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Abstract
Biosemiotics to date has focused on the exchange of signals between organisms, in line
with bioacoustics; consideration of the wider acoustic environment as a semiotic
medium is under-developed. The nascent discipline of ecoacoustics, that investigates
the role of environmental sound in ecological processes and dynamics, fills this gap. In
this paper we introduce key ecoacoustic terminology and concepts in order to highlight
the value of ecoacoustics as a discipline in which to conceptualise and study intra- and
interspecies semiosis. We stress the inherently subjective nature of all sensory scapes
(vivo-, land-, vibro- and soundscapes) and propose that they should always bear an
organismic attribution. Key terms to describe the sources (geophony, biophony,
anthropophony, technophony) and scales (sonotopes, soundtopes, sonotones) of
soundscapes are described. We introduce epithets for soundscapes to point to the
degree to which the global environment is implicated in semiosis (latent, sensed and
interpreted soundscapes); terms for describing key ecological structures and processes
(acoustic community, acoustic habitat, ecoacoustic events) and examples of
ecoacoustic events (choruses and noise) are described. The acoustic eco-field is
recognized as the semiotic model that enables soniferous species to intercept core
resources like food, safety and roosting places. We note that whilst ecoacoustics to
date has focused on the critical task of the development of metrics for application in
conservation and biodiversity assessment, these can be enriched by advancing concep-
tual and theoretical foundations. Finally, the mutual value of integrating ecoacoustic
and biosemiotics perspectives is considered.
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Introduction

In recent decades sound has become recognized as a significant component of evolution-
ary ecospace (Hauser 1996; Kroodsma and Miller 1996) and core component of the
ecosystem functioning within the ecological sciences (e.g. Qi et al. 2008). Environmen-
tally concerned listening is not new, but previous treatments have tended to prioritize
either human or ecological perspectives which has precluded sensible conceptualization of
inter- and multispecies semiosis. The semiotic and ecological relevance of environmental
sound have long been discussed in music composition (Westerkamp 2002) and commu-
nication studies, but these had a strong anthropocentric bias (Truax 1999: 52). Similarly,
research on the effects of sounds on animal populations and communities dates back to the
beginning of the behavioural studies (e.g. Clark and Karr 1979) but was not integrated
with human study. The nascent field of soundscape ecology, defined by Pijanowski et al.
(2011a, b) as the study of the causes and consequences of sound across landscape
explicitly brought human-environment relations into focus on the landscape scale. More
recently still the study of the ecological role of sounds across species and levels of
ecological organization has coalesced in the discipline of ecoacoustics, defined by Sueur
and Farina (2015:2) “as a theoretical and applied discipline that studies sound along a
broad range of spatial and temporal scales in order to tackle biodiversity and other
ecological questions”. Ecoacoustics investigates the ecological relevance of acoustic
dynamics and patterns in the acoustic environment. Whereas bioacoustics focuses princi-
pally on the structure (anatomy) of sound as a biological signal that transfers information
between individuals (Fletcher 2007), ecoacoustics considers sound to be a component in
and an indicator of wider ecological processes and also investigates higher levels of
organization, from community, through population to landscape scales. These parallel
developments of interest in the dynamics and significance of the acoustic environment as
carriers of meaning across and between species and their cultures and ecologies is
testament to the relevance of environmental sound in contemporary environmental and
ecological study across disciplinary divides. In the light of current environmental and
existential crises, integrated approaches to the study of human-environment interactions
are critical. Acoustic environments support and are created through biosemiotic exchanges
between all species and their study holds promise in bridging species and disciplinary
divides (Eldridge et al. 2020), however we currently lack a vocabulary that resonates
across species and disciplines.

In every new discipline the development of concepts, language, methods, evidence
and theory take time to evolve and aggregate into an emergent, homogeneous disci-
plinary body of shared principles, knowledge, accepted experimental frameworks and
methods. In some sciences theory acted as forerunner: consider the ingenious and
outstanding contribution of Claude E. Shannon to information and communication
sciences (Shannon 1948; Shannon and Weaver 1949), Mandelbrot’s vision of fractal
mathematics (Mandelbrot 1983), or Laplace’s atmospheric resonance hypothesis that
has recently found support in observations of the space–time spectrum of the earth’s
atmospheric surface pressure (Sakazaki and Hamilton 2020). However, in ecoacoustics
theoretical principles remain scarce (Farina 2014; Farina and James 2016; Farina and
Gage 2017) comprising a handful of physiological, ecological and evolutionary hy-
potheses: the Morphological Adaptation Hypothesis (MAH), the Acoustic Adaptation
Hypothesis (AAH), or the Acoustic Niche Hypothesis (ANH).

142 Farina A. et al.



The MAH considers the role of the body size as a biological constraint of the
vocalization organs and their acoustic performance (Wallschläger 1980). The AAH refers
to the adaptation of sound emitted by species to environmental characteristics (Morton
1975; Marten and Marler 1977; Lemon et al. 1981). The ANH proposes partitioning
mechanisms with which species reduce the interspecific frequency overlapping (Krause
1993). However, the ANH is associated with pristine environments; we can question its
theoretical tenability in perturbed environments, due to land use change or climate change
which radically alter community composition, the latter causing shifts in acoustic phenol-
ogy, and for modifications of signal parameters as time pattern or frequency range (Sueur
et al. 2019). Ecoacoustic epistemology appears incomplete.

Ecoacoustic research to date has focused predominantly on the development of tools
for environmental monitoring, rather than theoretical and conceptual development and
explication (Sueur et al. 2008). Driven by the critical need for cost-effective conserva-
tion tools to face and mitigate environmental crises, coupled with the increasing
availability of low-cost (e.g. Hill et al. 2018), robust acoustic recording technology,
early ecoacoustic research has prioritised the development and validation of acoustic
metrics as instruments for evidence-based conservation and land management.
Ecoacoustic metrics provide statistical analyses of the distribution of sound energy
across time and/or frequency and have been shown to be cost-effective proxies for core
environmental characteristics such as biodiversity or habitat status. A significant
research effort has been expended on the development and validation of proxies for
biodiversity, or level of environmental integrity and degradation (Grant and Samways
2016; Harris et al. 2016; Krause and Farina 2016), and on environmental monitoring
and environmental quality assessment (Tucker et al. 2014). These developments in
computational ecoacoustics run in parallel with a body of research in computational
bioacoustics which focuses on automated species recognition (Sueur et al. 2008; Gage
and Axel 2013; Gasc et al. 2013a, b; Sueur et al. 2014). Many studies, some
hybridising bioacoustic and ecoacoustic approaches, focus on the impact of anthropo-
genic noise on the acoustic performances of individual species (Brumm and Todt 2003;
Brumm and Slabbekoorn 2005; Brumm and Slater 2006; Brumm 2010; Luther and
Gentry 2013) or on community dynamics (Gil et al. 2015). Other studies have
investigated the relationship between soniferous species and traditional biodiversity
metrics, in aquatic (Desjonquères et al. 2015; Harris et al. 2016) and terrestrial habitats
(Slabbekoorn 2004; Rappaport et al. 2020). At the same time, the monitoring of animal
diversity (Depraetere et al. 2012) and applications in restoration ecology using acoustic
indices is gaining popularity (Borker et al. 2019). As with much contemporary big data
science across -omics disciplines, this focus on data and correlation-seeking misses an
important step in traditional science: observation and theory building. The development
of effective tools requires a richer theoretical basis, which in turn demands a deep
revision and more precise specification of vocabulary.

Advancement of a unified epistemology has also been hampered by what we might
understand as a convergent evolution of core concepts across different disciplines,
resulting in some confusion in nomenclature, definitions, concepts and associations.
For instance, initial naming and semantic uncertainty between soundscape ecology
(Pijanowski et al. 2011a, b; Farina 2014) and ecoacoustics (Sueur and Farina 2015) has
not favoured a unique line of epistemological development. Similarly, the fact that
Acoustic Ecology (Schafer 1977; Wrightson 2000) was historically a humanistic
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endeavour which investigated the relationship between people and environmental
sounds, with little attention paid to the role of acoustics in “non-human” ecology, has
not encouraged integrated epistemological progress.

At the moment ecoacoustics has close relationships with other ecological disciplines
like landscape ecology (Farina 2021). However, we consider it important for future
research to reinforce the contacts with biosemiotics because sounds are such critical
vehicles in communication and semiosis. To pursue this goal it is important to create a
clear nomenclature in order to identify and investigate ecoacoustic objects, patterns and
processes.

Language shapes thought and interacts potently with observation to build theory and
advance knowledge. Linguistic relativity applies in science as in wider culture (Kay
and Kempton 1984). Whorf famously asserted that “We dissect nature along lines laid
down by our native languages” (Whorf 1956:213) and examples abound in which
scientific progress has advanced following the naming of abstract concepts. For
example, the coining of the term autopoiesis by Maturana and Varela (1991) to
uniquely describe the processes of self-repair and self-maintenance that characterises
life focused research on the teleonomic properties of organisms. More generally,
nomenclature has been fundamental to modern taxonomy since Linnaeus’ time. During
the ontogenesis of ecoacoustics, the need for linguistic development in order to
conceptualize, articulate, investigate and assess acoustic objects, and configurations
and processes of ecological importance has been previously noted (e.g., Farina 2014).

The aim of this paper is therefore to present and refine the nomenclature and
principles of ecoacoustics in order to clarify core ecoacoustic concepts (Table 1) and
bolster biosemiotic perspectives (Fig. 1). Description of the patterns and processes,
objects and agencies of the acoustic environment is fundamental for the advancement
of ecoacoustics and its integration with other disciplines including biosemiotics and
related disciplines in the humanities that are concerned with multispecies thinking.

From Vibroscape to Soundscape

In the development of a taxonomy in ecoacoustics we include the ecoacoustic objects
and agencies as components of the family of the vivo-scapes. The vivo-scape is the
field of existence or domain of an “ecological species” representing the totality of
biological, ecological and semiotic interactions between an organism and its operation-
al environment. The vivo-scape is the domain in which the senses of all organisms have
a closure with the environment (Farina and James 2021).

Ecoacoustics to date has focused on air-borne vibrations heard as sound and
soundscape has previously been defined as the acoustic component of a landscape
(Farina and Pieretti 2014). However, it is increasingly recognised that substrate vibra-
tions are ubiquitous in the environment (Hill 2009; Šturm et al. 2018), vibration
receptors are frequent in organisms (e.g., Hill 2008; Narins et al. 2016; Sugi et al.
2018) and vibrational signalling is now considered one of the most ancient forms of
communication across phyla and kingdoms (Cocroft et al. 2014; Endler 2014): sensi-
tivity to vibrational signals is observed in bacteria (e.g., Reguera 2011) and plants
(Appel and Cocroft 2014). It is useful therefore to distinguish between vibroscapes and
soundscapes (Polajnar and Virant-Doberlet 2019; Virant-Doberlet et al. 2019).
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Following (Šturm et al. 2018) we define the vibroscape as the entire set of substrate or
airborne vibrations that is present in a specific portion of a geographical area. In physical
terms, vibration is a quick moving back-and-forth (or up and down) motion of particles
about a point of equilibrium. Frequency is the number of these oscillations in a given time.

Table 1 Ecoacoustic Terminology

Acoustic community: an aggregation of species that produces sound by using internal or extra-bodily
sound-producing mechanisms.

Acoustic eco-field: The spatial configuration of a soundscape as a carrier of meaning to track resources.

Acoustic habitat: The specific acoustic character of a geographical area selected as favorable by a species for
living.

Acoustic signature: The sequence of sound that characterises a species, an acoustic community or sonotope.

Alpha biophonic diversity: Biophonic diversity inside an acoustic community.

Alpha sonotope diversity: Diversity of ecoacoustic events present in a sonotope.

Anthrophonies: Sound produced by human vocalizations transmitted and magnified by technological devices.

Audible sound: Vibrations with the range of hearing (between 20 to 20 k Hertz for humans).

Biophonic diversity: Diversity of sounds produced by an acoustic community.

Beta biophonic diversity: Biophonic diversity between two acoustic communities.

Beta sonotope diversity: Diversity of ecoacoustic events between two sonotopes.

Biophony: Sound produced by vocal organs or body parts of species or the results of friction of animal body
with substrate, vegetation or air.

Dawn chorus: the collective acoustic activity of an acoustic community around sunrise.

Dusk chorus: the collective acoustic activity of an acoustic community around sunset.

Ecoacoustic diversity: Diversity of ecoacoustic events produced by a landscape.

Ecoacoustic events: Acoustic signals that after an interpretation have the capacity to influence behavior and
ecology of the listeners.

Far field: Portion of soundscape that is sensed but does not produce changes in the behaviour of organism.

Gamma biophonic diversity: Total biophonic diversity in a landscape.

Gamma sonotope diversity: The diversity of ecoacoustic events in a landscape.

Geophony: Sounds produced by abiotic agents like wind, rain, eruptions, flowing water.

Interpreted soundscape: Portion of soundscape which is assigned a specific meaning and acted upon.

Latent soundscape: Portion of vibroscape that is not perceived by a particular individual as sound but that can
be heard by others.

Near field: Portion of soundscape that produces changes in the behavior of an organism.

Noise: Sound that interferes with acoustic communication.

Sensed soundscape: Portion of the vibroscape perceived by an organism as sound.

Soniferous species: A species that makes acoustic signals to communicate.

Sonotone: Area at the edge of sonotopes.

Sonotope: A homogenous unit of a soundscape.

Soundscape: Part of vibroscape perceived as sound by an organism.

Soundtope: A homogeneous unit of soundscape consisting solely of biophonies.

Soundtone: Area at the edge of soundtopes.

Technophony: Sound produced by the functioning of machineries.

Vibroscape: The entire set of vibrations that is present in a specific portion of a geographical area.

Vibrotope: A homogenous unit of vibroscape.
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The energy emitted during vibration is not constant because vibrational transmission is
determined by physical properties of the solid, liquid and gaseous medium through which
vibrations travel: temperature, salinity, shape of the surfaces, pressure, density, attrition, etc.
When a vibration from an elastic body passes through air or water transmits such vibration to
a receiving organism’s organ of hearing, it can result in a mental sensation, namely sound.
Sound is a typology of energy that is utilized passively or/and actively by a great number of
organisms returning an important multifunctional sensorial scape. Soundscape can therefore
be usefully understood as the portion of vibroscape converted by special sensor into
electrical signals that in turn are converted into an acoustic sensation at the brain level.

According to a physical description, sound is a type of structured-perceived-
energy that propagates in the air approximately at 331 m/s at 0°C, and five times
faster (1484 m/s) in water. Sound is modified by diffraction, reverberation and by
absorbent properties to the medium and its perceived quality (ranging effect)
depends on position and distance of receivers compared with the position and
energy of sources. Sounds according to the frequency of vibration adapted to a
human auditive capacity are classified as infrasounds (<20 to 0.001 Hz), audible
sounds (20 to 20,000 Hz), and ultrasounds (from 20 kHz to several gigahertz).

From a biosemiotic point of view, sound is a vehicle of meaning perceived as a
signal by species specific acoustic sensors (i.e. inner ear in vertebrates, tympanal organ
in insects) and transformed into mental sensation and codified, or interpreted to assign a
meaning or create an effect.

We therefore define soundscape as the part of the vibroscape (Šturm et al. 2018)
converted by specific organs and successive cognitive process into sounds and com-
posed of a collection of ecoacoustic events (signals) that after an interpretation have the
capacity to influence behavior and ecology of the listeners.

Vibroscape Soundscape
Sonotope

Soundtope

Sonotone

Soundtone

Descriptive structures

Acoustic habitat Acoustic community

Functional structures

Geophonies     Biophonies   Technophonies     Anthropophonies

Ecoacoustic categories

Latent soundscape                       Sensed soundscape                      Interpreted soundscape

Ecoacoustic events
Noise
...........
...........

Choruses

Ecosemiotic processes

Resources

Fig. 1 Conceptual representation of core ecoacoustic elements and their functional relationships
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Soundscape Sources

Components of the soundscape can be usefully differentiated according to their as-
sumed sources; at least four can be identified from a human perspective geophonies,
biophonies, technophonies and anthropophonies. Geophonies result from the molecu-
lar friction of abiotic and biotic material and generate a great variety of sounds,
including rain, wind, thunder, volcanic eruption, water fall, etc. (for more details on
the acoustics of friction see Akay 2002). Biophonies are traditionally considered to
result from signals created intentionally by soniferous organisms for a range of different
purposes (habitat assessment, navigation, territory or group defence, mating, feeding,
roosting, pleasure etc.). From ecological and semiotic perspectives we should also
considered the unintentional sounds produced by the friction of animal body with
vegetation, soil or air (e.g., the flapping of the wings in the air, scraping of feet on the
ground). Technophonies describe those sounds that originate in mechanically augment-
ed human activity and are produced by moving vehicles (train, car, ship, airplane) and
by machineries. To these three typologies of sounds we must add every vocalization
produced by humans and instrumental music as well. Human vocalizations should be
considered biophonies but are often artificially amplified and remotely broadcasted
(radio, television) or emerging from social events like sport competitions (football,
tennis, athletics) that concentrate a great number of shouting people and for this it is
reasonable to recognize the category of anthropophonies. A complex soundscape
highly variable in time and space results from the merging, overlapping and recipro-
cally masking processes between these four sources of sound (Farina 2014; Farina and
Gage 2017). These categorizations like other more specific schemes in urban contexts
(e.g., Niessen et al. 2010; Davies et al. 2013) are functional from an anthropocentric
perspective, but are unlikely to be relevant across species. They are useful in applied
investigations of landscape restoration and management as indicators of relative activ-
ity of actors in the landscape, although conceptual and perceptual exceptions can be
readily identified from a human perspective: for example a fast flowing river is
indifferentiable from a motorway in certain conditions, and their perceptual relevance
to other species is doubtful: cicada reputedly respond to lawn mowers and other low
frequency technophonies and frogs respond to the passage of a tractor.

Spatial Scales of Soundscape Agencies

Due to the dissipative nature of energy as it travels through any medium, vibroscapes
and soundscapes are heterogenous in space and time (see also below for relationship
between landscape and soundscape structure). It is therefore useful to approach
vibroscapes and soundscapes at different spatial scales.

In ecology the term ecotope was introduced to designate the fundamental unit of
ecological plant sociology by Sorensen (1936) and later elaborated by Tansley to
describe the particular portion “of the physical world that forms a home for the
organisms which inhabit it.” Tansley (1939: 228). The coining of this term delineates
and brings into focus an organism-centred, homogenous space in an otherwise hetero-
geneous landscape. In the same way, we can identify perceived units within the
vibroscape and soundscape as vibrotopes and sonotopes that are characterized by
particular vibrational and acoustic signatures. These signatures are amenable to
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computational analysis, opening up investigation of interactions that shape the evolu-
tion of vibrational and acoustic communication, as well and advancing understanding
of ecological processes and ecosystem dynamics (Sturm et al. 2018). The sonotope in a
flat geography has stellar-like morphology where a receiver is at its centre and the
perceptual efficiency depends on the loudness and distance of the source. The terms far
field and near field are used to describe the long and close range of perception,
respectively (Farina and James 2016). If sound sources are distributed evenly all around
the receiver this stellar-like field should take the form of a double ring, with a first ring
(near field) included in a second ring (far field). The threshold between near and far
field can be identified empirically and is significantly shaped by landscape variables
like land aspect and vegetation structure; for example, sounds from a narrow valley will
create an irregularly perceptual range. Near and far field influence the ranging behav-
iour with which a species decides on the importance of an acoustic signal in modifying
its behaviour (Farina 2014:72–82; Ringler et al. 2017). The acoustic signatures which
characterize a particular spatially delimited sonotope also vary dynamically. According
to the temporal scale at which acoustic information is empirically aggregated it may be
relevant to investigate acoustic signatures at different timescales from hourly, daily,
monthly, seasonal resolution, etc. Identification and monitoring of these signatures
supports acoustic phenology.

Soundtope describes the biophonic component of a sonotope and can be considered
as the acoustic emissions of an acoustic community (see below). These have previously
been defined by Farina (2014: 17–19) as a portion of biophonies that is perceptually
distinct by a listener.

Finally, in classic ecology, the term ecotone differentiates “the tension belt
between adjacent communities” (Tansley 1939: 215) in a land mosaic. Similar-
ly, the borders between sonotopes create a very complex acoustic condition that
we define as acoustic ecotones or sonotones; consider for example, the sensa-
tion of walking between sound-systems at a music festival or listening as you
swim above and below water on a coral reef.

Specificity of Soundscapes

From this emerging semiotic position, soundscapes can only sensibly be considered
from an organism-centered perspective. Just as “there are as many worlds as there are
subjects” (von Uexküll 1926: 70) each organism experiences a unique soundscape
shaped by the specificity of its biological receptors and semiotic sensitivities. The term
ecosystem does not require a further specification but only eventually an adjective like
“terrestrial”, “aquatic”, “urban” etc. In contrast, all scapes (land-scape, tactile-scape,
thermal-scape, odor-scape, vibro-scape, sound-scape) are semiotic agencies (Enfield
and Kockelman 2017) or potent carriers of meaning and significance; to be correctly
used they require a further organismic ascription, recognizing that they arise only
through the result of a situated, organism-specific process of sensing and interpretation.
This organism-centered perspective follows Uexküllian Umwelt in recognizing the
meaning-making subjectivity of each organism in its interaction with the environment
(Tønnessen 2009; Tønnessen et al. 2018).

In von Uexküll’s original formulation each organism’s “private” world is composed
of an inner world, a world-as-sensed and a world-as-action; this private world exists
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within a surrounding-world and allows species to coexist in the same habitat with a
minimal inter-specific competition (von Uexküll 1926; von Uexküll 1982, 1992). In the
current literature across arts, humanities and sciences landscape, vibroscape and sound-
scape are used without the necessary specification and become too generic like the term
habitat in classic ecology (e.g., Hall et al. 1997). Historically in the humanities
literature, landscape and soundscape have been purveyors of human sensations and
spiritual values (Mallarach 2008), although this is changing with multispecies thinking
across conservation, anthropology and feminism in the wider humanities. It is within
these emerging multispecies paradigms that we propose ecoacoustics has enormous
potential. Acoustic signatures hold rich multispecies significance, ecoacoustics de-
velops a conceptual and methodological tool box for investigation of these interactions,
offering a point of contact between anthropological and ecological phenomenon and
the natural sciences and humanities, so bridging the human-environment rift in con-
temporary academia.

We propose that landscape and soundscape should always be qualified with an
organismic attribution at whatever taxonomic level is relevant to the case in point:
beetle landscape (e.g. Wiens and Milne 1989), blackbird soundscape (e.g. Farina et al.
2011), etc. As for landscape, we refer to a generic soundscape as perceived by people (a
synonym of human soundscape) and the majority of research utilizes this term with this
implicit acceptation. Although we promote an organism-centred perspective we also
acknowledge the impossibility of comprehending the experience that denotes: What
does the blackbird (Turdus merula) soundscape sound like to the blackbird? We cannot
know. But the sensorial capacities and semiotic sensitivities of blackbirds can be
inferred, even if they are not accessible to others. An indirect way to describe the
blackbird soundscape, for example, is to suppose that the spatial variation of abundance
of the conspecifics may represent a proxy of soundscape preferences; playback exper-
iments also provide insight into discriminative sensitivities between species (see
Francis et al. 2017 for a comparison between human and Brewer’s sparrow (Spizella
breweri)). We elaborate this point in the section dedicated to the Acoustic Habitat
below (Mullet et al. 2017).

Having recognized the intrinsically subjective nature of “scapes”, we can distinguish
three levels of perception according to the sensory capacities and semiotic sensitivities of a
particular organism (Farina 2006). Refining the nomenclature previously outlined in
Landscape Theory (Farina and Pieretti 2014) we propose a distinction of soundscapes
in three categories: Latent, sensed and interpreted landscape. The latent soundscape (LS)
is the portion of air-borne vibrations that cannot be perceived by a species as sound
because they lie beyond the acuity of its hearing receptors (sounds that lie outside
frequency range, as in infrasound and ultrasounds for humans, or below the amplitude
threshold). Whilst of no significance to an individual organism or species, LS can be
considered a potential source of information in which evolutionary processes play out
(Farina and Pieretti 2014) even if they are not a carrier of significant meaning for a
particular organism; from the organismic evolutionary perspective, this includes signals
that historically did not confer an evolutionary advantage for that particular species,
meaning that neither it’s sensory nor cognitive systems are tuned to it. Sensed soundscape
(SS) describes the portion of the acoustic information that a particular organism is sensitive
to but are not necessarily integrated into a physiological or behavioural reaction. This is the
portion of vibroscape that hearing organs are sensitive to (approximately 20 Hz to 20 kHz
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for humans). Such information has been defined by Reading (2011:9–15) simply as “data”
(patterns that are potentially meaningful). Finally, the interpreted soundscape (IS) is the
subset of SS that makes a difference to the organism. This soundscape comes into being
when the recipient has the opportunity and motivation to assign a meaning to external
acoustic signals. Such signals are transformed by a biosemiotic process into signs and,
finally, by a cognitive system into meaning, (e.g., sound descriptors related to human
perception, Davies et al. 2013). Genetic, cognitive and cultural codes are used by species
to assign a meaning and transform signals into signs (Barbieri 2009). These terms are
valuable in enabling us to differentiate between objective, or universal vibrations and
conventional signals (Barbieri 2006).

Importantly we begin to build a nomenclature to bridge biosemiotics across multiple
species and disciplines. In being organism-centered the categories are fluid in the face
of changes to internal state of organism, or changes in receptor sensitivity, including
technological transductions in the case of humans and some animals. Science has
always been driven by technological advances affording greater acuity, and we note
that Ecoacoustics (Sueur and Farina 2015) and Biotremology (Hill et al. 2019) are
similarly driven by advances in acoustic and vibrational transducers that enable us as
humans to perceive and speculate on the meaning of signals that lie beyond the range of
our naked biological auditory systems (in space and time as well as frequency) for
ourselves and other organisms.

Soundscape Agencies and Semiosis

To further elaborate the concept of soundscape as a semiotic agency, we consider the
ways in which the acoustic signature of a specific sonotope is a potent carrier of
information in the environment. From our anthropocentric perspective (selecting
humans as focal species) we are familiar with the experience of localizing an unseen
waterway in a landscape by listening for changes in position and loudness of water
sounds. And all species appreciate different acoustic conditions as they move across a
landscape in relation to the sources of sound, their position and loudness. For instance,
moving from the suburbs to an urban centre we often experience the reduction of
sounds from soniferous species as vegetation cover is more fragmented and reduced.
Similarly, at a larger spatial scale, sounds produced by soniferous species decrease
along a countryside-urban gradient. We can say that at every location across a
landscape a specific organism-centred soundscape arises. This dynamic frame allows
fast-moving species like birds or insects to rapidly infer information in a short time and
to generate meaningful and accurate maps of acoustic signals that become carriers of
meaning for the localisation and acquisition of resources.

Acoustic Habitat Selection

Acoustic signals also play a key role in habitat selection. During habitat
selection species search for portions of the environment that offer all the
necessary resources in terms of refuge, breeding space, food supply, protection
from predators, etc. There is empirical evidence that acoustic cues also play a
key role in habitat selection for birds (Mullet et al. 2017) as well as crusta-
ceans, pelagic larvae of reef fish (Jeffs et al. 2003; Simpson et al. 2005, 2008;
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Tolimieri et al. 2000), and even coral polyps (Vermeij and Bak 2002). Acoustic
cues used by conspecifics or heterospecifics are considered public information
(Danchin et al. 2004; Boulinier et al. 2008). Mukhin et al. (2005) found that
Eurasian reed and sedge warblers use acoustic cues of conspecifics and other
species to select the more suitable wetlands during migration. This behaviour
can be explained by the heterospecific (acoustic) attraction hypothesis
(Mönkkönen et al. 1990). For instance, Thomson et al. (2003) have experimen-
tally manipulated the density of titmice in Northern Finland and have found
that the number of chaffinch (Fringilla coelebs), that are migratory birds in this
region, increased their settlement in the breeding areas with a high number of
titmice. The acoustic activity of the titmice community influenced the choice of
chaffinch breeding areas. Several species use the social cues of conspecifics to
select a suitable breeding habitat, including American redstarts (Setophaga
ruticilla) (Hahn and Silverman 2006), blackcapped vireos (Vireo atricapilla)
and black-throated blue warblers (Dendroica caerulescens) that identify suc-
cessful breeding habitats using conspecific cues and avoid equally suitable
habitats without those social cues (Ward and Schlossberg 2004; Hahn and
Silverman 2007). Further experiments conducted on black-throated blue war-
blers, have coerced individuals to adopt habitats of poor quality by manipulat-
ing social acoustic cues (Betts et al. 2008). Madden and Jehle (2017) have
experimentally proven that the great crested newt (Triturus cristatus) is influ-
enced during breeding migration by calls from sympatric (Rana temporaria and
Bufo bufo) and allopatric (Lithobates catesbeianus) anurans. Many species,
especially birds are sensible to the quality of soundscape and avoid noisy
environments or modify their acoustic behaviour (Ortega 2012).

Ecoacoustic Events

Due to the difficulties of understanding the “true language” of soniferous species in practice,
we tentatively utilize an aggregation of acoustic signals that will be submitted to an
inferential analysis. These signals, that for convention we call ecoacoustic events (EE),
may be considered a sub-set of sonotopes, and are homogeneous for some intrinsic
characters like intensity, temporal and frequential distribution, etc. (Farina et al. 2016,
2018). EEs are the acoustic equivalent of a green lawn for an earthworm searching for a
blackbird; they are a source of information throughout the life cycle of a species.We believe
that a species can receive information from an EE, but the duration of it’s efficacy will be
dependent upon the current needs and physiological status of that particular organism and is
not something we can easily infer. A species can receive information according to the need
that at that timemust be satisfied. Each EE requires a decoding procedure to be incorporated
into a mental representation that is assigned a definitive meaning.

Acoustic Eco-Field

In cognitive ecology and ecosemiotics the concept of eco-field has been defined by Farina
and Belgrano (2004, 2006) as a carrier of meaning to perform a specific function finalized to
intercept resources. The eco-field hypothesis is a special case of ecosemiosis based on the
spatial arrangement of objects which are carriers of meaning connected to the activation of a
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specific (vital) function. In this case the signs are based on a spatial configuration of the
objects (like trees, shrubs, or other organisms) that is recognized as a carrier of meaning. In
this process a cognitive template (the “searching image” in ethological jargon) is mentally
compared with the surrounding context, until an overlap occurs. Cognitive process associ-
ated with the eco-field bridges between information, cryptic resources and organisms.

To better understand acoustic semiosis we introduce the concept of acoustic eco-field as
an acoustic template that is used according to a function to intercept a specific resource.
Acoustic eco-fields are the cognitive templates utilized in the acoustic communications to
conjugate different semiotic mechanisms that utilize for instance visual, acoustic, tactile
sensory information.

In acoustic semiosis we can distinguish acoustic eco-fields used to defend a territory
(aggressive calls), to select a partner (song), to signal predator presence (alarm calls), or
individual position (contact calls), etc. Themodulation of every acoustic signal becomes part
of an acoustic eco-field. In synthesis, from an ensemble of acoustic signals coming from the
surroundings species, according to the physiological needs, an individual selects and
decodes acoustic signals and assigns a specific meaning.

The temporal integration of acoustic signals is function- and species-specific, according
to the decoding procedure at play. Acoustic eco-fields require a precise temporality that
assumes the same role of space/form in visual eco-fields: hourly, daily and seasonal cycles of
an organism are based on the activation of some functions in turn linked to a specific
physiological need. The daily routine of a bird is characterized by a precise temporality: for
instance, a songbird has a peak of song activity at dawn, then in the middle of morning and
finally at dusk (Farina et al. 2021). Foraging activity is more continuous, alternating between
active searching with resting periods. Roosting time may be longer in the afternoon and for
diurnal species lasts a specific period according to the astronomical length of the night.

For each behaviour, according to the eco-field hypothesis, a specific material (e.g. food)
or immaterial resource (e.g., safety, territory control, intraspecific contacts) must be
intercepted. In this way, every organism has the capacity to scan the acoustic surrounding
(Todt and Naguib 2000), differentiating the signals received according to the function that
has activated at that time. For instance, in territory defence a bird will pay attention to the
territorial songs sung by other intra-specific individuals. During foraging activity contact
calls of other species that could indicate abundance of food in the surroundings or the
approaching of a predator are attended to. During the feeding of chicks, adults pay attention
to alarm calls issued by other individuals as a signal of possible intrusion of predators.

Acoustic Communities

The acoustic community is defined as an aggregation of species that produces
sound by using internal or extra-body sound-producing tools (Farina and James
2016). The acoustic community interacts inside a portion of a sonotope and is
the source of distinct biophonic signatures, or soundtope (Farina and James
2016). An acoustic community generates the biophonic field in which species
and organisms interact with each other. Ecoacoustic research methods and
analysis procedures predominantly focus on the recording and processing of
the biophonic signals of these acoustic communities in terrestrial and aquatic
environments (Drewry and Rand 1983; Price 1984; Sueur et al. 2008; Luther
2009; Gasc et al. 2013a, b; Lellouch et al. 2014). The acoustic community is a
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central concept to theoretical and empirical ecoacoustics and deserves a deeper
discussion.

In this narrative we have to consider that an acoustic community is not only the
assemblage of all soniferous species acoustically active in a specific moment (in this
case the model assumes that all the sounds emitted by the species are detected in the
same way by a listener) but also that not all the species are detected by an individual
listener. Due to different acoustic activities of species the temporal limit of an acoustic
community can be obtained only probabilistically, whether by a human, other organism
or computational listening algorithms. An acoustic community can be assessed by
listening, recording and analyzing the acoustic signals emitted from the member
(soniferous) species. The sonotope of an acoustic community often includes non-
biological sounds and the isolation of it’s biophonic signature for analysis is not always
simple, especially when geophonic and technophonic sounds overlap biophonies with
masking effects that impede the distinction of the ecological role of animal communi-
cation. Wind rain and traffic are very common sounds that mask biophonies, an issue
for biological semiosis as well as computational analysis.

The acoustic community is distinct from a “traditional” ecological community
because it is composed only of soniferous species and changes dynamically as they
vocalize. This is the first limit in the application of this model to the regular ecological
practice. Biophonic diversity assessment is based on the assumption that soniferous
species are a reliable proxy for all species present in a location and that the acoustic
community is representative of the wider ecological community, at that time and place.
This assumption is certainly valid in terrestrial ecosystems where, for instance, bird
species are well recognized as reliable indicators of wider biodiversity (BirdLife
International 2013).

A further inherent limitation of the acoustic community concept stems from varia-
tions in the quality and quantity of acoustic performances of the component species and
individuals. Some species are very active and sing loudly (e.g. warblers (Sylvia sp.) and
others have acoustic performances limited in intensity and time like shrikes (Lanius sp.)
or finches like Eurasian bullfinch (Pyrrhula pyrrhula). Just as an organism’s hearing
apparatus is sensitive to certain sounds, any particular computational analysis may be
more or less sensitive to certain calls. These caveats all require further investigation, but
despite these limitations the concept of the acoustic community remains central to
ecoacoustics. For this, we assume that acoustic communities are variable in species
composition with a species turnover along the day and along the season. The presence
of some species in an acoustic community may be an indicator of the quality of the
environment, but the concept of acoustic community is subordinate to the capacity of a
listener. The use of this concept often is restricted to human perspective and the
acoustic community becomes functional to a better description of the ecological
processes. We assume that other species that perceive sounds may use a collective
sound of an acoustic community to explore their surroundings, to optimize food search,
to select the best habitat, etc. (Dall et al. 2005).

The different temporal aggregations of the acoustic community reveal important
patterns; recent investigations reveal changes between (Eldridge et al. 2018) and within
(Farina et al. 2021) species throughout the day. We can usefully differentiate diurnal
and nocturnal acoustic communities. At dusk and at dawn specific communities appear,
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these communities are called dawn and dusk communities and are associated to dawn
and dusk choruses (Burt and Vehrencamp 2005; Dabelsteen and Mathevon 2002).

Ecoacoustic and Biophonic Diversity

While the ecoacoustic diversity can be defined as the combinantion of the relative
abundance and intensity of the different ecoacoustic events present in a soundscape
(soundscape diversity) or in a sonotope (sonotope diversity), the term biophonic
diversity is used to describe the number and relative importance of biophonic signatures
that compose an acoustic community. We could say that biophonic diversity is the
diversity of the acoustic community, in the same way that in ecology we use biodiver-
sity as the diversity of a community. This has been demonstrated to provide a cost-
effective proxy for the ecological biodiversity (e.g., Sueur et al. 2008; Gasc et al.
2013a, b; Harris et al. 2016; Gibb et al. 2016; Krause and Farina 2016; Eldridge et al.
2018; Farina 2019a). As for “traditional” biodiversity nomenclature (Whittaker 1960)
we identify three types of biophonic diversity: alpha, beta and gamma biophonic
diversity. Alpha biophonic diversity is evaluated from the number of biophonic signals
inside an acoustic community. Beta biophonic diversity describes the difference be-
tween acoustic communities; finally gamma biophonic diversity is calculated between
acoustic communities across a landscape.

At the level of sonotope, the alpha sonotope diversity consists in the number and
abundance of ecoacoustic events present in a sonotope. The beta sonotope diversity
describes the difference in ecoacoustic events between sonotopes, and the gamma sonotope
diversity is the total number of ecoacoustic events at soundscape/landscape scale.

In areas like the tropics where frequency partitioning (especially for insects) is well
delimited, the biophonic diversity in the frequency domain predicts the presence of
different species, and biophonic diversity more clearly corresponds to the diversity of
species. However, in temperate and boreal biomes often the dominant species are birds
and their frequential repertoire is larger. Some species like song thrush (Turdus
phylomelos) may use in the singing composition a great spectrum of frequency
(Deoniziak and Osiejuk 2019) and this reduces the correspondence between diversity
of biophonic diversity and number of species.

While the biophonic diversity still requires a significant amount of human effort and
complex pattern recognition procedures, the ecoacoustic diversity can be measured
from ecoacoustic metrics adopting automated procedures (e.g. Farina et al. 2018).

Choruses

Choruses are a unique expression, or performance, of the acoustic community and are
phenomena characterized by the contemporaneous vocalization of different species.
They are found across the globe, common to soniferous species across phyla (insects,
shrimps, fish, frogs, birds, and mammals), in terrestrial, in freshwater and marine
biomes (Cato 1978; D’Spain and Batchelor 2006). Choruses have attracted the attention
of scientists for decades and remain an enigma in terms of role in species adaptation
and evolution (Allard 1930; Leopold and Eynon 1961; Shaver and Walker 1930;
Wright 1912, 1913) and largely conjectural with a strong component of male-female
coevolution (Walker 1969; Greenfield et al. 2016). In birds, for example, choruses have
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been explained in terms of circadian cycles, self-stimulation, mate attraction, mate
guarding, territory defence, social dynamics, low predation, acoustic transmission,
inefficient foraging and unpredictable conditions (Staicer et al. 1996). The acoustic
transmission hypothesis (Morton 1986) proposes that higher level of singing (in birds)
occurs when the song is less distorted by air turbulence. This seems a good, if not
unique candidate, to explain the appearance of choruses at dawn and at dusk.

During choruses all individuals of a species are singing at the same time with an
apparent overlap and potential masking; in a recent paper Malavasi and Farina (2013)
report coordinated interspecific mechanisms that utilize a complex form of behaviour to
exclude signal jamming in heterospecific choruses. We can expect that in acoustic
communities living in untouched habitats, coevolutive processes may have favoured
the creation of choruses that reinforce the intracommunity cohesion and reduce com-
petitive masking. In winter time, in temperate biomes choruses of European starling
(Sturnus vulgaris) are present also at noon. The meaning of these midday choruses for
this species remains largely unexplored, but an exchange of information about the
source of food may be activated due to evident capacity of this species to perceive
auditory scenes (MacDougall-Shackleton et al. 1998). Chorusing is an important
ecoacoustic phenomenon that is of great interest in environmental monitoring especial-
ly in relation with climate change (Sueur et al. 2019). The severity of weather has a
great influence on intensity and duration of choruses.

Noise

The ability to detect, recognize and interpret a sound is not only dependent upon it being
within an organism’s hearing range but depends upon it’s ability to discriminate and
recognize an acoustic signal from an acoustic background of incoherent, or random sound
that is referred to as noise. In acoustic physics, noise refers to a random oscillation in a
signal with different spectral density spreads being described by different colours (white,
pink, brown, red, blue, violet, black etc.). Signal-to-noise ratio describes the level of a
desired signal relative to the level of background noise and is a physical property described
in many fields of the scientific research from statistics to seismology, optics and biological
time series (e.g., Scales and Snieder 1998; Ideker et al. 2011).

From a physical perspective noise cannot be distinguished from sound because both are
vibrations; but the latter differs cognitively because it is associated with a meaning by
receivers. Noise can be understood from information theoretic, acoustic or psychoacoustic
perspectives and serves us in developing ecoacoustic theory, relevant to sensory and
semiotic processes of living organisms. In turn, better understanding of the role of noise in
semiotic terms may enhance development of next generation of ecoacoustic metrics for
environmental monitoring; understanding the impact of vibrational emissions on other
species’ semiosis holds promise for mitigation through design and legislation.

Often we identify noise with technophonic sounds, in reality many technophonic
sounds, like the sound of ambulances, the engine of a farm tractor, a church bell have a
well established internal spectral structure, and meaning. These sounds can be consid-
ered annoying or unwanted for people but may elicit specific reaction in other organ-
isms, for example frogs that have been observed to start their chorus at the close
passage of a farm tractor.
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From a behavioural perspective, noise may therefore be considered as acoustic
energy that interferes with the communication between a signaler and a particular
receiver (Luther and Gentry 2013), often masking or impeding communication be-
tween organisms (Truax 1999), or an organism’s perception and interpretation of
signals in a given latent soundscape. Noise can limit the ability to receive acoustic
information (Barber et al. 2010; Francis and Barber 2013). However in ecology noise
can concur to assess a favourable acoustic habitat (Mullet et al. 2017). In fact, noise and
acoustic habitat are in a strict relationship: some soniferous species avoid areas where
noise is dominant or too high favouring the expansion of more noise tolerant species
(Francis et al. 2009).

Many environmental noises approximate white noise (intense rain, urban noise,
traffic, wind, river falls) and the physical noise concept can be used to model and
to manage environmentally unwanted sounds (Brown 2010). In psychoacoustics
sound is perceived as noise according to the circumstances and the organism’s
perceptual and semiotic sensitivity. For instance, the traffic produces a sound that
can mask many other sounds, for this reason we consider such sound as noise in
that it has a very low inherent acoustic information. Usually, urban noise is
considered by people as an environmental threat that produces annoyance and
on long period may affect human well-being (Babisch et al. 2005). Noise also has
deleterious effects on several species in terrestrial (Barber et al. 2009) and in
aquatic environment as well (Whitefield and Becker 2014; Frisk 2012). Noise is
per se an acoustic event that can have some significance for an organism.
Probably, animals discriminate noise from a signal in the same way is done by
humans.

Some organisms neutralize the effect of noise by adopting different strategies:
these include changing the amplitude of the acoustic signals (Lombard effect,
Lombard 1911), changing frequency (Narins et al. 2004), changing signal redun-
dancy (Potash 1972; Wiley 1994; Brumm and Slater 2006; Díaz et al., 2011), and
changing behaviour (Lupo et al. 1991; Rabin et al. 2006; Chan et al. 2010).
Changes in global transport and industry during the recent COVID19/20 global
pandemic has provided unprecedented opportunity to measure the impact and
absence of technophony on organisms, and investigation of associations between
industry and ethology (Silent Cities https://osf.io/h285u/, accessed 25 August
2020).

Ecoacoustic Competencies and Biosemiotic Perspectives

The first phase of Ecoacoustic research has advanced understanding in at least five
areas:

[a]. Acoustic patterns of soniferous species.
[b]. Soundscape quality.
[c]. Ecological phenomena.
[d]. Application of acoustic patterns in land management.
[e]. Ecoacoustics and biosemiotics.
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[a]. Acoustic patterns of soniferous species.

Convincing evidence exists that the acoustic activity of species responds to physiolog-
ical and environmental constraints (e.g. Block 2005) (astronomic rhythms, light inten-
sity, air temperature and humidity, wind and rain intensity, barometric pressure, etc.)
that create regular patterns that can be observed at the level of:

1. Acoustic behaviour.
2. Seasonality of acoustic activity of species.
3. Daily rhythms (e.g. dawn and dusk chorus).
4. Responses to climate and weather dynamics.

[b]. Soundscape quality.

The human responsibility to preserve the quality of the soundscape is becoming central
in the conservation and restoration agendas. For instance, human activity, spread
everywhere on the Earth from marine to terrestrial ecosystems is producing environ-
mental problems like noise. Mitigating noise is an important issue in urban areas
(Magrini and Lisot 2015) but also in hybrid nature (Farina 2019b) and especially in
marine systems (Prideaux and Prideaux 2016).

[c]. Ecological phenomena.

Ecoacoustic methods are proving to be powerful, cost-effective tools for environmental
investigation and we see value in exploring phenomena central to ecological phenom-
enology (Eldridge et al. 2016). Subjects that could be investigated by applying an
ecoacoustic approach include:

1. Environmental resilience and complexity of the acoustic communities (frequency
partitioning).

2. Intensity and quality of acoustic species-specific performance in source and sink
conditions.

3. Turnover of the acoustic communities along successional stages.
4. Biogeography of species-specific dialects in a metapopulation system.
5. Landscape structure and acoustic patterns:

5.1 Fragmentation and acoustic complexity.
5.2 Acoustic complexity at ecotones.
5.3 Land management and acoustic complexity maintenance.
5.4 Quality of the land mosaic and acoustic communities and biodiversity.
5.5 Acoustic integrity and connectivity – the degree to which signals can be sensed

and interpreted within communities (sonotopes) and allo/ conspecific communi-
cation at a landscape scale.
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[d]. Application of acoustic patterns in land management.

Work to date has demonstrated the potential for ecoacoustic methods as a cost-effective
proxy for biodiversity. Advances in hardware and software open this non-invasive, and
increasingly accessible approach to detect fluctuations in the soundscape. Acoustic
patterns that can be revealed through the analysis of environmental sounds are a reliable
proxy of the quality of the environment and can be used to monitor processes like
urbanization, logging, agriculture intensification as well as restoration, rewilding and
reforestation. The new settlement, or the extinction of soniferous species can be
ascertained through qualitative and quantitative means by using ecoacoustic
methodologies.

[e]. Ecoacoustics and biosemiotics.

Sound is a biosemiotic vehicle par excellence, utilized in animal communication, for
navigation, exploration and habitat selection. Differentiated semiosis and coding/
decoding processes are foundational to ecoacoustic phenomena. The development of
new acoustic habits exhibited by soniferous species when reassigned to novel acoustic
communities as a consequence of natural or human-induced environmental changes
may drive novel competitive interspecific relationships. The same semiotic relations
between people and animals can be investigated in an efficient way supporting better
approaching strategies to preserve natural processes.

Conclusions

We have introduced and illustrated key ecoacoustic terminology and concepts in order
to highlight the value of ecoacoustics as a discipline in which to conceptualise and
study intra- and interspecies soundscape semiosis. Ecoacoustics expands bioacoustics
out to the landscape scale, and integrates community and population ecology with
individual communication in the study of soundscapes. We have positioned
soundscapes within a wider family of sensory scapes (vivoscape, landscape,
vibroscape) and stressed their inherently subjective, organism-centred nature. We
summarised terms to describe the sources of soundscape components (geophony,
biophony, anthropophony, technophony), noting both their shortcomings and their
value in advancing the study of soundscapes in theoretical and applied contexts.
Soundscape epithets were introduced to point to the degree to which the acoustic
environment is implicated in semiosis. The terms acoustic community and acoustic
habitat were introduced and illustrated as examples of key ecological structures and
processes which have been neglected by both bioacoustics and mainstream ecology
previously. The acoustic eco-field was introduced as a semiotic model for understand-
ing how soniferous species intercept core resources such as food and safety.

A predominant focus of ecoacoustic research to date has been the development and
validation of metrics that can serve as a proxy for biodiversity and ecosystem status.
This applied research remains of primary importance on the ecoacoustic agenda but is
itself hampered by theoretical and conceptual immaturity which similarly diminishes
the wider endeavour of understanding the role of sound in ecosystem dynamics and

158 Farina A. et al.



functioning. By developing a more precise language that is relevant across species and
disciplines we hope to focus attention on and investigation of the wide range of
ecosystem processes and activities in which acoustic semiosis is central, including
assessment of habitat suitability, quality, and transformation, community dynamics,
resilience and environmental recovery, signals of environmental stress, relationship
with climate, to name just a few. If we consider that sound is a universal semiotic
vehicle its study is cross-disciplinary; ecoacoustic nomenclature can benefit disciplines
across the sciences, humanities and arts including sound studies and environmental
humanities (Maran 2020; Farina 2021). The investigation on focal species and com-
munities should take into consideration a broader agenda where acoustic information
may represent an important approach to know the functioning of several ecological
processes and their semiosis.

Ecoacoustics is highly relevant to many fields of terrestrial and aquatic ecology.
Environmental variables like composition and structure of vegetation, land mosaic
arrangement, climatic constraints are some of the families of environmental variables
that can be considered under an ecoacoustic approach. In addition, ecoacoustics can be
considered a scientific domain with which to open a productive dialogue with
ecosemiotics advancements.
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