Skip to main content
Log in

High temperature performance of coaxial h-BN/CNT wires above 1,000 °C: Thermionic electron emission and thermally activated conductivity

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of wires and cables that can tolerate extremely high temperatures will be very important for probing extreme environments, such as in solar exploration, fire disasters, high-temperature materials processing, aeronautics and astronautics. In this paper, a lightweight I high-temperature coaxial h-boron nitride (BN)/carbon nanotube (CNT) wire is synthesized by the chemical vapor deposition (CVD) epitaxial growth of h-BN on CNT yarn. The epitaxially grown h-BN acts as both an insulating material and a jacket that protects against oxidation. It has been shown that the thermionic electron emission (1,200 K) and thermally activated conductivity (1,000 K) are two principal mechanisms I for insulation failure of h-BN at high temperatures. The thermionic emission of h-BN can provide the work function of h-BN, which ranges from 4.22 to 4.61 eV in the temperature range of 1,306-1,787 K. The change in the resistivity of h-BN with temperature follows the ohmic conduction model of an insulator, and it can provide the "electron activation energy" (the energy from the Fermi level to the conduction band of h-BN), which ranges from 2.79 to 3.08 eV, corresponding to a band gap for h-BN ranging from 5.6 to 6.2 eV. However, since the leakage current is very I small, both phenomena have no obvious influence on the signal transmission at the working temperature. This lightweight coaxial h-BN/CNT wire can tolerate 1,200 °C in air and can transmit electrical signals as normal. It is hoped that this lightweight high-temperature wire will open up new possibilities for a wide range of applications in extreme high-temperature conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Garner, R. Parker Solar Probe [Online], https://doi.org/www.nasa.gov/content/goddard/parker-solar-probe (accessed Aug 12, 2018).

    Google Scholar 

  2. Rostky, G. H. Hot and cold. Electron. Des. 1958, 6, 22.

    Google Scholar 

  3. Jiang, K. L.; Li, Q. Q.; Fan, S. S. Nanotechnology: Spinning continuous carbon nanotube yarns. Nature 2002, 419, 801.

    Article  Google Scholar 

  4. Zhang, X.; Jiang, K.; Feng, C.; Liu, P.; Zhang, L.; Kong, J.; Zhang, T.; Li, Q.; Fan, S. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv. Mater. 2006, 18, 1505–1510.

    Article  Google Scholar 

  5. Li, Y. L.; Kinloch, I. A.; Windle, A. H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 2004, 304, 276–278.

    Article  Google Scholar 

  6. Kumar, S.; Dang, T. D.; Arnold, F. E.; Bhattacharyya, A. R.; Min, B. G.; Zhang, X. R.; Vaia, R. A.; Park, C.; Adams, W. W.; Hauge, R. H. et al. Synthesis, structure, and properties of PBO/SWNT composites. Macromolecules 2002, 35, 9039–9043.

    Article  Google Scholar 

  7. Ericson, L. M.; Fan, H.; Peng, H. Q.; Davis, V. A.; Zhou, W.; Sulpizio, J.; Wang, Y. H.; Booker, R.; Vavro, J.; Guthy, C. et al. Macroscopic, neat, single-walled carbon nanotube fibers. Science 2004, 305, 1447–1450.

    Article  Google Scholar 

  8. Vigolo, B.; Penicaud, A.; Coulon, C.; Sauder, C.; Pailler, R.; Journet, C.; Bernier, P.; Poulin, P. Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 2000, 290, 1331–1334.

    Article  Google Scholar 

  9. Zhang, M.; Atkinson, K. R.; Baughman, R. H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 2004, 306, 1358–1361.

    Article  Google Scholar 

  10. Liu, C.; Cheng, H. M.; Cong, H. T.; Li, F.; Su, G.; Zhou, B. L.; Dresselhaus, M. S. Synthesis of macroscopically long ropes of well-aligned single-walled carbon nanotubes. Adv. Mater. 2000, 12, 1190–1192.

    Article  Google Scholar 

  11. Dalton, A. B.; Collins, S.; Munoz, E.; Razal, J. M.; Ebron, V. H.; Ferraris, J. P.; Coleman, J. N.; Kim, B. G.; Baughman, R. H. Super-tough carbon-nanotube fibres. Nature 2003, 423, 703.

    Article  Google Scholar 

  12. Alvarenga, J.; Jarosz, P. R.; Schauerman, C. M.; Moses, B. T.; Landi, B. J.; Cress, C. D.; Raffaelle, R. P. High conductivity carbon nanotube wires from radial densification and ionic doping. Appl. Phys. Lett. 2010, 97, 182106.

    Article  Google Scholar 

  13. Bucossi, A. R.; Cress, C. D.; Schauerman, C. M.; Rossi, J. E.; Puchades, I.; Landi, B. J. Enhanced electrical conductivity in extruded single-wall carbon nanotube wires from modified coagulation parameters and mechanical processing. ACS Appl. Mater. Interfaces 2015, 7, 27299–27305.

    Article  Google Scholar 

  14. Cao, W. X.; Yang, L.; Qi, X. D.; Hou, Y.; Zhu, J. Q.; Yang, M. Carbon nanotube wires sheathed by aramid nanofibers. Adv. Fund. Mater. 2017, 27, 1701061.

    Article  Google Scholar 

  15. Janas, D.; Cabrero-Vilatela, A.; Bulmer, J.; Kurzepa, L.; Koziol, K. K. Carbon nanotube wires for high-temperature performance. Carbon 2013, 64, 305–314.

    Article  Google Scholar 

  16. Janas, D.; Herman, A. P.; Boncel, S.; Koziol, K. K. K. Iodine monochloride as a powerful enhancer of electrical conductivity of carbon nanotube wires. Carbon 2014, 73, 225–233.

    Article  Google Scholar 

  17. Janas, D.; Vilatela, A. C.; Koziol, K. K. K. Performance of carbon nanotube wires in extreme conditions. Carbon 2013, 62, 438–446.

    Article  Google Scholar 

  18. Jarosz, P.; Schauerman, C.; Alvarenga, J.; Moses, B.; Mastrangelo, T.; Raffaelle, R.; Ridgley, R.; Landi, B. Carbon nanotube wires and cables: Near-term applications and future perspectives. Nanoscale 2011, 3, 4542–4553.

    Article  Google Scholar 

  19. Kurzepa, L.; Lekawa- Raus, A.; Patmore, J.; Koziol, K. Replacing copper wires with carbon nanotube wires in electrical transformers. Adv. Fund. Mater. 2014, 24, 619–624.

    Article  Google Scholar 

  20. Li, D.; Yang, Q. S.; Liu, X.; Shang, J. J. Experimental investigation on tensile properties of carbon nanotube wires. Mech. Mater. 2017, 705, 42–48.

    Article  Google Scholar 

  21. Misak, H. E.; Asmatulu, R.; Sabelkin, V.; Mall, S.; Kladitis, P. E. Tension-tension fatigue behavior of carbon nanotube wires. Carbon 2013, 52, 225–231.

    Article  Google Scholar 

  22. Misak, H. E.; Sabelkin, V.; Mall, S.; Asmatulu, R.; Kladitis, P. E. Failure analysis of carbon nanotube wires. Carbon 2012, 50, 4871–4879.

    Article  Google Scholar 

  23. Misak, H. E.; Sabelkin, V.; Mall, S.; Kladitis, P. E. Thermal fatigue and hypothermal atomic oxygen exposure behavior of carbon nanotube wire. Carbon 2013, 57, 42–49.

    Article  Google Scholar 

  24. Sabelkin, V.; Misak, H. E.; Mall, S.; Asmatulu, R.; Kladitis, P. E. Tensile loading behavior of carbon nanotube wires. Carbon 2012, 50, 2530–2538.

    Article  Google Scholar 

  25. Henck, H.; Pierucci, D.; Fugallo, G.; Avila, J.; Cassabois, G.; Dappe, Y. J.; Silly, M. G.; Chen, C. Y.; Gil, B.; Gatti, M. et al. Direct observation of the band structure in bulk hexagonal boron nitride. Phys. Rev. B 2017, 95, 085410.

    Article  Google Scholar 

  26. Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404–409.

    Article  Google Scholar 

  27. Cappellini, G.; Satta, G.; Palummo, M.; Onida, G. Optical properties of BN in cubic and layered hexagonal phases. Phys. Rev. B 2001, 64, 035104.

    Article  Google Scholar 

  28. Ertug, B. Powder preparation, properties and industrial applications of hexagonal boron nitride. In Sintering Applications; Ertug, B., Ed.; IntechOpen: Rijeka, 2013; pp 33–55.

    Chapter  Google Scholar 

  29. Li, L. H.; Chen, Y. Atomically thin boron nitride: Unique properties and applications. Adv. Fund. Mater. 2016, 26, 2594–2608.

    Article  Google Scholar 

  30. Li, Q.; Chen, L.; Gadinski, M. R.; Zhang, S. H.; Zhang, G. Z.; Li, H. U.; Iagodkine, E.; Haque, A.; Chen, L. Q.; Jackson, T. N. et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 2015, 523, 576–579.

    Article  Google Scholar 

  31. Wen, G.; Wu, G. L; Lei, T. Q.; Zhou, Y.; Guo, Z. X. Co-enhanced SiO2-BN ceramics for high-temperature dielectric applications. J. Eur. Ceram. Soc. 2000, 20, 1923–1928.

    Article  Google Scholar 

  32. Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

    Article  Google Scholar 

  33. Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

    Article  Google Scholar 

  34. Khan, M. H.; Liu, H. K.; Sun, X. D.; Yamauchi, Y.; Bando, Y.; Golberg, D.; Huang, Z. G. Few-atomic-layered hexagonal boron nitride: CVD growth, characterization, and applications. Mater. Today 2017, 20, 611–628.

    Article  Google Scholar 

  35. Pan, C. B.; Ji, Y. E.; Xiao, N.; Hui, E.; Tang, K. C.; Guo, Y. Z.; Xie, X. M.; Puglisi, F. M.; Larcher, L.; Miranda, E. et al. Coexistence of grain-boundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride. Adv. Fund. Mater. 2017, 27, 1604811.

    Article  Google Scholar 

  36. Son, S. K.; Siskins, M.; Mullan, C.; Yin, J.; Kravets, V. G.; Kozikov, A.; Ozdemir, S.; Alhazmi, M.; Holwill, M.; Watanabe, K. et al. Graphene hot-electron light bulb: Incandescence from hBN-encapsulated graphene in air. 2D Mater. 2018, 5, 011006.

    Article  Google Scholar 

  37. Corso, M.; Auwarter, W.; Muntwiler, M.; Tamai, A.; Greber, T.; Osterwalder, J. Boron nitride nanomesh. Science 2004, 303, 217–220.

    Article  Google Scholar 

  38. Dai, S.; Ma, Q.; Liu, M. K.; Andersen, T.; Fei, Z.; Goldflam, M. D.; Wagner, M.; Watanabe, K.; Taniguchi, T.; Thiemens, M. et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotechnol. 2015, 10, 682–686.

    Article  Google Scholar 

  39. Woessner, A.; Lundeberg, M. B.; Gao, Y. D.; Principi, A.; Alonso- Gonzalez, P.; Carrega, M.; Watanabe, K.; Taniguchi, T.; Vignale, G.; Polini, M. et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures. Nat. Mater. 2015, 14, 421–425.

    Article  Google Scholar 

  40. Levendorf, M. P.; Kim, C. J.; Brown, L.; Huang, P. Y.; Havener, R. W.; Muller, D. A.; Park, J. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 2012, 488, 627–632.

    Article  Google Scholar 

  41. Tsao, J. Y.; Chowdhury, S.; Hollis, M. A.; Jena, D.; Johnson, N. M.; Jones, K. A.; Kaplar, R. J.; Rajan, S.; van de Walle, C. G.; Bellotti, E. et al. Ultrawide-bandgap semiconductors: Research opportunities and challenges. Adv. Electron. Mater. 2018, 4, 1600501.

    Article  Google Scholar 

  42. Matus, L. G. Instrumentation for aerospace applications: Electronic-based technologies. J. Aerosp. Eng. 2013, 26, 409–421.

    Article  Google Scholar 

  43. Huang, J. W.; Pan, C.; Tran, S.; Cheng, B.; Watanabe, K.; Taniguchi, T.; Lau, C. N.; Bockrath, M. Superior current carrying capacity of boron nitride encapsulated carbon nanotubes with zero-dimensional contacts. Nana Lett. 2015, 75, 6836–6840.

    Article  Google Scholar 

  44. Jiang, K. L.; Wang, J. P.; Li, Q. Q.; Liu, L.; Liu, C. H.; Fan, S. S. Superaligned carbon nanotube arrays, films, and yarns: A road to applications. Adv. Mater. 2011, 23, 1154–1161.

    Article  Google Scholar 

  45. Liu, K.; Sun, Y. H.; Lin, X. Y.; Zhou, R. E.; Wang, J. P.; Fan, S. S.; Jiang, K. L. Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns. ACS Nano 2010, 4, 5827–5834.

    Article  Google Scholar 

  46. Lin, X. Y.; Zhao, W.; Zhou, W. B.; Liu, P.; Luo, S.; Wei, H. M.; Yang, G. Z.; Yang, J. H.; Cui, J.; Yu, R. C. et al. Epitaxial growth of aligned and continuous carbon nanofibers from carbon nanotubes. ACS Nano 2017, 11, 1257–1263.

    Article  Google Scholar 

  47. Li, Q. W.; Zhang, X. E.; DePaula, R. E.; Zheng, L. X.; Zhao, Y. H.; Stan, L.; Holesinger, T. G.; Arendt, P. N.; Peterson, D. E.; Zhu, Y. T. Sustained growth of ultralong carbon nanotube arrays for fiber spinning. Adv. Mater. 2006, 18, 3160–3163.

    Article  Google Scholar 

  48. Koziol, K.; Vilatela, J.; Moisala, A.; Motta, M.; Cunniff, P.; Sennett, M.; Windle, A. High-performance carbon nanotube fiber. Science 2007, 318, 1892–1895.

    Article  Google Scholar 

  49. Jiang, K. L.; Liu, L.; Liu, K.; Zhao, Q. Y.; Zhai, Y. C.; Fan S. S. Cable production method. China Patent CN101499337A, August 5, 2009.

    Google Scholar 

  50. Liu, L.; Jiang, K. L.; Fan, S. S.; Chen, Q. L.; Li, X. E.; Chen, J. L. Electromagnetic shielded cable. China Patent CN101090011A, December 12, 2007.

    Google Scholar 

  51. Caneva, S.; Weatherup, R. S.; Bayer, B. C.; Blume, R.; Cabrero-Vilatela, A.; Braeuninger-Weimer, P.; Martin, M. B.; Wang, R. Z.; Baehtz, C.; Schloegl, R. et al. Controlling catalyst bulk reservoir effects for monolayer hexagonal boron nitride CVD. Nano Lett. 2016, 16, 1250–1261.

    Article  Google Scholar 

  52. Kim, G.; Jang, A. R.; Jeong, H. Y.; Lee, Z.; Kang, D. J.; Shin, H. S. Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil. NanoLett. 2013, 13, 1834–1839.

    Article  Google Scholar 

  53. Nemanich, R. J.; Solin, S. A.; Martin, R. M. Light scattering study of boron nitride microcrystals. Phys. Rev. B 1981, 23, 6348–6356.

    Article  Google Scholar 

  54. Gorbachev, R. V.; Riaz, I.; Nair, R. R.; Jalil, R.; Britnell, L.; Belle, B. D.; Hill, E. W.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T. et al. Hunting for monolayer boron nitride: Optical and Raman signatures. Small 2011, 7, 465–468.

    Article  Google Scholar 

  55. Paine, R. T.; Narula, C. K. Synthetic routes to boron nitride. Chem. Rev. 1990, 90, 73–91.

    Article  Google Scholar 

  56. Herring, C.; Nichols, M. H. Thermionic emission. Rev. Mod. Phys. 1949, 21, 185–270.

    Article  Google Scholar 

  57. Liu, P.; Sun, Q.; Zhu, E.; Liu, K.; Jiang, K. L.; Liu, L.; Li, Q. Q.; Fan, S. S. Measuring the work function of carbon nanotubes with thermionic method. Nano Lett. 2008, 8, 647–651.

    Article  Google Scholar 

  58. Preobrajenski, A. B.; Vinogradov, A. S.; Martensson, N. Monolayer of h-BN chemisorbed on Cu(111) and Ni(111): The role of the transition metal 3D states. Surf. Sci. 2005, 582, 21–30.

    Article  Google Scholar 

  59. Nagashima, A.; Tejima, N.; Gamou, Y.; Kawai, T.; Oshima, C. Electronic structure of monolayer hexagonal boron nitride physisorbed on metal surfaces. Phys. Rev. Lett. 1995, 75, 3918–3921.

    Article  Google Scholar 

  60. Nagashima, A.; Tejima, N.; Gamou, Y.; Kawai, T.; Oshima, C. Electronic dispersion relations of monolayer hexagonal boron nitride formed on the Ni(111) surface. Phys. Rev. B 1995, 57, 4606–4613.

    Article  Google Scholar 

  61. He, C. Y.; Yu, Z. Z.; Sun, L. Z.; Zhong, J. X. Work Functions of boron nitride nanoribbons: First-principles study. J. Comput. Theor. Nanosci. 2012, 9, 16–22.

    Article  Google Scholar 

  62. Jiao, N.; He, C. Y.; Zhang, C. X.; Peng, X. Y.; Zhang, K. W.; Sun, L. Z. Modulation effect of hydrogen and fluorine decoration on the surface work function of BN sheets. AIP Adv. 2012, 2, 022125.

    Article  Google Scholar 

  63. Zhi, C. Y.; Bando, Y.; Tang, C. C.; Golberg, D. Boron nitride nanotubes. Mater. Sci. Eng. R Rep. 2010, 70, 92–111.

    Article  Google Scholar 

  64. Brodu, E.; Balat-Pichelin, M. Emissivity of boron nitride and metals for the solar probe plus mission. J. Spacecr. Rockets. 2016, 53, 1119–1127.

    Article  Google Scholar 

  65. Gonzalez de Arrieta, I.; Echaniz, T.; Fuente, R.; del Campo, L.; De Sousa Meneses, D.; Lopez, G. A.; Tello, M. J. Mid-infrared optical properties of pyrolytic boron nitride in the 390–1050 °C temperature range using spectral emissivity measurements. J. Quant. Spectrosc. Radiat. Transf. 2017, 194, 1–6.

    Article  Google Scholar 

  66. Frederikse, H. P. R.; Kahn, A. H.; Dragoo, A. L.; Hosier, W. R. Electrical resistivity and microwave transmission of hexagonal boron nitride. J. Am. Ceram. Soc. 1985, 68, 131–135.

    Article  Google Scholar 

  67. Fowler, R. H. The thermionic emission constant A. Proc. Roy. Soc. A 1929, 722, 36–49.

    Article  Google Scholar 

  68. Wigner, E. On the constant A in richardson's equation. Phys. Rev. 1936, 49, 696–700.

    Article  Google Scholar 

  69. Wei, Y.; Jiang, K. L.; Feng, X. E.; Liu, P.; Liu, L.; Fan, S. S. Comparative studies of multiwalled carbon nanotube sheets before and after shrinking. Phys. Rev. B 2007, 76, 045423.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Chunhai Zhang, Qingyu Zhao, Ke Zhang, Lin Cong, Wen Ning, Xinyu Gao, Yueming Liang, Yuqian Cai, Guang Wang, and Zebin Liu for their valuable helps. This work is financially supported by the National Key R&D Program of China (Nos. 2018YFA0208401 and 2017YFA0205800), the National Natural Science Foundation of China (Nos. 51788104, 51727805, and 51672152). This work is supported in part by the Beijing Advanced Innovation Center for Future Chip (ICFC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Liu or Kaili Jiang.

Electronic supplementary material

Supplementary material, approximately 10.1 MB.

Supplementary material, approximately 12.2 MB.

12274_2019_2447_MOESM3_ESM.pdf

High temperature performance of coaxial h-BN/CNT wires above 1,000 °C: Thermionic electron emission and thermally activated conductivity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Liu, P., Zhou, D. et al. High temperature performance of coaxial h-BN/CNT wires above 1,000 °C: Thermionic electron emission and thermally activated conductivity. Nano Res. 12, 1855–1861 (2019). https://doi.org/10.1007/s12274-019-2447-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2447-z

Keywords

Navigation