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Abstract
We prove that a Pfaffian system with coefficients in the critical space L2

loc on a simply

connected open subset of R2 has a non-trivial solution in W 1,2
loc if the coefficients are

antisymmetric and satisfy a compatibility condition. As an application of this result,
we show that the fundamental theorem of surface theory holds for prescribed first and
second fundamental forms of optimal regularity in the classes W 1,2

loc and L2
loc, respec-

tively, that satisfy a compatibility condition equivalent to theGauss–Codazzi–Mainardi
equations. Finally, we give a weak compactness theorem for surface immersions in
the class W 2,2

loc .
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1 Introduction

In an open set U ⊂ R
2, we consider a Pfaffian system of the form

∇P = P�, (1.1)

where P is a matrix-valued function and � is a given matrix-valued one-form. Local
existence of a non-trivial solution P to this partial differential equation, and its regu-
larity, manifestly depend on the regularity properties of the coefficients. It is a classical
result that a twice continuously differentiable solution exists if every component �i

is continuously differentiable and they satisfy the compatibility condition

∂i� j − ∂ j�i = � j�i − �i� j . (1.2)
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Optimal Regularity for Pfaffian Systems and the FTST 2595

One objective of the present paper is to show the corresponding result for solutions
P ∈ W 1,2

loc and coefficients � ∈ L2 satisfying an additional structural assumption.
This is the case of least possible regularity for an equation such as Eq. (1.2) to make
sense in an integrated form. We then have

Theorem 1 Let U ⊂ R
2 be a connected and simply connected open set and let

� ∈ L2(U , so(m) ⊗ ∧1
R
2) satisfy the compatibility condition, Eq. (1.2), in the dis-

tributional sense. Then there exists P ∈ W 1,2
loc (U ,SO(m)) such that ∇P = P� in U.

Moreover, any two such solutions P0, P1 are related by P0 = CP1 with a constant
C ∈ SO(m).

Over the years, there have been several incremental improvements to the classical
theory. In particular, Hartman and Wintner [5] showed that the above existence result
holds if the given form� is continuous, with a continuously differentiable solution P .
Following this, Mardare [7,8] first showed the existence of a solution P to Eq. (1.1) in
the Sobolev classW 1,∞

loc for locally essentially bounded coefficients and later improved

the theorem to hold in the class W 1,p
loc for � ∈ L p

loc, where p > 2. It is important
to note that without any further structural assumptions on the coefficients �, this
result has been demonstrated to be optimal [8]. However, once one supposes that
the components of the matrix-valued one-form � be antisymmetric, it is possible to
improve the regularity to the critical case that is Theorem 1.

Meanwhile, there have been developments in the theory of non-linear PDE that
attempt to exploit a particular structure of the equation in order to gain additional
regularity of the solution beyond what would usually be expected; and these compen-
sated compactness methods [4,12,14] have been markedly successful in that regard.
In particular, in his 2007 paper, Rivière [12] provided a proof of the regularity of two-
dimensional weakly harmonic maps, from which we recall an important intermediate
result:

Lemma 2 (Rivière [12], Lemma A.3; Schikorra [13]) Let U ⊂ R
2 be a contractible

bounded regular domain and let � ∈ L2(U , so(m) ⊗ ∧1
R
2). Then there exist ξ ∈

W 1,2
0 (U , so(m)) and P ∈ W 1,2(U ,SO(m)) such that

P−1∇P + P−1�P = ∇⊥ξ, (1.3)

‖∇ξ‖2L2 + ‖∇P‖2L2 ≤ C(m)‖�‖2L2 . (1.4)

Thanks to the Riemann mapping theorem, Lemma 2 also holds true if U ⊂ R
2 is an

open, connected, and simply connectedbounded setwith sufficiently smoothboundary.
While the techniques employed in the original proof [12] are quite involved, Schikorra
[13] gave an alternative proof using variational methods, which in addition removes
the need for a smallness condition on �.

The above result is of particular interest to us because the given form � is only
assumed to be square-integrable. In order to achieve existence and regularity of the
solution P ∈ W 1,2, the additional structure assumed, that is, the antisymmetry of
each �i , is utilized in a crucial way. In the same vein, it is this additional structural
assumption that enables us to employ Rivière’s lemma to extend the previous results
on the solvability of the above Pfaffian system in Eq. (1.1) to the critical p = 2 case.
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2596 F. Litzinger

The possibility of finding a solution to this Pfaffian system, in turn, has been an
essential ingredient in the proof ofweakversions of the fundamental theoremof surface
theory. As for Pfaffian systems, there have been incremental improvements to this
classical geometric result. The theorem answers the question of whether it is possible
to find an immersion of a surface in three-dimensional space with prescribed first and
second fundamental forms—this turns out to be true if, and only if, the fundamental
forms satisfy the Gauss–Codazzi–Mainardi equations. We obtain the following

Theorem 3 Let U be a connected and simply connected open subset of R2 and let
(ai j ) ∈ W 1,2

loc (U ,Sym+(2)) ∩ L∞
loc(U ,Sym+(2)) and (bi j ) ∈ L2

loc(U ,Sym(2)) be
given. Suppose that the eigenvalues of (ai j ) are locally uniformly bounded from below
and that the matrix fields (ai j ), (bi j ) are such that

∂1�2 − ∂2�1 = �2�1 − �1�2, (1.5)

where � ∈ L2
loc(U , so(3) ⊗ ∧1

R
2) is given by the following sequence of definitions,

see also Sect. 4.2:

(ai j ) = 1

a11a22 − a12a21

(
a22 −a12

−a21 a11

)
,

b j
i = a jkbik,

�k
i j = 1

2
ak�(∂ j ai� + ∂i a j� − ∂�ai j ),

G =
⎛
⎜⎝
a11 a12 0

a21 a22 0

0 0 1

⎞
⎟⎠

1
2

,

�i =
⎛
⎜⎝

�1
i1 �1

i2 −b1i
�2
i1 �2

i2 −b2i
bi1 bi2 0

⎞
⎟⎠ ,

�i = (G�i − ∂i G)G−1.

Then there exists an immersion θ ∈ W 2,2
loc (U ,R3) such that

ai j = ∂iθ · ∂ jθ in W 1,2
loc (U ), (1.6)

bi j = ∂i jθ · ∂1θ × ∂2θ

|∂1θ × ∂2θ | in L2
loc(U ). (1.7)

Moreover, the map θ is unique in W 2,2
loc (U ,R3) up to proper isometries of R3.

We remark that the compatibility condition assumed in the theorem is in fact equiva-
lent to the Gauss–Codazzi–Mainardi equations, see Proposition 7. As for the Pfaffian

123



Optimal Regularity for Pfaffian Systems and the FTST 2597

system mentioned above, one needs to consider the compatibility equations in the
distributional sense.

In the works mentioned above [5,7,8], the fundamental theorem of surface theory
has been extended to hold true for, finally, first and second fundamental forms in the
classes W 1,p

loc and L p
loc, respectively, where p > 2. The method of proof, whose lines

we also follow in this paper, is the following: First, a Pfaffian system as in Eq. (1.1)
is solved for a proper orthogonal matrix field P , and then the sought-after surface
immersion is found by means of a weak version of the Poincaré lemma, solving the
equation ∇θ = PG, where G is the matrix square root of the three-dimensional
extension of the given metric. Since the Poincaré lemma is known to hold for all
p ≥ 1 (see Lemma 5), the premier challenge in extending the fundamental theorem of
surface theory to the critical exponent p = 2 lies in the extension of the corresponding
existence theorem on Pfaffian systems.

Therefore, in order to be able to apply Theorem 1, an appropriate antisymmetric
matrix-valued one-form � of coefficients of the Pfaffian system has to be constructed
as above. While the connection form � does not possess this property in an arbitrary
frame, it is known to be antisymmetric in an orthonormal frame. This approach to the
fundamental theorem of surface theory, via an antisymmetric field of coefficients, has
previously been introduced by Ciarlet et al. [2], who identified the solution P of the
Pfaffian system as the rotation field appearing in the polar factorization of the gradient
of the three-dimensional extension of the immersion θ .

As a consequence of our approach, we finally obtain a weak rigidity of the compat-
ibility equation and a weak compactness theorem for surface immersions in the class
W 2,2

loc .

Theorem 4 Let {θk} ⊂ W 2,2
loc (U ,R3) be a uniformly bounded sequence of immer-

sions with corresponding sequences of first and second fundamental forms denoted
by {(ai j )k} and {(bi j )k}, respectively. Suppose that ∂iθ

k ∈ W 1,2
loc ∩ L∞

loc and that the
first fundamental forms (ai j )k , aki j = ∂iθ

k · ∂ jθ
k , have eigenvalues bounded from

below uniformly in the domain U and in k. Then, after passing to subsequences, {θk}
converges weakly in W 2,2

loc to an immersion θ ∈ W 2,2
loc (U ,R3), whose first and second

fundamental forms (ai j ), (bi j ) are limit points of the sequences {(ai j )k}, {(bi j )k} in
the W 1,2

loc - and L2
loc-topologies, respectively.

In the context of immersions of Riemannian manifolds, results in this spirit already
appeared in a recent work by Chen and Li [1]. Moreover, sequences of weak immer-
sions have previously been investigated without any assumptions about the first
fundamental form, supposing instead a uniform bound on the L2-norm of the sec-
ond fundamental form—see the paper of Laurain and Rivière [6] and the references
therein.

This paper is structured as follows: In Sect. 2 we introduce the notation that is used
throughout this article.After that,weprove inSect. 3 that the optimal existence theorem
for Pfaffian systems is a consequence of the aforementioned lemma of Rivière. We
also extend the theorem from the unit disk to arbitrary simply connected open subsets
of R2. Thereafter, in Sect. 4, we apply this result to the optimal regularity case of the
fundamental theorem of surface theory, mostly following along the lines of previous
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2598 F. Litzinger

approaches [2,8]. In Sect. 5, finally, we conclude the paper by demonstrating the weak
compactness of W 2,2

loc -immersions.

2 Notations and Preliminaries

Throughout this paper, let U be an open, connected and simply connected subset of
R
2. A continuously differentiable mapping θ : U → R

3 is called an immersion if the
vectors ∂iθ(y), i = 1, 2, are linearly independent for all y ∈ U .

We denote the set of real matrices of size n × n by gl(n), the set of symmetric
matrices by Sym(n), the set of symmetric positive definite matrices by Sym+(n), the
set of antisymmetric matrices by so(n), the set of orthogonal matrices by O(n), and
the set of proper orthogonal matrices by SO(n). We write the space of so(n)-valued
one-forms onR2 as so(n)⊗∧1

R
2. The components of� ∈ so(n)⊗∧1

R
2 are denoted

by �i , i = 1, 2, such that �i ∈ so(n).
Moreover, we denote the elements of a matrix A ∈ gl(n) by ai j , i, j = 1, . . . , n,

such that A = (ai j ), and the j-th column of A is denoted by A( j) = a j . The inverse
A−1 of A is denoted by (ai j ) and the transpose of A by AT = (a ji ). We enumerate the
real eigenvalues of A ∈ Sym(n) as λ1(A) ≤ · · · ≤ λn(A) and with any A ∈ Sym+(n)

we associate the unique matrix square root A
1
2 .

We write D(U ) for the space of smooth functions with compact support contained
inU andD′(U ) for the space of distributions overU . As usual, we denote the Lebesgue
spaces by L p(U ), 1 ≤ p ≤ ∞, and the Sobolev spaces of (equivalence classes of)
weakly differentiable functions by Wk,p(U ), k = 0, 1, . . . , 1 ≤ p ≤ ∞. The closure
of D(U ) in W 1,2(U ) is denoted by W 1,2

0 (U ). Furthermore, we write

Wk,p
loc (U ) = {T ∈ D′(U ) : T ∈ Wk,p(V ) for all open sets V ⊂⊂ U }.

Whenever X is a finite-dimensional space, let D(U , X), L p(U , X), and Wk,p(U , X)

designate the spaces of X -valued objects whose components belong toD(U ), L p(U ),
and Wk,p(U ), respectively. We shall omit the additional symbol if it is implied by the
context.

We note that the spaceW 1,2(B)∩ L∞(B) is an algebra for all open balls B ⊂⊂ U ,
so that f g ∈ W 1,2

loc (U ) ∩ L∞
loc(U ) whenever f , g ∈ W 1,2

loc (U ) ∩ L∞
loc(U ).

For later use, we recall the following weak version of the Poincaré lemma.

Lemma 5 (Mardare [9], Theorem 6.5) Let U be a connected and simply connected
open subset of R2 and let p ≥ 1. Let fi ∈ L p

loc(U ), i = 1, 2, be functions that satisfy

∂1 f2 = ∂2 f1 in D′(U ). (2.1)

Then there exists a function θ ∈ W 1,p
loc (U ), unique up to an additive constant, such

that

∂iθ = fi in L p
loc(U ). (2.2)
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Finally, we remark that the Pfaffian system in Eq. (1.1) studied in this paper can
be understood in the following way: We interpret � ∈ so(m) ⊗ ∧1

R
2 as a tensor �i

j�
that is antisymmetric in i and j . Equation (1.1) then reads, for � = 1, 2,

∂�P = P��,

that is, assuming the summation convention,

∂�P
i
j = Pi

k�
k
j�.

3 Pfaffian Systems with Coefficients in L2

This section is devoted to the proof of Theorem 1. Building upon Lemma 2, we first
show the following

Proposition 6 Let U and � be as in Lemma 2 and let � satisfy the compatibility
equation

∂i� j − ∂ j�i = � j�i − �i� j . (3.1)

Then there exists P ∈ W 1,2(U ,SO(m)) such that

∇P + �P = 0. (3.2)

Moreover, if P0 and P1 are two such solutions then there exists a constant C ∈ SO(m)

such that

P0 = P1C . (3.3)

Proof By Lemma 2, there exist ξ ∈ W 1,2
0 (U , so(m)) and P ∈ W 1,2(U ,SO(m)) such

that

P−1∇P + P−1�P = ∇⊥ξ. (3.4)

We obtain, using the compatibility equation (3.1),

∇⊥(P∇⊥ξ) = ∇⊥∇P + ∇⊥(�P)

= ∇⊥�P + �∇⊥P

= −�1P∂1ξ − �2P∂2ξ,

whence

∇⊥P · ∇⊥ξ + P	ξ = −�P∇ξ,
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2600 F. Litzinger

and thus

P	ξ = −∇⊥P · ∇⊥ξ − �P∇ξ

= −P∇⊥ξ · ∇ξ,

or equivalently

	ξ = (∂2ξ)(∂1ξ) − (∂1ξ)(∂2ξ). (3.5)

While the right-hand side of this equation is not necessarily equal to zero, we
claim that Eq. (3.5) does imply that ξ ≡ 0, using that ξ |∂U = 0. Indeed, this follows
directly from a theorem of Wente [15], thanks to the fact that, by a result of Müller
and Schikorra [11], ξ ∈ W 1,2

0 (U , so(m)) is continuous in Ū . This yields Eq. (3.2).
Now suppose that P0, P1 ∈ W 1,2(U ,SO(m)) solve

∇P0 + �P0 = 0,

∇P1 + �P1 = 0

in U , respectively. Since ∇(P−1
1 ) = −P−1

1 (∇P1)P
−1
1 , we have

∇(P−1
1 P0) = ∇(P1

1 )P0 + P−1
1 ∇P0

= −P−1
1 (∇P1)P

−1
1 P0 + P−1

1 ∇P0

= P−1
1 �P1P

−1
1 P0 − P−1

1 �P0
= 0.

Thus P−1
1 P0 = C , that is, P0 = P1C , a constant invertible matrix. We also have

CTC = P−1
0 P1P

−1
1 P0 = I and detC = (det P1)−1 det P0 = 1, whereby C ∈

SO(m). ��
In order to prove Theorem 1, it remains to extend the statement of Proposition 6 to

any connected and simply connected open setU . In fact, this amounts to the construc-
tion of a global solution by gluing together local solutions as in, e. g., the proof of the
Poincaré lemma with little regularity given by Mardare [10], the details of which we
thus omit. It should be noted that this construction is not limited to the two-dimensional
case. Alternatively, one may use the fact that, as mentioned above, simply connected
domains in the plane are contractible. As a result, Theorem 1 follows readily after
transposition and using that �i ∈ so(m).

4 Application to the Fundamental Theorem of Surface Theory

In this section, we shall apply Theorem 1 in order to prove the existence of a W 2,2
loc -

immersion of a surface with prescribed first and second fundamental forms in the
classes W 1,2

loc and L2
loc, respectively. First, we motivate the definition of appropriate
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antisymmetric matrix fields�i that serve as the coefficients of a Pfaffian system. After
that, we show that the quantities derived from the given matrix fields that are to be
realized as fundamental forms of a surface possess the required regularity. We then
prove Theorem 3. Lastly, we demonstrate that the compatibility equation satisfied by
the matrix fields �i is equivalent to the Gauss–Codazzi–Mainardi equations in the
present setting.

4.1 Derivation of Antisymmetric Coefficients

Following the exposition in Clelland [3], we derive the antisymmetric quantities that
have previously been introduced by Ciarlet et al. [2], but this time from the viewpoint
of Cartan geometry.

LetU ⊂ R
2 be open, connected, and simply connected and let θ : U → (R3, 〈· , ·〉)

be a smooth immersion whose image 
 = θ(U ) is a regular surface. Furthermore,
let θ̃ : U → E(3), θ̃ (x) = (θ(x); e1(x), e2(x), e3(x)), where E(3) is the Euclidean
group, be an adapted frame field. Thismeans that for each x ∈ U , (e1(x), e2(x), e3(x))
is an oriented orthonormal basis of Tθ(x)R

3 and e3(x) is orthogonal to Tθ(x)
.
We define scalar-valued one-forms (ωi , ωi

j ) on E(3) by

dθ = eiω
i , (4.1)

dei = e jω
j
i . (4.2)

They have the properties

ωi (e j ) = δij ,

ω
j
i = −ωi

j ,

and they satisfy the Cartan structure equations

dωi = −ωi
j ∧ ω j , (4.3)

dωi
j = −ωi

k ∧ ωk
j . (4.4)

The Maurer–Cartan form on E(3) is given by

� =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

ω1 ω1
1 ω1

2 ω1
3

ω2 ω2
1 ω2

2 ω2
3

ω3 ω3
1 ω3

2 ω3
3

⎞
⎟⎟⎟⎟⎠

and the Cartan structure equations are equivalent to the Maurer–Cartan equation

d� = −� ∧ �. (4.5)
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2602 F. Litzinger

The one-forms (ωi , ωi
j ) are collectively referred to as Maurer–Cartan forms as well.

Let (ω̄i , ω̄i
j ) = (θ̃∗ωi , θ̃∗ωi

j ) be the pullbacks onU . Then ω̄3 = 0 and ω̄1, ω̄2 form
a basis for the one-forms on U . The first fundamental form on TU is given by

I = (ω̄1)2 + (ω̄2)2, (4.6)

and the second fundamental form by

II = ω̄3
1ω̄

1 + ω̄3
2ω̄

2 = h11(ω̄
1)2 + 2h12ω̄

1ω̄2 + h22(ω̄
2)2, (4.7)

where h11, h12, h22 are such that

(
ω̄3
1

ω̄3
2

)
=

(
h11 h12

h12 h22

)(
ω̄1

ω̄2

)
.

Hence

ω̄3
k = hkj ω̄

j , 1 ≤ j, k ≤ 2,

ω̄
j
� = �

j
k�ω̄

k, 1 ≤ j, k, � ≤ 2,

ω̄i
i = −ω̄i

i = 0, i = 1, 2, 3.

Moreover, the Maurer–Cartan equation (4.5) is equivalent to the Gauss–Codazzi–
Mainardi equations, which read in this notation as follows:

dω̄1
2 = ω̄3

1 ∧ ω̄3
2, (4.8)

dω̄3
1 = ω̄3

2 ∧ ω̄1
2, (4.9)

dω̄3
2 = −ω̄3

1 ∧ ω̄1
2. (4.10)

If we write

ω =
⎛
⎜⎝

0 ω̄1
2 ω̄1

3

ω̄2
1 0 ω̄2

3

ω̄3
1 ω̄3

2 0

⎞
⎟⎠ ,

then we may define

�i := ω(ei ) =
⎛
⎜⎝

0 �1
i2 −h1i

�2
i1 0 −h2i

h1i h2i 0

⎞
⎟⎠ .
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Now, given a metric ḡ on 
 and an orthonormal frame e = (e1, e2, e3), we set

g =
⎛
⎜⎝
ḡ11 ḡ12 0

ḡ21 ḡ22 0

0 0 1

⎞
⎟⎠

1
2

.

Defining the frame e′ = eg−1, which is orthonormal with respect to g2, the Maurer–
Cartan form in this frame is given by means of the gauge transformation

ω′ = (gω + dg)g−1, (4.11)

which implies in components that

�′
i = (g�i − ∂i g)g

−1. (4.12)

Differentiating the orthonormality condition for the frame e′ with respect to the metric
g2, we see that the connection coefficients �′

i must be antisymmetric.

4.2 Regularity of Coefficients

Let (ai j ) ∈ W 1,2
loc (U ,Sym+(2)) ∩ L∞

loc(U ,Sym+(2)) and (bi j ) ∈ L2
loc(U ,Sym(2))

and define

(ai j ) = 1

a11a22 − a12a21

(
a22 −a12

−a21 a11

)
, (4.13)

b j
i = a jkbik, (4.14)

�k
i j = 1

2
ak�(∂ j ai� + ∂i a j� − ∂�ai j ), (4.15)

G =
⎛
⎝a11 a12 0
a21 a22 0
0 0 1

⎞
⎠

1
2

, (4.16)

�i =
⎛
⎜⎝

�1
i1 �1

i2 −b1i
�2
i1 �2

i2 −b2i
bi1 bi2 0

⎞
⎟⎠ , (4.17)

�i = (G�i − ∂i G)G−1. (4.18)

Since W 1,2
loc ∩ L∞

loc is an algebra, we see that

det(ai j ) = a11a22 − a12a21 ∈ W 1,2
loc ∩ L∞

loc.
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2604 F. Litzinger

Now assume in addition that the (positive) eigenvalues of (ai j ) are locally uniformly
bounded away from zero, i. e., there exists C > 0 such that 0 < C < λ1 < λ2
almost everywhere in K ⊂⊂ U . Then det(ai j )−1 ∈ L∞

loc. Therefore, we have that
(ai j ) ∈ L∞

loc. Moreover, the fact that

D(det(ai j )
−1) = −D(det(ai j ))

det(ai j )2

implies that

det(ai j )
−1 ∈ W 1,2

loc ∩ L∞
loc.

Hence

(ai j ) ∈ W 1,2
loc (U ,Sym+(2)) ∩ L∞

loc(U ,Sym+(2)). (4.19)

Furthermore, by the boundedness of (ai j ) and as (ai j ) ∈ W 1,2
loc , we obtain that

�k
i j ∈ L2

loc(U ). (4.20)

From the formula

A
1
2 = 1√

tr A + 2
√
det A

(A + √
det AI ),

valid for any A ∈ Sym+(2), we infer, using again (ai j ) ∈ W 1,2
loc ∩ L∞

loc and the
boundedness of the eigenvalues away from zero, that

(ai j )
1
2 , (ai j )

− 1
2 ∈ W 1,2

loc ∩ L∞
loc. (4.21)

Finally, as �i ∈ L2
loc we conclude that

�i ∈ L2
loc(U , gl(3)). (4.22)

It remains to show that each matrix �i is antisymmetric. (The following argument
is taken from the proof of Theorem 7 in Ciarlet et al. [2].) Equivalently, we may show
that

G�i G = G2�i − G∂i G (4.23)

is antisymmetric. By a direct computation, using the symmetry of (ai j ), we find that

G2�i + �T
i G

2 =
⎛
⎜⎝

2�i11 �i12 + �i21 0

�i21 + �i12 2�i22 0

0 0 0

⎞
⎟⎠ = ∂i G

2.
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Here, as usual, �i jk = ak���
i j . We thus compute

G�i G = G2�i − G∂i G

= 1

2
G2�i + 1

2
(∂i G

2 − �T
i G

2) − G∂i G

= 1

2
(G2�i − �T

i G
2) + 1

2

(
(∂i G)G + G∂i G

) − G∂i G

= 1

2
(G2�i − �T

i G
2) + 1

2

(
(∂i G)G − G∂i G

)
,

whereby, indeed, �i ∈ so(3).
Therefore, we have shown that if (ai j ) ∈ W 1,2

loc (U ,Sym+(2)) ∩ L∞
loc(U ,Sym+(2))

and (bi j ) ∈ L2
loc(U ,Sym(2)) are given and the eigenvalues of (ai j ) are locally uni-

formly bounded from below then � ∈ L2
loc(U , so(3) ⊗ ∧1

R
2).

4.3 Optimal Regularity Theorem

We are now in a position to prove the optimal regularity case of the fundamental
theorem of surface theory. By and large, we follow the proof of the corresponding
Theorem 7 in Ciarlet et al. [2].

Proof of Theorem 3 We have shown in the previous section that � ∈ L2(U , so(3) ⊗
∧1

R
2) and by assumption the compatibility equation is satisfied. Therefore, by The-

orem 1, there exists P ∈ W 1,2
loc (U ,SO(3)) such that

∂i P = P�i . (4.24)

Let G(i) = gi denote the i-th column of G. We know that P ∈ W 1,2
loc and G ∈

W 1,2
loc ∩ L∞

loc. Furthermore, as P ∈ SO(3), P is essentially bounded. Thus we conclude

that Pgi ∈ W 1,2
loc ∩ L∞

loc.
In order to apply Lemma 5, we require that

∂ j (Pgi ) = ∂i (Pg j ).

As ∂i P = P�i and P ∈ SO(3), we obtain

∂ j (Pgi ) − ∂i (Pg j ) = (∂ j P)gi + P∂ j gi − (∂i P)g j − P∂i g j

= P� j gi + P∂ j gi − P�i g j − P∂i g j ,

which is equal to zero if and only if

0 = � j gi + ∂ j gi − �i g j − ∂i g j

= (G� j − ∂ j G)G−1gi + ∂ j gi − (G�i − ∂i G)G−1g j + ∂i g j

= (G� j − ∂ j G)ei + ∂ j gi − (G�i − ∂i G)e j + ∂i g j
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= (G� j )(i) − (G�i )( j)

= G

⎛
⎜⎜⎝

�1
j i

�2
j i

b ji

⎞
⎟⎟⎠ − G

⎛
⎝�1

i j
�2
i j

bi j

⎞
⎠ ,

where ei denotes the i-th unit vector in R3. Since �k
i j = �k

ji and bi j = b ji , it follows
that

∂ j (Pgi ) − ∂i (Pg j ) = 0.

As a result, by Lemma 5, there exists θ ∈ W 1,2
loc (U ,R3) such that

∂iθ = Pgi (4.25)

in L2
loc. Since Pgi ∈ W 1,2

loc , we conclude that in fact θ ∈ W 2,2
loc (U ,R3). Moreover, as

the vectors Pgi are linearly independent, the map θ is an immersion.
Defining F := PG ∈ W 1,2

loc ∩ L∞
loc and fi = F(i) (here, i = 1, 2, 3), we have that

∂iθ = fi ,

FT F = G2 =
⎛
⎝a11 a12 0
a21 a22 0
0 0 1

⎞
⎠ .

Thus

f Ti f j = ai j ,

whence

∂iθ · ∂ jθ = ai j , (4.26)

and the matrix field (ai j ) is indeed the first fundamental form of the surface θ(U ).
Furthermore, it is clear that f Ti f3 = δi3, i = 1, 2, 3. Therefore, taking into account

that F is positive definite almost everywhere, it follows that

f3 = f1 × f2
| f1 × f2| .

Meanwhile, we compute

∂i jθ = ∂ j (Pgi )

= (∂ j P)gi + P∂ j gi
= P(� j gi + ∂ j gi )
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= P(� j G + ∂ j G)(i)

= P(G� j )(i)

= F(� j )(i).

As a result, we obtain that

∂i jθ · f3 = (∂i jθ)T f3

= (
(� j )(i)

)T
FT f3

=
(
�1

j i �2
j i b ji

)
· e3

= b ji , (4.27)

whereby the matrix field (bi j ) is the second fundamental form of θ(U ).
Regarding the question of uniqueness of the immersion thus obtained, we note that

by Theorem 1, the matrix field P is unique up to a multiplicative constant C ∈ SO(3),
while the function θ that results from the application of Lemma 5 is unique up to an
additive constant b ∈ R

3. Therefore, any two immersions θ , θ̃ constructed by means
of the above procedure are related by

θ = C θ̃ + b,

and the proof is complete. ��

4.4 Equivalence of Compatibility Conditions

By means of a direct computation, we argue that Eq. (1.2) is equivalent to the Gauss–
Codazzi–Mainardi equations.

Proposition 7 In the W 2,2
loc -setting of Theorem 3, the compatibility condition in

Eq. (1.2) is necessary and sufficient for the Gauss–Codazzi–Mainardi equations to
hold.

Proof Assuming the compatibility condition, we have shown the existence of aW 2,2
loc -

immersion with associated first and second fundamental forms (ai j ), (bi j ) which
necessarily satisfy the Gauss–Codazzi–Mainardi equations in the distributional sense.

Moreover, we have

0 = ∂1�2 − ∂2�1 − �2�1 + �1�2

= ∂1
(
(G�2 − ∂2G)G−1)

− ∂2
(
(G�1 − ∂1G)G−1)

− (G�2 − ∂2G)G−1(G�1 − ∂1G)G−1

+ (G�1 − ∂1G)G−1(G�2 − ∂2G)G−1

= (
∂1(G�2) − ∂1∂2G

)
G−1 − (G�2 − ∂2G)G−1(∂1G)G−1
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− (
∂2(G�1) − ∂2∂1G

)
G−1 + (G�1 − ∂1G)G−1(∂2G)G−1

− (G�2 − ∂2G)G−1(G�1 − ∂1G)G−1

+ (G�1 − ∂1G)G−1(G�2 − ∂2G)G−1 (4.28)

if and only if

0 = ∂1(G�2) − ∂1∂2G − (G�2 − ∂2G)G−1(∂1G)

− ∂2(G�1) + ∂2∂1G + (G�1 − ∂1G)G−1(∂2G)

− (G�2 − ∂2G)(�1 − G−1∂1G)

+ (G�1 − ∂1G)(�2 − G−1∂2G)

= (∂1G)�2 + G∂1�2 − G�2G
−1(∂1G) + (∂2G)G−1(∂1G)

− (∂2G)�1 − G∂2�1 + G�1G
−1(∂2G) − (∂1G)G−1(∂2G)

− G�2�1 + G�2G
−1(∂1G) + (∂2G)�1 − (∂2G)G−1(∂1G)

+ G�1�2 − G�1G
−1(∂2G) − (∂1G)�2 + (∂1G)G−1(∂2G)

= G(∂1�2 − ∂2�1 − �2�1 + �1�2). (4.29)

Therefore, the compatibility condition is equivalent to

∂i� j + �i� j = ∂ j�i + � j�i . (4.30)

On the other hand, in Mardare [8], it has been shown that these equations are
indeed equivalent to the Gauss–Codazzi–Mainardi equations, understood in the sense
of distributions. We note that their argument readily carries over to the present p = 2
case. ��

5 AWeak Compactness Theorem for Immersions in the ClassW2,2
loc

In order to prove the weak compactness theorem, we first show a corresponding state-
ment for the Pfaffian system ∇P = P�.

Lemma 8 Let {�k} ⊂ L2(U , so(3)⊗∧1
R
2) be a sequence such that �k⇀� in L2 as

k → ∞ and suppose that �k satisfies the compatibility condition for every k. Then,
up to the choice of a subsequence, there exists a sequence {Pk} ⊂ W 1,2

loc (U ,SO(3))

of solutions to the equation ∇Pk = Pk�k such that Pk⇀P in W 1,2
loc as k → ∞ and

∇P = P�.

Proof By Theorem 1, there exists a sequence {Pk} ⊂ W 1,2
loc (U ,SO(3)) such that, for

each k, ∂i Pk = Pk�k
i and ‖∇Pk‖L2

loc
≤ C‖�k‖L2

loc
. Then, as Pk ∈ SO(3) and

{�k} is uniformly bounded in L2
loc, so are {Pk} and {∇Pk}. As a result, there exists

a subsequence, still denoted {Pk}, that converges weakly to some P in W 1,2
loc , and

strongly in L2
loc. It remains to show that ∇P = P�. We know that ∇Pk⇀∇P in
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L2
loc. Moreover, since Pk → P and�k⇀� in L2

loc we infer that the product sequence
Pk�k is weakly convergent to some v in L1

loc. On the other hand, since P
k�k = ∇Pk

for every k, we must have for every ϕ ∈ L∞
loc ⊂ L2

loc that∫
Pk�kϕ =

∫
∇Pkϕ →

∫
∇Pϕ =

∫
P�ϕ,

whereby v = P�, by the uniqueness of weak limits, and thus ∇P = P�. ��
Finally, we can prove Theorem 4.

Proof of Theorem 4 Let such a sequence {θk} of immersions be given. Then we denote
the corresponding sequences of first and second fundamental forms by {(ai j )k},
{(bi j )k}, respectively. By assumption, we have that (ai j )k ∈ W 1,2

loc (U ,Sym+(2)) ∩
L∞
loc(U ,Sym+(2)) and (bi j )k ∈ L2

loc(U ,Sym(2)). Moreover, for each k, we may
define �k

i ∈ L2
loc(U , so(3)) as in Sect. 4.2.

For each k, the�k
i necessarily satisfy the compatibility equation, Eq. (1.2) (the proof

of Theorem 1 of Ciarlet et al. [2] carries over to the present p = 2 case). Furthermore,
it is straightforward to see from the estimates in Sect. 4.2 that the sequence {�k

i } is
uniformly bounded in L2

loc and thus subsequentially weakly convergent to some limit
�i ∈ L2

loc(U , so(3)). By Lemma 8, therefore, up to the choice of a subsequence, there

exists a sequence {Pk} ⊂ W 1,2
loc (U ,SO(3)) of solutions to the equation ∇Pk = Pk�k

such that Pk⇀P in W 1,2
loc as k → ∞ and ∇P = P�. Since ∂ j∂i P = ∂i∂ j P we

thus have that ∂ j (P�i ) = ∂i (P� j ), which shows after a short computation that the
compatibility equation is satisfied by the weak limit �i .

At the same time, the uniformly bounded sequences {(ai j )k}, {(bi j )k} possess
subsequences that are weakly convergent to some (ai j ), (bi j ) in W 1,2

loc and L2
loc,

respectively. They satisfy (ai j ) ∈ W 1,2
loc (U ,Sym+(2)) ∩ L∞

loc(U ,Sym+(2)) and
(bi j ) ∈ L2

loc(U ,Sym(2)) and the eigenvalues of (ai j ) are uniformly bounded from
below in U . As a result, we have that �i and the components of the connection form
induced by (ai j ) and (bi j ) coincide. Hence we obtain from Theorem 3 an immersion
θ ∈ W 2,2

loc (U ,R3) with first and second fundamental forms (ai j ) and (bi j ), respec-
tively. On the other hand, the given sequence {θk} must have a weakly convergent
subsequence in W 2,2

loc with a weak limit θ̄ , which coincides with the immersion θ due
to the uniqueness of distributional limits. ��
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