laser treatment. In six patients from two studies [30, 39] pigmentary changes at the level of the RPE were seen after SML but without any visual implications for the patients. Complications like scar

formation, visible laser burns, or CNV did not occur.

DIABETIC MACULAR EDEMA (DME)

DME is a frequent complication of diabetic retinopathy (DR) and the most common cause of visual impairment in patients with DR [5]. Since the ETDRS trial [1, 73] showed that laser photocoagulation reduced the risk of moderate visual loss by 50% in eyes with clinically significant macular edema, laser photocoagulation became the standard therapy for DME for many vears. Depending on the kind of edema, the treatment pattern can be selected: a focal photocoagulation for localized areas of leakage and a grid pattern for a diffuse macular edema. Continuous-wave photocoagulation comes with potential side effects like epiretinal fibrosis, CNV, and enlargement of laser scars [7, 8, 74]. Table 3 shows only the prospective studies investigating micropulse laser treatment for diabetic macular edema. A total of 613 patients from 11 studies were included in the calculations. The inclusion and exclusion criteria varied between studies; some did not allow prior treatment at all, most of them only excluded patients with treatment in the prior 3-6 months. All listed studies were included in the calculations for change in CRT and BCVA. Seven studies had a control group consisting of 195 patients treated with conventional laser. The same calculations were performed for those studies.

Table 4 displays the treatment outcome after SML and conventional laser for DME.

Safety

In the majority of studies no laser scars occurred after SML. Four studies reported scar formation or pigmentary changes in a small amount of eyes after SML treatment [48, 50, 51, 54]. Retinal changes were only observed in eyes treated with duty cycles of 15%; lower duty cycles did not lead to scar formation in the listed studies.

Venkatesh [49] et al. reported focal void regions in multifocal electroretinogram in 4 out of 23 eyes after SML treatment with 10% duty cycle compared to 18 out of 23 eyes after conventional laser.

MACULAR EDEMA DUE TO RETINAL VEIN OCCLUSION (RVO)

Macular edema is a common complication of branch RVO (BRVO) [75]. Grid laser photocoagulation reduces the visual acuity loss after BRVO with macular edema [75]. Parodi et al. [59] reported a similar outcome in visual acuity improvement and resolution of macular edema after SML treatment compared to conventional laser, but without retinal changes after SML. Table 3 summarizes studies investigating SML treatment for macular edema after BRVO. In total 80 patients from three studies could be included in the calculations, and one study was excluded because of prior conventional laser treatment [56]. As a result of the small number of studies and the variety in control groups (bevacizumab, SML + triamcinolone, conventional laser), the control groups were not separately analyzed. Only one study [48] had a control group where patients were treated with anti-VEGF agents, the current standard therapy for macular edema due to BRVO.

Table 4 presents the treatment outcome after SML for macular edema after BRVO.

Safety

No study described complications like scar formation, visible laser burns, or CNV.

PROBLEMS AND CHALLENGES OF SML TREATMENT

Although the majority of the studies showed some efficacy of the SML treatment for CSC, DME, or BRVO, the treatment parameter differed significantly between the individual studies. No study compared the outcome of SML with different treatment parameters like higher or lower duty cycle. Concerning the treatment power, most authors titrated the power individually for each patient, but the

path was not consistent. The titration is probably the most challenging part of the SML treatment. Since the laser surgeon did not see an effect of the treatment, there is a high risk of undertreatment and treatment failure accordingly. A solution to this problem could be to use fixed laser parameters with the same power for all patients. But so far there is not enough published data to choose the best treatment power and to evaluate the safety and the treatment success of subthreshold micropulse treatment with fixed parameters. For the future, controlled trials comparing treatment outcome and safety of individual titrated SML treatment and SML treatment with fixed parameters would be desirable. Those studies should include safety follow-up with multimodal imaging including autofluorescence, OCT, and fundus photographies as well functional follow-up with microperimetry or multifocal electroretinogram.

CONCLUSION

For CSC, the presented studies showed a higher efficacy of the micropulse laser treatment for both morphology and visual function in comparison to no treatment or PDT. The decrease in CRT was highest after SML (-131μ m), followed by PDT (-85μ m) and the no-treatment group (-25μ m). Moreover, 64% of patients showed no SRF after SML compared to 46% after PDT and 8% after observation.

No study reported any complications after up to five SML treatment sessions, so even an early treatment could be considered for potentially better results. Chen et al. [29] showed that the SML treatment outcome was best in patients with source leakage without RPE atrophy. The investigated literature did not allow an evaluation of the best treatment parameter or the best laser wavelength.

Regarding the treatment of DME, the investigated studies showed efficacy also in morphology and function. The decrease in CRT and increase in BCVA after SML ($-74.9 \mu m$ and +1.26 ETDRS letters) was better than after conventional laser ($-43.6 \mu m$ and -0.29 ETDRS letters), but no study had a control group in

which patients were treated with anti-VEGF agents. After the RISE and RIDE studies [76] and the approval of ranibizumab for the treatment of DME, anti-VEGF agents became the standard treatment for DME. Without any trial, comparing SML treatment with anti-VEGF agents. we do not know when SML treatment could be an alternative first-line treatment for DME. Nevertheless, SML might be an option in patients not responding sufficiently to, or who are not able to follow an anti-VEGF therapy (e.g., high costs, compliance problems due to frequent visits for the injections and ophthalmological controls). Chen et al. [77] had come to a similar result in their meta-analysis of randomized controlled trials comparing subthreshold micropulse diode laser photocoagulation and conventional laser. They reported a significantly better visual acuity and a similar decrease in CRT after SML compared to conventional laser. They underline the advantage of the SML treatment in terms of the affordability compared to the cost-intensive anti-VEGF therapy.

On the subject of macular edema after BRVO, SML treatment shows some efficacy as well. But in comparison to the current standard treatment, intravitreal anti-VEGF, SML was inferior to intravitreal bevacizumab [56]. However, similar to DME, SML treatment could be an option for adjunct treatment for selected patients.

In summary, in all three indications micropulse laser is an efficacious and safe treatment option. Owing to its higher efficacy and the excellent safety profile compared to PDT, it could become the first-line therapy in CSC, potentially even in acute cases.

ACKNOWLEDGEMENTS

No funding or sponsorship was received for this study or publication of this article. All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this manuscript, take responsibility for the integrity of the work as a whole, and have given final approval for the version to be published. *Disclosures.* Paula Scholz received a speaker honorarium from Quantel Medical. Sascha Fauser received a speaker honorarium from Quantel Medical. Lebriz Altay has nothing to disclose.

Compliance With Ethics Guidelines. This article is based on previously conducted studies and does not involve any new studies of human or animal subjects performed by any of the authors.

Data Availability. The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Open Access. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/ by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

REFERENCES

- 1. Early Treatment Diabetic Retinopathy Study Research Group. Photocoagulation for diabetic macular edema. Early treatment diabetic retinopathy study report number 1. Arch Ophthalmol. 1985;103:1796–806.
- 2. Robertson DM, Ilstrup D. Direct, indirect, and sham laser photocoagulation in the management of central serous chorioretinopathy. Am J Ophthalmol. 1983;95(4):457–66.
- 3. Ficker L, Vafidis G, While A, Leaver P. Long-term follow-up of a prospective trial of argon laser photocoagulation in the treatment of central serous retinopathy. Br J Ophthalmol. 1988;72(11):829–34.
- 4. The Branch Vein Occlusion Study Group. Argon laser photocoagulation for macular edema in branch vein occlusion. Am J Ophthalmol. 1984;98(3):271–82.
- 5. The Diabetic Retinopathy Study Research Group. Preliminary report on effects of photocoagulation therapy. Am J Ophthalmol. 1976;81(4):383–96.

- Ulbig MR, Arden GB, Hamilton AP. Color contrast sensitivity and pattern electroretinographic findings after diode and argon laser photocoagulation in diabetic retinopathy. Am J Ophthalmol. 1994;117(5):583–8.
- Lewen RM. Subretinal neovascularization complicating laser photocoagulation of diabetic maculopathy. Ophthal Surg Lasers Imaging Retina. 1988;19(10):734–7.
- Smith CW, Guyer DR, D'Amico DJ. Subretinal fibrosis after laser photocoagulation for diabetic macular edema. Am J Ophthalmol. 1992;113(6):652–6.
- Seiberth V, Alexandridis E, Feng W. Function of the diabetic retina after panretinal argon laser coagulation. Graefes Arch Clin Exp Ophthalmol. 1987;225(6):385–90.
- Pearson A, Tanner V, Keightley S, Casswell A. What effect does laser photocoagulation have on driving visual fields in diabetics? Eye (Lond). 1998;12(1):64–8.
- 11. Roider J. Laser treatment of retinal diseases by subthreshold laser effects. Semin Ophthalmol. 2009;14(19–26).
- 12. Bresnick GH. Diabetic maculopathy: a critical review highlighting diffuse macular edema. Oph-thalmology. 1983;90(11):1301–17.
- 13. Wilson AS, Hobbs BG, Shen W-Y, et al. Argon laser photocoagulation-induced modification of gene expression in the retina. Invest Ophthalmol Vis Sci. 2003;44(4):1426–34.
- 14. Dorin G. Evolution of retinal laser therapy: minimum intensity photocoagulation (MIP). Can the laser heal the retina without harming it? Semin Ophthalmol. 2004;19(1–2):62–8.
- 15. Inagaki K, Shuo T, Katakura K, Ebihara N, Murakami A, Ohkoshi K. Sublethal photothermal stimulation with a micropulse laser induces heat shock protein expression in ARPE-19 cells. J Ophthalmol. 2015;2015:729792.
- 16. Lanzetta P, Dorin G, Pirracchio A, Bandello F. Theoretical bases of non-ophthalmoscopically visible endpoint photocoagulation. Semin Ophthalmol. 2001;16(1):8–11.
- 17. Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science. 1983;220(4596):524–7.
- 18. Roider J, Hillenkamp F, Flotte T, Birngruber R. Microphotocoagulation: selective effects of

repetitive short laser pulses. Proc Natl Acad Sci. 1993;90(18):8643-7.

- 19. Roider J, Michaud NA, Flotte TJ, Birngruber R. Response of the retinal pigment epithelium to selective photocoagulation. Arch Ophthalmol. 1992;110(12):1786–92.
- 20. Dorin G, editor. Subthreshold and micropulse diode laser photocoagulation. Seminars in Oph-thalmology. 2003;18(3):147–53.
- 21. McHugh J, Marshall J, Ffytche T, Hamilton A, Raven A. Macular photocagulation of human retina with a diode laser: a comparative histopathological study. Lasers Light Ophthalmol. 1990;3(1):11–28.
- 22. Vogel A, Birngruber R. Temperature profiles in human retina and choroid during laser coagulation with different wavelengths ranging from 514 to 810 nm. Lasers Light Ophthalmol. 1992;5(1):9–16.
- 23. Peyman GA, Raichand M, Zeimer RC. Ocular effects of various laser wavelengths. Surv Ophthalmol. 1984;28(5):391–404.
- 24. Friberg TR, Karatza EC. The treatment of macular disease using a micropulsed and continuous wave 810-nm diode laser. Ophthalmology. 1997;104(12):2030–8.
- 25. Friberg TR, Venkatesh MdS. Alteration of pulse configuration affects the pain response during diode laser photocoagulation. Lasers Surg Med. 1995;16(4):380–3.
- 26. Mainster MA. Wavelength selection in macular photocoagulation: tissue optics, thermal effects, and laser systems. Ophthalmology. 1986;93(7):952–8.
- 27. Ricci F, Missiroli F, Cerulli L. Indocyanine green dye-enhanced micropulsed diode laser: a novel approach to subthreshold RPE treatment in a case of central serous chorioretinopathy. Eur J Ophthalmol. 2004;14(1):74–82.
- 28. Ricci F, Missiroli F, Regine F, Grossi M, Dorin G. Indocyanine green enhanced subthreshold diodelaser micropulse photocoagulation treatment of chronic central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. 2009;247(5):597–607.
- 29. Chen S-N, Hwang J-F, Tseng L-F, Lin C-J. Subthreshold diode micropulse photocoagulation for the treatment of chronic central serous chorioretinopathy with juxtafoveal leakage. Ophthalmology. 2008;115(12):2229–34.
- 30. Lanzetta P, Furlan F, Morgante L, Veritti D, Bandello F. Nonvisible subthreshold micropulse diode laser (810 nm) treatment of central serous

chorioretinopathy. A pilot study. Eur J Ophthalmol. 2007;18(6):934–40.

- 31. Gupta B, Elagouz M, McHugh D, Chong V, Sivaprasad S. Micropulse diode laser photocoagulation for central serous chorio-retinopathy. Clin Exp Ophthalmol. 2009;37(8):801–5.
- 32. Koss M, Beger I, Koch F. Subthreshold diode laser micropulse photocoagulation versus intravitreal injections of bevacizumab in the treatment of central serous chorioretinopathy. Eye (Lond). 2011;26(2):307–14.
- 33. Roisman L, Magalhães FP, Lavinsky D, et al. Micropulse diode laser treatment for chronic central serous chorioretinopathy: a randomized pilot trial. Ophthalmic Surg Lasers Imaging Retina. 2013;44(5):465–70.
- 34. Malik KJ, Sampat KM, Mansouri A, Steiner JN, Glaser BM. Low-intensity/high-density subthreshold micropulse diode laser for chronic central serous chorioretinopathy. Retina. 2015;35(3):532–6.
- 35. Kretz FT, Beger I, Koch F, Nowomiejska K, Auffarth GU, Koss MJ. Randomized clinical trial to compare micropulse photocoagulation versus half-dose verteporfin photodynamic therapy in the treatment of central serous chorioretinopathy. Ophthalmic Surg Lasers Imaging Retina. 2015;46(8):837–43.
- 36. Elhamid AHA. Subthreshold micropulse yellow laser treatment for nonresolving central serous chorioretinopathy. Clin Ophthalmol. 2015;9:2277.
- 37. Scholz P, Ersoy L, Boon CJ, Fauser S. Subthreshold micropulse laser (577 nm) treatment in chronic central serous chorioretinopathy. Ophthalmologica. 2015;234(4):189–94.
- Kim JY, Park HS, Kim SY. Short-term efficacy of subthreshold micropulse yellow laser (577-nm) photocoagulation for chronic central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. 2015;253(12):2129–35.
- 39. Gawęcki M. Increase in central retinal edema after subthreshold diode micropulse laser treatment of chronic central serous chorioretinopathy. Case Rep Ophthalmol Med. 2015;2015:813414.
- 40. Yadav N, Jayadev C, Mohan A, et al. Subthreshold micropulse yellow laser (577 nm) in chronic central serous chorioretinopathy: safety profile and treatment outcome. Eye (Lond). 2015;29(2):258–64.
- 41. Breukink MB, Mohr JK, Ossewaarde-van Norel A, et al. Half-dose photodynamic therapy followed by diode micropulse laser therapy as treatment for chronic central serous chorioretinopathy: evaluation of a prospective treatment protocol. Acta Ophthalmol. 2016;94(2):187–97.

- 42. Özmert E, Demirel S, Yanık Ö, Batıoğlu F. Low-fluence photodynamic therapy versus subthreshold micropulse yellow wavelength laser in the treatment of chronic central serous chorioretinopathy. J Ophthalmol. 2016;2016:3513794.
- 43. Ambiya V, Goud A, Mathai A, Rani PK, Chhablani J. Microsecond yellow laser for subfoveal leaks in central serous chorioretinopathy. Clin Ophthalmol (Auckland, NZ). 2016;10:1513.
- 44. Scholz P, Altay L, Fauser S. Comparison of subthreshold micropulse laser (577 nm) treatment and half-dose photodynamic therapy in patients with chronic central serous chorioretinopathy. Eye (Lond). 2016;30(10):1371–7.
- 45. Fazel F, Bagheri M, Golabchi K, Ardakani HJ. Comparison of subthreshold diode laser micropulse therapy versus conventional photocoagulation laser therapy as primary treatment of diabetic macular edema. J Curr Ophthalmol. 2016;28(4):206–11.
- 46. Inagaki K, Ohkoshi K, Ohde S, Deshpande GA, Ebihara N, Murakami A. Comparative efficacy of pure yellow (577-nm) and 810-nm subthreshold micropulse laser photocoagulation combined with yellow (561–577-nm) direct photocoagulation for diabetic macular edema. Jpn J Ophthalmol. 2015;59(1):21–8.
- 47. Vujosevic S, Martini F, Longhin E, Convento E, Cavarzeran F, Midena E. Subthreshold micropulse yellow laser versus subthreshold micropulse infrared laser in center-involving diabetic macular edema: morphologic and functional safety. Retina. 2015;35(8):1594–603.
- 48. Othman IS, Eissa SA, Kotb MS, Sadek SH. Subthreshold diode-laser micropulse photocoagulation as a primary and secondary line of treatment in management of diabetic macular edema. Clin Ophthalmol. 2014;8:653.
- 49. Venkatesh P, Ramanjulu R, Azad R, Vohra R, Garg S. Subthreshold micropulse diode laser and double frequency neodymium:YAG laser in treatment of diabetic macular edema: a prospective, randomized study using multifocal electroretinography. Photomed Laser Surg. 2011;29(11):727–33.
- 50. Lavinsky D, Cardillo JA, Melo LA, Dare A, Farah ME, Belfort R. Randomized clinical trial evaluating mETDRS versus normal or high-density micropulse photocoagulation for diabetic macular edema. Invest Ophthalmol Vis Sci. 2011;52(7):4314–23.
- 51. Ohkoshi K, Yamaguchi T. Subthreshold micropulse diode laser photocoagulation for diabetic macular edema in Japanese patients. Am J Ophthalmol. 2010;149(1):133–9.

- 52. Nakamura Y, Mitamura Y, Ogata K, Arai M, Takatsuna Y, Yamamoto S. Functional and morphological changes of macula after subthreshold micropulse diode laser photocoagulation for diabetic macular oedema. Eye (Lond). 2010;24(5):784–8.
- Vujosevic S, Bottega E, Casciano M, Pilotto E, Convento E, Midena E. Microperimetry and fundus autofluorescence in diabetic macular edema: subthreshold micropulse diode laser versus modified early treatment diabetic retinopathy study laser photocoagulation. Retina. 2010;30(6): 908–16.
- 54. Figueira J, Khan J, Nunes S, et al. Prospective randomised controlled trial comparing sub-threshold micropulse diode laser photocoagulation and conventional green laser for clinically significant diabetic macular oedema. Br J Ophthalmol. 2009;93(10):1341–4.
- 55. Laursen M, Moeller F, Sander B, Sjoelie A. Subthreshold micropulse diode laser treatment in diabetic macular oedema. Br J Ophthalmol. 2004;88(9):1173–9.
- 56. Parodi MB, Iacono P, Bandello F. Subthreshold grid laser versus intravitreal bevacizumab as second-line therapy for macular edema in branch retinal vein occlusion recurring after conventional grid laser treatment. Graefes Arch Clin Exp Ophthalmol. 2015;253(10):1647–51.
- 57. Inagaki K, Ohkoshi K, Ohde S, Deshpande GA, Ebihara N, Murakami A. Subthreshold micropulse photocoagulation for persistent macular edema secondary to branch retinal vein occlusion including best-corrected visual acuity greater than 20/40. J Ophthalmol. 2014;2014:251257.
- Parodi MB, Iacono P, Ravalico G. Intravitreal triamcinolone acetonide combined with subthreshold grid laser treatment for macular oedema in branch retinal vein occlusion: a pilot study. Br J Ophthalmol. 2008;92(8):1046–50.
- 59. Parodi MB, Spasse S, Iacono P, Di Stefano G, Canziani T, Ravalico G. Subthreshold grid laser treatment of macular edema secondary to branch retinal vein occlusion with micropulse infrared (810 nanometer) diode laser. Ophthalmology. 2006;113(12):2237–42.
- 60. Gregori NZ, Feuer W, Rosenfeld PJ. Novel method for analyzing snellen visual acuity measurements. Retina. 2010;30(7):1046–50.
- 61. Gass J. Pathogenesis of disciform detachment of the neuroepithelium. II. Idiopathic central serous choroidopathy. Am J Ophthalmol. 1967;63:587–615.

- Gilbert CM, Owens SL, Smith PD, Fine SL. Long-term follow-up of central serous chorioretinopathy. Br J Ophthalmol. 1984;68(11):815–20.
- 63. Fok AC, Chan PP, Lam DS, Lai TY. Risk factors for recurrence of serous macular detachment in untreated patients with central serous chorioretinopathy. Ophthalmic Res. 2011;46(3):160–3.
- 64. Wang MS, Sander B, Larsen M. Retinal atrophy in idiopathic central serous chorioretinopathy. Am J Ophthalmol. 2002;133(6):787–93.
- 65. Schatz H, Yannuzzi LA, Gitter KA. Subretinal neovascularization following argon laser photocoagulation treatment for central serous chorioretinopathy: complication or misdiagnosis? Retina. 2012;32:OP-893–906.
- 66. Schatz H, Madeira D, McDonald HR, Johnson RN. Progressive enlargement of laser scars following grid laser photocoagulation for diffuse diabetic macular edema. Arch Ophthalmol. 1991;109(11):1549–51.
- 67. Khosla P, Rana S, Tewari H, Azad R, Talwar D. Evaluation of visual function following argon laser photocoagulation in central serous retinopathy. Ophthalmic Surg Lasers. 1997;28(8):693–7.
- 68. Piccolino FC, Eandi CM, Ventre L, de la Longrais RCR, Grignolo FM. Photodynamic therapy for chronic central serous chorioretinopathy. Retina. 2003;23(6):752–63.
- 69. Chan W, Lam D, Lai T, Tam B, Liu D, Chan C. Choroidal vascular remodelling in central serous chorioretinopathy after indocyanine green guided photodynamic therapy with verteporfin: a novel treatment at the primary disease level. Br J Ophthalmol. 2003;87(12):1453–8.

- 70. Colucciello M. Choroidal neovascularization complicating photodynamic therapy for central serous retinopathy. Retina. 2006;26(2):239–42.
- Lai TY, Chan W-M, Lam DS. Transient reduction in retinal function revealed by multifocal electroretinogram after photodynamic therapy. Am J Ophthalmol. 2004;137(5):826–33.
- 72. Bandello F, Lanzetta P, Furlan F, Polito A. Non visible subthreshold micropulse diode laser treatment of idiopathic central serous chorioretinopathy. A pilot study. Investig Ophtalmol Vis Sci. 2003;44(5):4858.
- 73. Early Treatment Diabetic Retinopathy Study Research Group. Early photocoagulation for diabetic retinopathy: ETDRS report number 9. Ophthalmology. 1991;98(5):766–85.
- 74. Morgan CM, Schatz H. Atrophic creep of the retinal pigment epithelium after focal macular photocoagulation. Ophthalmology. 1989;96(1):96–103.
- 75. Greer D, Constable I, Cooper R. Macular oedema and retinal branch vein occlusion. Aust J Opthalmol. 1980;8(3):207–9.
- 76. Nguyen QD, Brown DM, Marcus DM, et al. Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology. 2012;119(4):789–801.
- 77. Chen G, Tzekov R, Li W, Jiang F, Mao S, Tong Y. Subthreshold micropulse diode laser versus conventional laser photocoagulation for diabetic macular edema: a meta-analysis of randomized controlled trials. Retina. 2016;36(11):2059–65.