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Abstract
Wedevelop a new scheme for the construction of explicit complex-valued proper bihar-
monic functions on Riemannian Lie groups. We exploit this and manufacture many
infinite series of uncountable families of new solutions on the special unitary group
SU(n). We then show that the special orthogonal group SO(n) and the quaternionic
unitary group Sp(n) fall into the scheme. As a by-product we obtain new harmonic
morphisms on these groups. All the constructed maps are defined on open and dense
subsets of the corresponding spaces.
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1 Introduction

In this paper we introduce a new method for constructing infinite families of explicit
complex-valued proper biharmonic functions on the Riemannian Lie groups SO(n),
SU(n) and Sp(n). Although the literature on biharmonic functions is vast, the domains
of the functions are typically either surfaces or open subsets of flat Euclidean space.
The first proper biharmonic functions from open subsets of the classical compact
simple Lie groups SO(n), SU(n) and Sp(n) have been constructed only recently in
[5] by Montaldo, Ratto and the second author.

We first generalise the constructions of [5] and then use the so obtained biharmonic
functions as the building blocks for the biharmonic functions constructed in this paper.
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Namely, for each such function f , we prove that for any positive natural number d
there exists a polynomial of the form

�( f ) =
d∑

k=0

ck f
d−kτ( f )k

which is proper biharmonic. Here τ( f ) is the tension field of the function f . We then
show that these considerations can be generalised to multi-homogeneous polynomials
in f1, . . . , f�, where the functions fi are of the same structure as f above i.e. they are
generalisations of the biharmonic functions constructed in [5].

Using this construction method we obtain our main result.

Theorem 1.1 Let G be given by either SU(n), Sp(n) or SO(n) where n ≥ 2 in the
first case, n ∈ N in the second case and n ≥ 4 in the last case. Then for each choice of
(d1, . . . , dn−1) ∈ N

n−1 there exist a proper biharmonic function defined on a dense
subset of G.

As a by-product of our considerations we produce a wealth of new harmonic mor-
phisms from the simple Lie groups SO(n), SU(n) and Sp(n).

Organisation. In Sect. 2 we recall the definitions of biharmonic functions and har-
monic morphisms. The general setting is given in Sect. 3. In Sects. 4 to 6 we construct
new biharmonic functions on SU(n). We generalise these considerations in Sect. 7 to
a larger collection of Lie groups. We show in Sects. 8 and 9 that Sp(n) and SO(n) are
contained in this larger set of Lie groups and thus construct new proper biharmonic
functions on both Sp(n) and SO(n). Finally, we provide new harmonic morphisms on
SO(n), SU(n) and Sp(n) in Sect. 10.

2 Preliminaries

Let (M, g)be a smoothmanifold equippedwith aRiemannianmetric g.Wecomplexify
the tangent bundle T M of M to TCM and extend the metric g to a complex-bilinear
formon TCM . Then the gradient∇ f of a complex-valued function f : (M, g) → C is
a section of TCM . In this situation, the well-known linear Laplace–Beltrami operator
(alt. tension field) τ on (M, g) acts on f as follows

τ( f ) = div(∇ f ) = 1√|g|
∂

∂x j

(
gi j

√|g| ∂ f

∂xi

)
.

For two complex-valued functions f , h : (M, g) → C we have the following well-
known relation

τ( f h) = τ( f ) h + 2 κ( f , h) + f τ(h), (2.1)

where the conformality operator κ is given by

κ( f , h) = g(∇ f ,∇h).
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252 S. Gudmundsson, A. Siffert

The fact that the operator k is bilinear and the basic property

∇( f f̃ ) = ∇( f ) f̃ + f ∇( f̃ )

of ∇ show that

κ( f f̃ , hh̃) = f̃ h̃ κ( f , h) + f̃ h κ( f , h̃) + f h̃ κ( f̃ , h) + f h κ( f̃ , h̃), (2.2)

where f̃ , h̃ : (M, g) → C are complex-valued functions.
For a positive integer r , the iterated Laplace–Beltrami operator τ r is defined by

τ 0( f ) = f , τ r ( f ) = τ(τ (r−1)( f )).

Definition 2.1 For a positive integer r , we say that a complex-valued function f :
(M, g) → C is

(a) r-harmonic if τ r ( f ) = 0,
(b) proper r-harmonic if τ r ( f ) = 0 and τ (r−1)( f ) does not vanish identically.

It should be noted that the harmonic functions are exactly the 1-harmonic and the
biharmonic functions are the 2-harmonic ones. In some texts, the r -harmonic functions
are also called polyharmonic of order r .

Remark 2.2 We would like to remind the reader of the fact that a complex-valued
function f : (M, g) → C from a Riemannian manifold is a harmonic morphism if it
is harmonic and horizontally conformal i.e.

τ( f ) = 0 and κ( f , f ) = 0.

The standard reference on this topic is the book [1] of Baird and Wood. We also
recommend the regularly updated online bibliography [2].

3 The General Setting

In this paper we construct biharmonic functions which are rational functions defined
on compact Lie groups. In the first subsection we express τ and κ of rational functions
f = P/Q with domains being compact Lie groups in terms of τ(P), τ(Q), κ(P, Q)

and κ(Q, Q). In the second subsection we recall general formulas for τ and κ for
functions with domains being compact Lie groups. The idea is to use these results to
simplify those of the first subsection. At this point it does not make sense to do so in
full generality. In latter sections we will consider the cases SO(n), SU(n) and Sp(n)

separately, and proceed as indicated above.
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3.1 � and � for Rational Functions on Compact Lie Groups

Throughout this paper we work with rational functions of the complex-valued matrix
coefficients of the irreducible standard representations of the compact Lie groups
SO(n), SU(n) and Sp(n).

Let P, Q : G → C be two complex-valued functions, G∗ be the open and dense
subset of G with

G∗ = {p ∈ G| Q(p) �= 0}
and f : G∗ → C be defined by f = P/Q. Then a simple calculation, using (2.2),
shows that the conformality operator κ( f , f ) satisfies

Q4κ( f , f ) = Q2κ(P, P) − 2PQκ(P, Q) + P2κ(Q, Q). (3.1)

A similar computation tells us that the tension field τ( f ) fulfils

Q3τ( f ) = Q2τ(P) − 2Q κ(P, Q) + 2P κ(Q, Q) − PQ τ(Q). (3.2)

Let {e1, e2, . . . , en} be a basis for the vector space V and

M = { f jα| 1 ≤ j, α ≤ n}
be the set of the matrix coefficients of the action of G on V with respect to this
basis. Then it is a consequence of the Peter–Weyl theorem that the elements ofM are
eigenfunctions of the Laplace–Beltrami operator on G all with the same eigenvalue.
Further let p, q ∈ C

n×n and define the two functions P, Q : G → C by

P(g) =
∑

α,β

pαβ · fαβ(g) and Q(g) =
∑

k,β

qkβ · fkβ(g).

Now that P, Q : G → C are eigenfunctions of the tension field with the same
eigenvalue it follows from Eq. (3.2) that

Q3τ( f ) = 2P κ(Q, Q) − 2Q κ(P, Q). (3.3)

3.2 � and � for Functions on Compact Lie Groups

Let G be a compact Lie group with Lie algebra g and G → End(V ) be a faithful
irreducible finite dimensional representation of G. Then we can identify G with a
compact subgroup of the general linear group GLn(C) where n is the dimension of
the vector space V .

If Z ∈ g is a left-invariant vector field on G and h : U → C is a complex-valued
function locally defined on G then the first and second order derivatives satisfy

Z(h)(p) = d

ds
[h(p · exp(sZ))]∣∣s=0,
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Z2(h)(p) = d2

ds2
[h(p · exp(sZ))]∣∣s=0.

The Lie algebra gln(C) of the general linear group GLn(C) can be identified with
the set of complex n × n matrices. This carries a natural Euclidean scalar product

g(Z ,W ) = Re trace(Z · W ∗)

which induces a left-invariant Riemannianmetric g onGLn(C). Employing theKoszul
formula for the Levi–Civita connection ∇ on (GLn(C), g) we see that

g(∇ZZ ,W ) = g([W , Z ], Z)

= Re trace(WZ − ZW )Z∗

= Re traceW (Z Z∗ − Z∗Z)∗

= g([Z , Z∗],W ).

Let [Z , Z∗]g be the orthogonal projection of the bracket [Z , Z∗] onto the subalgebra
g of gln(C). Then the above calculations shows that

∇ZZ = [Z , Z∗]g.

This implies that the tension field τ and the conformality operator κ are given by

τ(h) =
∑

Z∈B
Z2(h) − [Z , Z∗]g( f ) and κ(h, h̃) =

∑

Z∈B
Z(h)Z(h̃), (3.4)

where B is any orthonormal basis for the Lie algebra g and h̃ : U → C a complex-
valued function locally defined on G.

4 The Special Unitary Group SU(n)

This section mainly serves as a preparation for the two sections to follow. First we
present some preliminaries and then provide formulae for the tension field τ and
the conformality operator κ onU(n). Afterwards we construct complex-valued proper
biharmonic functions onopen anddense subsets of the special orthogonal groupSU(n).
They are quotients of first order homogeneous polynomials in the matrix coefficients
of its standard representation. These results generalise some of those contained in [5].

The unitary group U(n) is the compact subgroup of the complex general linear
group GLn(C) given by

U(n) = {z ∈ GLn(C)| z z∗ = In}
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with its standard irreducible matrix representation

z =
⎡

⎢⎣
z11 · · · z1n
...

. . .
...

zn1 · · · znn

⎤

⎥⎦ .

The circle group S
1 = {eiθ ∈ C| θ ∈ R} acts on the unitary group U(n) by multipli-

cation

(eiθ , z) 
→ eiθ z

and the orbit space of this action is the special unitary group

SU(n) = {z ∈ U(n)| det z = 1}.

The natural projection π : U(n) → SU(n) is a harmonic morphism with constant
dilation λ ≡ 1. This has the following interesting consequence.

Proposition 4.1 Let f : U → C be a complex-valued function defined locally on the
special unitary group SU(n) and π : U(n) → SU(n) be the natural projection. Then
the composition f ◦ π : π−1(U ) → C is a harmonic morphism on U(n) if and only
if f : U → C is a harmonic morphism on SU(n).

Proof Since the natural projection π : U(n) → SU(n) is a harmonic morphism the
statement follows directly from Proposition 2.2 of [5] and the fact that the dilation λ

of π satisfies λ ≡ 1. �
Below we use the results of Sect. 3.2 to describe the tension field τ and the confor-

mality operator κ on the unitary group U(n). This has already been done in [4] but we
include these considerations for reasons of completeness.

For 1 ≤ r , s ≤ n, we shall by Ers denote the real n × n matrix given by

(Ers)αδ = δrαδsβ

and for r < s let Xrs,Yrs be the symmetric and skew-symmetric matrices

Xrs = 1√
2
(Ers + Esr ), Yrs = 1√

2
(Ers − Esr ),

respectively. Further let Dr be the diagonal elements with

Dr = Err .

The standard representation of the Lie algebra u(n) of the unitary group U(n)

satisfies

u(n) = {Z ∈ C
n×n| Z + Z∗ = 0}
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and for this we have the canonical orthonormal basis

B = {i Xrs,Yrs | 1 ≤ r < s ≤ n} ∪ {i Dr | r = 1, . . . , n}.

All the elements Z ∈ B fulfil the condition [Z , Z∗] = 0 so it follows from above that
the Levi-Civita connection satisfies

∇ZZ = 0.

This implies that for the Laplace–Beltrami operator τ on the unitary group U(n) we
have

τ( f ) =
∑

Z∈B
Z2( f ).

The following result was established in [4]. It describes important properties of the
tension field τ and the conformality operator κ on the unitary group U(n).

Lemma 4.2 For 1 ≤ j, α ≤ n, let z jα : U(n) → C be the complex-valued matrix
coefficients of the standard representation of U(n). Then the following relations hold

τ(z jα) = −n · z jα and κ(z jα, zkβ) = −zkαz jβ.

The next stated result is a direct consequence of Lemma 4.2.

Lemma 4.3 Let MQ be the following non-zero complex matrix

MQ =
⎡

⎢⎣
q11 · · · q1n
...

. . .
...

qn1 · · · qnn

⎤

⎥⎦

and Q : U(n) → C be the polynomial function on the unitary group given by

Q(z) =
∑

j,α

q jαz jα.

Then the equation Q2 + κ(Q, Q) = 0 is fulfilled if and only if the columns of MQ are
pairwise linearly dependent.

Proof The statement follows easily from

Q2 + κ(Q, Q) =
∑

j,k,α,β

(q jαqkβ − qkαq jβ)z jαzkβ = 0.

�
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Note that in this paperwewill always assume that the equation Q2+κ(Q, Q) = 0 is
fulfilled. This is done for reasons of simplicity. The purpose of the following discussion
is to explain how the polynomial functions P, Q : U(n) → C are chosen in different
situations in the remainder of this paper.

Let us assume that the function Q : U(n) → C in Lemma 4.3 satisfies

Q2 + κ(Q, Q) = 0

and that the βth column vector of MQ is non-zero. Then there exists a non-zero vector
a = (a1, a2, . . . , an) ∈ C

n such that MQ is of the form

MQ =

⎡

⎢⎢⎢⎣

a1q1β a2q1β · · · anq1β
a1q2β a2q2β · · · anq2β

...
...

...
...

a1qnβ a2qnβ · · · anqnβ

⎤

⎥⎥⎥⎦ .

Hence there exists a non-zero complex vector, namely

q = (q1, q2, . . . , qn) = (q1β, . . . , qnβ),

such that the function Q is of the form

Q(z) =
∑

j,α

q jaαz jα.

The next theorem shows how the standard representation of U(n) can be used to
produce proper biharmonic functions on the special unitary group SU(n). This result
generalises Theorem 4.2 in [5]. Although its proof can be obtained by easy modifica-
tions of the original one we provide here another one for the reader’s convenience.

Theorem 4.4 Let a, q ∈ C
n be two non-zero vectors and MP be the following non-zero

complex matrix

MP =
⎡

⎢⎣
p11 · · · p1n
...

. . .
...

pn1 · · · pnn

⎤

⎥⎦ .

Further let the polynomial functions P, Q : U(n) → C be given by

P(z) =
∑

j,α

p jαz jα and Q(z) =
∑

k,β

qkaβ zkβ

and the rational function f = P/Q be defined on the open and dense subset {z ∈
U(n)| Q(z) �= 0} of U(n). Then we have the following.
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(1) The function f is harmonic if and only if PQ+κ(P, Q) = 0. This is equivalent to
(i) the vector q and each column vector of the matrix MP are linearly dependent
or (ii) the vector a and the matrix MP are of the following special form

a = [0, . . . , 0, aβ0 , 0, . . . , 0],

MP =
⎡

⎢⎣
0 · · · 0 p1β0 0 · · · 0
...

...
...

...
...

... 0
0 · · · 0 pnβ0 0 · · · 0

⎤

⎥⎦ .

(2) The function f is proper biharmonic if and only if PQ + κ(P, Q) �= 0 i.e. if and
only if neither (i) nor (ii) of (1) is satisfied.

The corresponding statements hold for the function induced on the special unitary
group SU(n).

Proof It is an immediate consequence of the equations (3.3) and

κ(Q, Q) = −Q2

that the tension field τ( f ) satisfies

τ( f ) = −2(PQ + 2κ(P, Q))Q−2. (4.1)

This means that the function f is harmonic if and only if PQ + κ(P, Q) = 0, or
equivalently, ∑

j,k,α,β

(p jαqk − pkαq j )aβ z jαzkβ = 0. (4.2)

Let us first investigate the special case when the vector a and the matrix MP are of
the following special form

a = [0, . . . , 0, aβ0 , 0, . . . , 0]

and

MP =
⎡

⎢⎣
0 · · · 0 p1β0 0 · · · 0
...

...
...

...
...

... 0
0 · · · 0 pnβ0 0 · · · 0

⎤

⎥⎦ .

Then Eq. (4.2) reduces to the following which is trivially satisfied

∑

j,k

(p jβ0 qk − pkβ0 q j )aβ0 z jβ0 zkβ0 = 0.

If we are not is the special situation, just discussed, then

(p jαqk − pkαq j )aβ = 0
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for all j, k, α, β. Since a �= 0 there exists an aβ �= 0 and hence

(p jαqk − pkαq j ) = 0

for all j, k, α. This shows that the non-zero vector q and any column of the matrix
MP are linearly dependent. We have now proven the statement (1).

At this point it is convenient to introduce the following polynomial functions
Rα, Sα : U(n) → C satisfying

Rα(z) =
n∑

j,β=1

p jαaβ z jβ and Sα(z) =
n∑

k=1

qkzkα.

Then it is a direct consequence of Lemma 4.2 that

κ(P, Q) = −
n∑

α=1

RαSα.

By substituting this into Eq. (4.1) we obtain

τ( f ) = 2

(
n∑

α=1

RαSα − PQ

)
Q−2.

Exploiting equations (2.1), (2.2) and the fact that τ(Q−2) = 2(n − 3)Q−2 we now
yield

τ 2( f ) = 2
n∑

α=1

(τ (Rα)Sα + 2κ(Rα, Sα) + Rατ(Sα))Q−2

− 2(τ (P)Q + 2κ(P, Q) + Pτ(Q))Q−2

− 8κ

(
n∑

α=1

RαSα − PQ, Q

)
Q−3 + 4(n − 3)

(
n∑

α=1

RαSα − PQ

)
Q−2.

Again employing Lemma 4.2 we easily see that

κ

(
n∑

α=1

RαSα − PQ, Q

)
= −Q

n∑

α=1

RαSα − PQ2.

Using this and the fact that P, Q, Rα and Sα are eigenfunctions of τ with eigenvalue
λ = −n we then have
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τ 2( f ) =
(

−4n
n∑

α=1

RαSα − 4PQ + 4nPQ + 4
n∑

α=1

RαSα

)
Q−2

+ 4(n − 3)

(
n∑

α=1

RαSα − PQ

)
Q−2 + 8

(
n∑

α=1

RαSα − PQ

)
Q−2 = 0.

This establishes the statement claimed in (2). �

5 New Biharmonic Functions on SU(n)− (I)

In this sectionwemanufacture an infinite sequence of newproper biharmonic functions
defined on open and dense subsets of the special unitary group SU(n).

Our strategy is the following: Let a, b, p, q ∈ C
n be non-zero and the polynomial

functions P, Q : U(n) → C be given by

P(z) =
∑

j

p j aαz jα and Q(z) =
∑

k

qkbβ zkβ,

such that PQ + κ(P, Q) �= 0. Then it is clear from Theorem 4.4 that for c0, c1 ∈ C

with c0 �= 0 the function

�1( f , τ ( f )) = c0 f + c1τ( f )

induces a proper biharmonic function locally defined on the special unitary group
SU(n). The function �1 is a homogeneous first order polynomial in f and its tension
field τ( f ). Our aim is now to generalise this to any positive degree.

Let d be a positive integer and �d : C2 → C be a complex homogeneous polyno-
mial of the form

�d(z1, z2) =
d∑

k=0

ck z
d−k
1 zk2

We are now interested in determining all such polynomials with the property that the
function �d( f , τ ( f )) is proper biharmonic i.e.

τ(�d( f , τ ( f ))) �= 0 and τ 2(�d( f , τ ( f ))) = 0.

Before we can do this we need some practical preparations.

Lemma 5.1 Let a, b, p, q ∈ C
n be non-zero and the polynomial functions P, Q :

U(n) → C be given by

P(z) =
∑

jα

p jaαz jα and Q(z) =
∑

kβ

qkbβ zkβ.
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Then their rational quotient f = P/Q satisfies

(1) κ( f , f ) = f τ( f ),
(2) κ( f , τ ( f )) = τ( f )2,
(3) κ(τ( f ), τ ( f )) = −2τ( f )2.

Proof Here it is convenient to introduce the complex-valued polynomial functions
R, S : U(n) → C with

R(z) =
∑

j,β

p jbβ z jβ and S(z) =
∑

k,α

qkaαzkα.

Then an elementary computation, applying Lemma 4.2, yields

κ(P, P) = −P2, κ(Q, Q) = −Q2,

κ(R, R) = −R2, κ(S, S) = −S2,

κ(P, Q) = −RS, κ(R, S) = −PQ,

κ(P, R) = −PR, κ(P, S) = −PS,

κ(Q, R) = −QR, κ(Q, S) = −QS.

With this at hand a straightforward calculation establishes the claim. �
As a consequence of Lemma 5.1 we now have the following useful result.

Lemma 5.2 Let a, b, p, q ∈ C
n be non-zero and the polynomial functions P, Q :

U(n) → C be given by

P(z) =
∑

j,α

p jaαz jα and Q(z) =
∑

k,β

qkbβ zkβ.

If �,m are positive integers then the rational function f = P/Q satisfies

(1) κ( f �, τ ( f )m) = �m f �−1τ( f )m+1,
(2) κ( f �, f m) = �m f m+�−1τ( f ),
(3) τ( f �) = �2 f �−1τ( f ),
(4) κ(τ( f )�, τ ( f )m) = −2 �m τ( f )�+m,
(5) τ(τ ( f )�) = −2 �(� − 1) τ ( f )�,

Proof Let B be the standard orthonormal frame for the tangent bundle of U(n). Then
statement (1) is an immediate consequence of the following computation

κ( f �, τ ( f )m) =
∑

X∈B
X( f �)X(τ ( f )m)

=
∑

X∈B
� f �−1X( f )m τ( f )m−1X(τ ( f ))

= �m f �−1τ( f )m−1κ( f , τ ( f ))

= �m f �−1τ( f )m+1.
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The proof of (2) follows similarly and is therefore skipped. It is clear that (3) is true
for � = 1 and the statement is a direct consequence of the following induction step

τ( f �+1) = τ( f ) f � + 2κ( f , f �) + f τ( f �)

= f �τ ( f ) + 2� f �−1 f τ( f ) + f �2 f �−1τ( f )

= (� + 1)2 f �τ ( f ).

Equation (4) follows immediately from

κ(τ( f )�, τ ( f )m) = � τ( f )�−1 m τ( f )m−1κ(τ( f ), τ ( f ))

= −2�m τ( f )�+m−2τ( f )2

= −2�m τ( f )�+m .

The statement (5) is clearly true when � = 1 and the rest is a consequence of the next
induction step

τ(τ ( f )�+1) = τ(τ ( f ))τ ( f )� + 2κ(τ( f ), τ ( f )�)) + τ( f )τ (τ (( f )�))

= 2�τ( f )�−1κ(τ( f ), τ ( f )) − 2�(� − 1)τ ( f )�+1

= −2�(2τ( f )�+1 + (� − 1)τ ( f )�+1)

= −2(� + 1)�τ( f )�+1. �
After our preparations we are now ready to construct the new proper biharmonic

functions promised at the beginning of this section. Before attacking the general case
we first consider explicit examples. For the remainder of this section let the function
f be given as in Lemma 5.2.

Example 5.3 We first investigate the case of second order homogeneous polynomials

�2( f ) = c0 f 2 + c1 f τ( f ) + c2 τ( f )2.

Then a simple application of Lemma 5.1 shows that

τ(�2( f )) = 4 c0 f τ( f ) + (3 c1 − 4 c2) τ ( f )2,

so�2 is a harmonic function if and only if c0 = 0 and 4c2 = 3c1.Hence the function
�2 is proper harmonic if and only if it is a non-zero multiple of

H2( f ) = 4 f τ( f ) + 3τ( f )2.

If we now apply the Laplace–Betrami operator again we obtain

τ 2(�2( f )) = 4 (3 c0 − 3 c1 + 4 c2) τ ( f )2.

This tells us that the function �2 is proper biharmonic if and only if

4 c2 = 3 c1 − 3 c0 and c0 �= 0.
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This statement is clearly equivalent to: �2 is proper biharmonic if and only if c0 �= 0
and �2 = c0B2 + c1H2, where

B2( f ) = 4 f 2 − 3 τ( f )2 and H2( f ) = 4 f τ( f ) + 3 τ( f )2.

The same method can now be applied to show that for d = 3, 4 every proper
biharmonic function �d( f ) of the form

�d( f ) =
d∑

k=0

ck f d−kτ( f )k

is given by �d = c0 Bd + c1 Hd , where

B3( f ) = (6 f 3 − 27 f τ( f )2 − 15 τ( f )3),

H3( f ) = (6 f 2τ( f ) + 12 f τ( f )2 + 5 τ( f )3)

and

B4( f ) = (32 f 4 − 480 f 2τ( f )2 − 640 f τ( f )3 − 210 τ( f )4),

H4( f ) = (32 f 3τ( f ) + 120 f 2τ( f )2 + 120 f τ( f )3 + 35 τ( f )4).

After studying the cases when d = 2, 3, 4 we now consider the general situation.
As a first intermediate step we investigate the harmonic functions.

Proposition 5.4 Let a, b, p, q ∈ C
n be non-zero, the polynomial functions P, Q :

U(n) → C be given by

P(z) =
∑

jα

p jaαz jα and Q(z) =
∑

kβ

qkbβ zkβ

and f = P/Q be their rational quotient. Then the function

�d( f ) =
d∑

k=0

ck f
d−kτ( f )k

is proper harmonic if and only if c0 = 0, c1 �= 0 and for k = 1, . . . , d − 1

2 k (k + 1) ck+1 = (d2 − k2)ck .

Proof An elementary computation, applying Lemma 5.2, yields

τ(�d( f )) =
d∑

k=0

ck
[
(d2 − k2)τ ( f ) − 2k(k − 1) f

]
f d−k−1τ( f )k . (5.1)
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The condition τ(�d( f )) = 0 is clearly equivalent to c0 = 0 and the first order linear
difference equation

2 k (k + 1) ck+1 = (d2 − k2)ck,

for k = 1, . . . , d − 1. The statement is a direct consequence of these relations. �

Let us now assume that d is a positive integer and that�d( f ) is a proper biharmonic
function of the form

�d( f ) =
d∑

k=0

ck f
d−kτ( f )k .

It then follows from the identity (5.1) and Lemma 5.2 that

τ 2(�d( f )) =
d∑

k=0

ck
[
(d2 − k2)(d2 − (k + 1)2) f d−k−2τ( f )k+2

− 4k2(d2 − k2) f d−k−1τ( f )k+1

+ 4k2(k − 1)2 f d−kτ( f )k
]
.

By comparing the coefficients of τ 2(�d( f )) = 0 we obtain the following second
order linear difference equation

4(k − 1)2k2ck = 4(k − 1)2(d2 − (k − 1)2) ck−1

− (d2 − (k − 2)2)(d2 − (k − 1)2) ck−2,

for 2 ≤ k ≤ d. Togetherwith Proposition 5.4 this shows that c0 �= 0 and that c2, . . . , cd
are determined by c = (c0, c1) ∈ C

2.
Let Bd( f ) and Hd( f ) be the functions obtained this way with c = (1, 0) and (1, 0),

respectively. Then Bd( f ) is proper biharmonic and Hd( f ) is proper harmonic. We
have shown that every proper biharmonic function of the form

�d( f ) =
d∑

k=0

ck f
d−kτ( f )k

can be written as a linear combination

�d( f ) = c0 Bd( f ) + c1 Hd( f ),

where c0, c1 ∈ C such that c0 �= 0. Thus we have established the following result.
This is a special case of Theorem1.1.
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Theorem 5.5 For each d ∈ N
+ there exist a proper biharmonic function of the form

�d( f , τ ( f )) =
d∑

k=0

ck f d−kτ( f )k

defined on an open and dense subset of SU(n).

6 New Biharmonic Functions on SU(n)− (II)

In this section we continue our constructions of local biharmonic functions on the spe-
cial unitary group SU(n). Namely, we will construct biharmonic multi-homogeneous
polynomials of the form

�d1,...,dm ( f1, . . . , fm) =
d1∑

k1=0

. . .

dm∑

km=0

ck1,...,km f d1−k1
1 τ( f1)

k1 . . . f dm−km
m τ( fm)km ,

where the functions fi are carefully chosen rational functions. In the present section
we only deal with two examples. Namely, we will construct two biharmonic two-
homogeneous polynomials. These considerations will help the reader to understand
the calculations of Sect. 7 in which we deal with the general case.

Let p, q ∈ C
n be linearly independent and define the complex-valued polynomial

functions Pα, Qβ : U(n) → C by

Pα =
∑

j

p j aαz jα and Qβ =
∑

k

qkbβ zkβ.

For a fixed β, let Wβ be the open and dense subset {z ∈ U(n)| Qβ(z) �= 0} of U(n)

and define the functions f1, . . . , fn : Wβ → C by

f1 = P1/Qβ, . . . , fn = Pn/Qβ.

Note that according to Theorem 4.4 the function fi : U(n) → C is harmonic if i = β

and proper biharmonic otherwise.
The following lemma generalises Lemma5.1.

Lemma 6.1 In the above situation, the tension field τ and the conformality operator
κ satisfy the following identities for any i, j ∈ {1, . . . , n}
(1) 2κ( fi , f j ) = f jτ( fi ) + τ( f j ) fi ,
(2) κ( fi , τ ( f j )) = τ( fi )τ ( f j ),
(3) κ(τ( fi ), τ ( f j )) = −2τ( fi )τ ( f j ),
(4) τ( f mi ) = m2 f m−1

i τ( fi ),
(5) τ(τ ( fi )m) = −2m (m − 1) τ ( fi )m.

Then a repeated application of Lemma 6.1 provides the next result.
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Lemma 6.2 For any i, j ∈ {1, . . . , n} the conformality operator κ satisfies the follow-
ing identities

(1) 2κ( f �
i , f mj ) = �m f �−1

i f m−1
j ( fiτ( f j ) + τ( fi ) f j ),

(2) κ( f �
i , τ ( f j )m) = �m f �−1

i τ( fi )τ ( f j )m,
(3) κ(τ( fi )�, τ ( f j )m) = −2 �m τ( fi )�τ ( f j )m.

With these preparations at hand we can now construct proper biharmonic functions.
Below we will deal with two examples.

Example 6.3 Let V be the 4-dimensional complex vector space with basis

B = { f1 f2, f1τ( f2), τ ( f1) f2, τ ( f1)τ ( f2)}.

Then the restriction T of the Laplace–Beltrami operator τ to V is a linear endomor-
phism T : V → V of V and its kernel consists of the harmonic functions in V . Let
MT be the matrix of T with respect to the basis B. Then a simple calculation shows
that for each c = (c1, c2, c3, c4) ∈ C

4 we have

MT · c =

⎡

⎢⎢⎣

0 0 0 0
2 0 0 0
2 0 0 0
0 3 3 − 4

⎤

⎥⎥⎦ ·

⎡

⎢⎢⎣

c1
c2
c3
c4

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

0
2c1
2c1

3c2 + 3c3 − 4c4

⎤

⎥⎥⎦

This means that every harmonic function H( f1, f2) in V is of the form

H( f1, f2) = 4 (c2 f1τ( f2) + c3 τ( f1) f2) + 3 (c2 + c3) τ ( f1)τ ( f2).

We have therefore constructed a complex two dimensional family of local harmonic
functions on the special unitary group SU(n).

The biharmonic elements of V form the kernel of T 2. They can be determined by
solving the following linear system

M2
T · c =

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
12 −12 −12 16

⎤

⎥⎥⎦ ·

⎡

⎢⎢⎣

c1
c2
c3
c4

⎤

⎥⎥⎦ = 4 ·

⎡

⎢⎢⎣

0
0
0

3c1 − 3c2 − 3c3 + 4c4

⎤

⎥⎥⎦ .

From this we yield a complex three dimensional family of local biharmonic functions
on the special unitary group SU(n). Each such function is of the form

B( f1, f2) = 4 (c1 f1 f2 + c2 f1τ( f2) + c3τ( f1) f2) + 3(c2 + c3 − c1)τ ( f1)τ ( f2).

The reader should note that the function B( f1, f2) is proper biharmonic if and only if
c1 �= 0.
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Example 6.4 Let us now consider the six dimensional complex vector space W with
basis

B = { f 21 f2, f 21 τ( f2), f1τ( f1) f2, f1τ( f1)τ ( f2), τ ( f1)
2 f2, τ ( f1)

2τ( f2)}.

We can now employ the same method as in Example 6.3 and find that the harmonic
functions in W form a two dimensional subspace and are of the form

H( f1, f2) = c1 f
2
1 f2 + c2 f

2
1 τ( f2) + c3 f1τ( f1) f2 + c4 f1τ( f1)τ ( f2)

+ c5τ( f1)
2 f2 + c6τ( f1)

2τ( f2),

where c1 = 0, c4 = 2 c2 + c3, c5 = c3 and 6 c6 = 5 c2 + 5 c3.
By studying the bitension field τ 2 it is not difficult to see that the biharmonic

functions in W form a complex three dimensional family. They are of the form

B( f1, f2) = c1 f
2
1 f2 + c2 f

2
1 τ( f2) + c3 f1τ( f1) f2 + c4 f1τ( f1)τ ( f2)

+ c5τ( f1)
2 f2 + c6τ( f1)

2τ( f2),

where the coefficients satisfy the following linear conditions

c4 = 2 c2 + c3 − 3 c1,

2 c5 = 2 c3 − 3 c1,

6 c6 = 5 c2 + 5 c3 − 15 c1.

As in Example 6.3, the function B( f1, f2) is proper biharmonic if and only if c1 �= 0.

As already mentioned above we will now not go on with generalising Theorem5.5
to themulti-homogeneous polynomial setting.Wewill postpone this to the next section
in which we deal with the construction of biharmonic functions not just on SU(n) but
on a larger collection of Lie groups.

7 New Biharmonic Functions on Compact Lie Groups

In this sectionwegeneralise the considerations of Sects. 5 and 6 toLie groups forwhich
there exist eigenfunctions of the Laplace–Beltrami operatorwhich satisfy several addi-
tional conditions. These conditions are chosen such that an analogue of Lemma6.2
holds.

Let G be a compact Lie subgroup of GLn(C) and for N ∈ N and 1 ≤ j ≤ N ,
let Pj , Q, R, S j : G → C be eigenfunctions of the Laplace–Beltrami operator τ all
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with the same eigenvalue λ. Moreover, let μ be a constant such that the conformality
operator κ satisfies

κ(Pj , Pk) = μ Pj Pk, κ(S j , Sk) = μ S j Sk,

κ(Q, Q) = μ Q2, κ(R, R) = μ R2,

κ(Q, R) = μ QR, κ(Q, S j ) = μ QSj ,

κ(Pj , R) = μ Pj R, κ(Pj , Sk) = μ Pk S j ,

κ(Pj , Q) = μ RSj , κ(R, S j ) = μ Pj Q.

(7.1)

Further let f j : G∗ → C be the quotient f j = Pj/Q defined on the open and dense
subset G∗ = {p ∈ G| Q(p) �= 0} of G.

Remark 7.1 At the first glance the conditions (7.1) might seem rather restrictive. How-
ever, we will see at the end of this and in the following two sections that we can easily
construct plenty of such functions Pj , Q, R, and S j on SU(n),Sp(n) and SO(n),
respectively, which satisfy these conditions.

Using conditions (7.1), a tedious but straightforward computation similar to those
in the proof of Lemma5.2 yields the next result.

Lemma 7.2 If m, � are positive integers and j, k ∈ {1, . . . , N } then the conformality
operator κ satisfies the following identities

(1) 2κ( f mi , f �
j ) = m � f m−1

i f �−1
j ( fiτ( f j ) + τ( fi ) f j ),

(2) κ( f mi , τ ( f j )�) = m � f m−1
i τ( fi )τ ( f j )�,

(3) κ(τ( fi )m, τ ( f j )�) = 2μm � τ( fi )mτ( f j )�,
(4) τ( f mi ) = m2 f m−1

i τ( fi ),
(5) τ(τ ( fi )m) = 2μm (m − 1) τ ( fi )m.

We have now gathered all the tools we need for the construction of biharmonic
multi-homogeneous polynomials on G. As an intermediate step we will however first
construct a wealth of harmonic multi-homogeneous polynomials on G.

Theorem 7.3 Let 1 ≤ m ≤ N be given and fi = Pi/Q, i = 1, . . . ,m be proper
biharmonic functions. Then the function

F =
d1∑

k1=0

. . .

dm∑

km=0

ck1,...,km f d1−k1
1 τ( f1)

k1 . . . f dm−km
m τ( fm)km

is harmonic if and only if

−2μ ck1,...,km

⎛

⎝
(

m∑

i=1

ki

)2

−
m∑

i=1

ki

⎞

⎠

=
m∑

j=1

ck1,...k j−1,k j−1,k j+1,...,km (d j + 1 − k j )

(
m∑

i=1

(di + ki ) − 1

)
(7.2)
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holds for all 0 ≤ ki ≤ di . We thus obtain an m-parameter family of harmonic
functions.

Proof Below we make use of the short hand notation

Fi = f di−ki
i τ( fi )

ki .

Therefore we have

F =
d1∑

k1=0

. . .

dm∑

km=0

ck1,...,km F1 . . . Fm .

Multiple use of Eqs. (2.1) and (2.2) thus yields

τ(F) =
d1∑

k1=0

. . .

dm∑

km=0

ck1,...,km
( m∑

j=1

τ(Fj )

m∏

i=1,i �= j

Fi

+ 2
∑

i< j

κ(Fi , Fj )

m∏

�=1,� �=i,� �= j

F�

)
.

(7.3)

Using Lemma7.2 we obtain

τ(Fi ) = (d2i − k2i ) fi
di−ki−1τ( fi )

ki+1 + 2μ ki (ki − 1) f di−ki
i τ( fi )

ki

and

κ(Fi , Fj ) = 2μ ki k j f
di−ki
i τ( fi )

ki f
d j−k j
j τ( f j )

k j

+ 1
2 (d j − k j )(di + ki ) f

di−ki
i τ( fi )

ki f
d j−k j−1
j τ( f j )

k j+1

+ 1
2 (di − ki )(d j + k j ) f

d j−k j
j τ( f j )

k j f di−ki−1
i τ( fi )

ki+1.

Plugging these results into Eq.7.3 and comparing coefficients yields the linear system

m∑

j=1

(
ck1,...,k j−1,k j−1,k j+1,...,km (d2j − (k j − 1)2) − 2ck1,...,km k j (k j − 1)

)

+
∑

i< j

(
ck1,...,k j−1,k j−1,k j+1,...,km (di + ki )(d j + 1 − m j )/2

+ ck1,...,ki−1,ki−1,ki+1,...,km (di + 1 − ki )(d j + m j )/2

+ 2ki k j μ ck1,...,km
) = 0.

One easily verifies that for m = 1 this linear system coincides with the system given
by (7.2) for that special case. An induction argument then establishes the first part of
the claim.
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Finally, observe that exactly the coefficients ck1,...,km with

(k1, . . . , km) = (0, . . . , 0, 1, 0, . . . , 0)

determine all remaining coefficients ck1,...,km . There are exactly m such coefficients,
which establishes the claim. �

In the same vain as in the proceeding theorem we will now examine multi-
homogeneous polynomials for biharmonicity. The idea is to rewrite τ(F) such that it
has the same structure as F . When applying τ to τ(F) we can thus make use of the
considerations contained in the proof of Theorem7.3.

Theorem 7.4 Let 1 ≤ m ≤ N be given and fi = Pi/Q, i = 1, . . . ,m be proper
biharmonic functions. The function

F =
d1∑

k1=0

. . .

dm∑

km=0

ck1,...,km f d1−k1
1 τ( f1)

k1 . . . f dm−km
m τ( fm)km

is proper biharmonic if and only if

− 2μ c̃k1,...,km

⎛

⎝
(

m∑

i=1

ki

)2

−
m∑

i=1

ki

⎞

⎠

=
m∑

j=1

c̃k1,...k j−1,k j−1,k j+1,...,km (d j + 1 − k j )

(
m∑

i=1

(di + ki ) − 1

) (7.4)

holds for all 0 ≤ ki ≤ di + 1, i ∈ {1, . . . ,m}, where

c̃k1,...,km := 2μ ck1,...,km

⎛

⎝
m∑

j=1

k j (k j − 1) + 2
∑

i< j

k j ki

⎞

⎠

+
m∑

j=1

ck1,...,k j−1,k j−1,k j+1,...,km (d2j − (k j − 1)2)

+
∑

i< j

ck1,...,ki−1,ki−1,ki+1,...,km (di + 1 − ki )(d j + k j )

+
∑

i< j

ck1,...,k j−1,k j−1,k j+1,...,km (d j + 1 − k j )(di + ki ).

We thus obtain a m-parameter family of biharmonic functions.

Proof As mentioned above, we first rewrite τ(F) such that it has the same structure
as F .
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From (7.3) we get

τ(F) =
d1+1∑

k1=0

. . .

dm+1∑

km=0

⎛

⎝2ck1,...,kmμ

⎛

⎝
m∑

j=1

k j (k j − 1) + 2
∑

i< j

k j ki

⎞

⎠

+
m∑

j=1

ck1,...,k j−1,k j−1,k j+1,...,km (d2j − (k j − 1)2)

+
∑

i< j

ck1,...,ki−1,ki−1,ki+1,...,km (di + 1 − ki )(d j + k j )

+
∑

i< j

ck1,...,k j−1,k j−1,k j+1,...,km (d j + 1 − k j )(di + ki )

⎞

⎠ m
�=1F�.

Here we make use of the convention that ck1,...,km = 0 if either one of the indices is
less than 0 or there exists an i ∈ {1, . . . ,m} such that ki > di . Thus we have

τ(F) =
d1+1∑

k1=0

. . .

dm+1∑

km=0

c̃k1,...,kmm
�=1F�.

By Theorem7.3 the identity τ 2(F) = 0 is therefore satisfied if and only if

− 2μc̃k1,...,km

⎛

⎝
(

m∑

i=1

ki

)2

−
m∑

i=1

ki

⎞

⎠

=
m∑

j=1

c̃k1,...k j−1,k j−1,k j+1,...,km (d j + 1 − k j )

(
m∑

i=1

(di + ki ) − 1

) (7.5)

holds for all 0 ≤ ki ≤ di + 1, i ∈ {1, . . . ,m}.
Finally, observe that exactly the coefficients c̃k1,...,km with

(k1, . . . , km) = (0, . . . , 0, 1, 0, . . . , 0)

and (k1, . . . , km) = (0, . . . , 0) determine all remaining coefficients c̃k1,...,km . These
in turn are determined by ck1,...,km with (k1, . . . , km) = (0, . . . , 0, 1, 0, . . . , 0) and
(k1, . . . , km) = (0, . . . , 0). We thus obtain a m + 1-parameter family of biharmonic
maps. �

The proof of the preceding theorem implies that for each choice of p, q ∈ C
n and

m, d1, . . . , dm ∈ N there is essentially just one biharmonic map.
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Corollary 7.5 Let p, q ∈ C
n, 1 ≤ m ≤ N and d1, . . . , dm ∈ N be given. The above

construction yields – up to scaling – one proper biharmonic function of the form

�d1,...,dm ( f1, . . . , fm) =
d1∑

k1=0

. . .

dm∑

km=0

ck1,...,km f d1−k1
1 τ( f1)

k1 . . . f dm−km
m τ( fm)km ,

defined on a dense subset of G.

This corollary completes the construction of biharmonic functions.
In what follows we apply these results to finish the construction of biharmonic

multi-homogeneous polynomials on SU(n) which we started in Sect. 6. In order to
accomplish this we need to find eigenfunctions Pj , Q, R, S j : GLn(C) → C of the
Laplace–Beltrami operator τ with the same eigenvalue λ which satisfy the conditions
(7.1). Recall that in Sect. 6 we have chosen the Pj , Q : U(n) → C to be

Pj =
n∑

k=1

pka j zk j and Q := Qβ =
n∑

k=1

qkbβ zkβ.

We introduce R, S j : U(n) → C by

R =
n∑

k=1

pkbβ zkβ and S j =
n∑

k=1

qka j zk j .

By straightforward computations which make use of Eqs. 2.1 and 2.2 as well as
Lemma4.2, it follows that this set of functions satisfies the conditions (7.1) with
μ = −1.

Note that according to Theorem 4.4 the function fi = Pi/Q is harmonic if i = β

and proper biharmonic otherwise. Hence there exist n−1 proper biharmonic functions
fi . Thus in the above considerations we have N = n−1. Consequently, Corollary7.5
implies Theorem1.1 for G = SU(n).

In the following two sections, Sects. 8 and 9, we will use the results of the present
section to construct biharmonic functions on Sp(n) and SO(n), respectively.

8 New Biharmonic Functions on Sp(n)

In this section we show that the quaternionic unitary group Sp(n) falls into the general
scheme that we have developed. This can be applied to construct complex-valued
proper biharmonic functions on open and dense subsets of Sp(n). They are quotients
of homogeneous polynomials in the matrix coefficients of the standard irreducible
complex representation of Sp(n).
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The quaternionic unitary group Sp(n) is a compact subgroup of U(2n). It is the
intersection of U(2n) and the standard complex representation of the quaternionic
general linear group GLn(H) in C2n×2n with

(z + jw) 
→ q =
[

z w

−w̄ z̄

]
.

For the standard complex representation of the Lie algebra sp(n) of Sp(n) we have

sp(n) =
{ [

Z W
−W̄ Z̄

]
∈ C

2n×2n | Z∗ + Z = 0, Wt − W = 0

}
.

The canonical orthonormal basis B for sp(n) is the union of the following three sets

{
1√
2

[
Yrs 0
0 Yrs

]
,

1√
2

[
i Xrs 0
0 −i Xrs

]
| 1 ≤ r < s ≤ n

}
,

{
1√
2

[
0 Xrs

−Xrs 0

]
.
1√
2

[
0 i Xrs

i Xrs 0

]
| 1 ≤ r < s ≤ n

}
,

{
1√
2

[
0 Dr

−Dr 0

]
,

1√
2

[
0 i Dr

i Dr 0

]
,

1√
2

[
i Dr 0
0 −i Dr

]
| 1 ≤ r ≤ n

}
.

The following fundamental result can be found in Lemma 6.1 of [5]. It describes the
behaviour of the tension field τ and the conformality operator κ on the quaternionic
unitary group Sp(n).

Lemma 8.1 For 1 ≤ j, α ≤ n, let z jα,w jα : Sp(n) → C be the matrix coefficients
from the standard complex irreducible representation of Sp(n). Then the following
relations hold

τ(z jα) = −2n + 1

2
· z jα, τ (w jα) = −2n + 1

2
· w jα,

κ(z jα, zkβ) = −1

2
· zkαz jβ, κ(w jα,wkβ) = −1

2
· wkαw jβ,

κ(z jα,wkβ) = −1

2
· zkαw jβ.

The statement of the next result is a direct consequence of Lemma 8.1.

Lemma 8.2 Let MQ be the following non-zero complex matrix

MQ =
⎡

⎢⎣
q11 · · · q1,2n
...

...
...

qn1 · · · qn,2n

⎤

⎥⎦
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and Q : Sp(n) → C be the polynomial function on the quaternionic unitary group
given by

Q(z, w) =
∑

k,β

(qkβ zkβ + qk,n+βwkβ).

Then the equation Q2 + 2κ(Q, Q) = 0 is fulfilled if and only if the columns of MQ

are pairwise linearly dependent.

Proof The proof is similar to that of Lemma 4.3 �
With this at hand, we can now prove the following generalisation of Theorem 6.2

in [5].

Theorem 8.3 Let a, q ∈ C
2n be two non-zero vectors, MP be the following non-zero

complex matrix

MP =
⎡

⎢⎣
p11 · · · p1,2n
...

. . .
...

pn1 · · · pn,2n

⎤

⎥⎦

and the functions P, Q : Sp(n) → C be given by

P(z, w) =
∑

j,α

(p jαz jα + p j,n+αw jα)

and

Q(z, w) =
∑

k,β

(qkaβ zkβ + qk+nan+βwkβ).

Further we define the rational function f = P/Q on the open and dense subset
{(z, w) ∈ Sp(n)| Q(z, w) �= 0} of Sp(n). Then we have the following.

(1) The function f is harmonic if and only if PQ+2 κ(P, Q) = 0. This is equivalent
to (i) the vector q and each column vector of the matrix MP are linearly dependent
or (ii) the vector a and the matrix MP are of the following special form

a = [0, . . . , 0, aβ0 , 0, . . . , 0],

MP =
⎡

⎢⎣
0 · · · 0 p1β0 0 · · · 0
...

...
...

...
...

... 0
0 · · · 0 pnβ0 0 · · · 0

⎤

⎥⎦ .

(2) The function f is proper biharmonic if and only if PQ + 2 κ(P, Q) �= 0 i.e. if
and only if neither (i) nor (ii) of (1) is satisfied.

Proof The statement can be proven by exactly the same arguments as that of Theo-
rem 4.4. �
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In Sect. 7 we have developed a general scheme for producing complex-valued
proper biharmonic functions on certain compact subgroups of the general linear group
GLn(C). The next result shows that the quaternionic unitary group Sp(n) falls into
this scheme.

Lemma 8.4 Let a, b, p, q ∈ C
n be non-zero elements. Further let the polynomial

functions P, Q, R, S : Sp(n) → C satisfying

PQ + 2 κ(P, Q) �= 0

be chosen by one of (8.1), (8.2) or (8.3):

P(z) =
∑

j

p j aαz jα, Q(z) =
∑

k

qkbβ zkβ,

R(z) =
∑

j

p j bβ z jβ, S(z) =
∑

k

qkaαzkα;
(8.1)

P(z) =
∑

j

p j aαw jα, Q(z) =
∑

k

qkbβ zkβ,

R(z) =
∑

j

p j bβ z jβ, S(z) =
∑

k

qkaαwkα;
(8.2)

P(z) =
∑

j

p j aαw jα, Q(z) =
∑

k

qkbβwkβ,

R(z) =
∑

j

p j bβw jβ, S(z) =
∑

k

qkaαwkα.
(8.3)

Then the rational quotient f = P/Q satisfies the conditions given by the Eqs. (7.1)
with μ = −1/2.

Proof The statement is easily proven by exploiting Lemma 8.1. �
The result of Corollary7.5 implies that of Theorem1.1 in the case of G = Sp(n).

9 New Biharmonic Functions on SO(n)

In this section we show that the special orthogonal group SO(n) falls into the general
scheme that we have developed. This can be applied to construct complex-valued
proper biharmonic functions on open and dense subsets of SO(n). They are quotients
of homogeneous polynomials in the matrix coefficients of the standard irreducible
representation of SO(n).

The special orthogonal group SO(n) is the compact subgroup of the real general
linear group GLn(R) given by

SO(n) = {x ∈ GLn(R) | x · xt = In, det x = 1}.
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The standard representation of the Lie algebra so(n) of SO(n) is given by the set of
skew-symmetric matrices

so(n) = {Y ∈ gln(R)| Y + Y t = 0}

and for this we have the canonical orthonormal basis

B = {Yrs | 1 ≤ r < s ≤ n}.

The following result was established in [4]. It describes the behaviour of the tension
field τ and the conformality operator κ on the special orthogonal group SO(n).

Lemma 9.1 For 1 ≤ j, α ≤ n, let x jα : SO(n) → R be the real-valued matrix
coefficients of the standard representation of SO(n). Then the following relations
hold

τ(x jα) = − (n − 1)

2
· x jα,

κ(x jα, xkβ) = −1

2
· (xkαx jβ − δk jδαβ).

As an immediate consequence of Lemma 9.1 we have the next useful result.

Lemma 9.2 Let MQ be the following non-zero complex matrix

MQ =
⎡

⎢⎣
q11 · · · q1n
...

...
...

qn1 · · · qnn

⎤

⎥⎦

and Q : SO(n) → C be the complex-valued polynomial function on the special
orthogonal group given by

Q(x) =
∑

k,α

qkαxkα.

Then the equation Q2 + 2κ(Q, Q) = 0 is fulfilled if and only if the columns of MQ

are isotropic and pairwise linearly dependent.

Proof The statement follows easily from the fact that

Q2 + 2κ(Q, Q) =
∑

j,k,α,β

(q jαqkβ − qkαq jβ)x jαxkβ +
∑

j,α

q2jα = 0.

�
The next theorem shows how the standard representation of the special orthogonal

group SO(n) can be employed to construct proper biharmonic functions. It generalises
the result of Theorem 5.2 of [5].
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Theorem 9.3 Let a, q ∈ C
n be two non-zero vectors such that (a, a) �= 0, MP the

following non-zero complex matrix

MP =
⎡

⎢⎣
p11 · · · p1n
...

. . .
...

pn1 · · · pnn

⎤

⎥⎦

and the polynomial functions P, Q : SO(n) → C be given by

P(x) =
∑

j,α

p jαx jα and Q(x) =
∑

k,β

qkaβxkβ.

Further we define the rational function f = P/Q on the open and dense subset
{x ∈ SO(n)| Q(x) �= 0} of SO(n). Then we have the following.

(1) The function f is harmonic if and only if PQ+2 κ(P, Q) = 0. This is equivalent
to (i) the vector q and each column vector of the matrix MP are linearly dependent
or (ii) the vector a and the matrix MP are of the following special form

a = [0, . . . , 0, aβ0 , 0, . . . , 0],

MP =
⎡

⎢⎣
0 · · · 0 p1β0 0 · · · 0
...

...
...

...
...

... 0
0 · · · 0 pnβ0 0 · · · 0

⎤

⎥⎦ .

(2) The function f is proper biharmonic if and only if PQ + 2 κ(P, Q) �= 0 i.e. if
and only if neither (i) nor (ii) of (1) is satisfied.

Proof The statement can be proven by exactly the same arguments as that of Theo-
rem 4.4. �

In Sect. 7 we have developed a general scheme for producing complex-valued
proper biharmonic functions on certain compact subgroups of the general linear group
GLn(C). The next result shows that the special orthogonal group SO(n) fits into this
scheme.

Lemma 9.4 Let n ≥ 4 and a, b, p, q ∈ C
n be non-zero elements such that either

(a, a) = (b, b) = (a, b) = 0 or (p, p) = (p, q) = (q, q) = 0. Further let the
polynomial functions P, Q, R, S : SO(n) → C satisfying

PQ + 2 κ(P, Q) �= 0

be given by
P(x) =

∑

j,α

p jaαx jα, Q(x) =
∑

k,β

qkbβxkβ,

R(x) =
∑

j,β

p jbβx jβ, S(x) =
∑

k,α

qkaαxkα.
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Then the rational quotient f = P/Q satisfies the conditions given by Eqs. (7.1) with
μ = −1/2.

Proof The statement is easily proven by exploiting Lemma 9.1. �
The result of Corollary7.5 implies that of Theorem1.1 in the case of G = SO(n).

10 NewHarmonic Morphisms

In this sectionwemanufacture new eigenfamilies of complex-valued functions defined
on open and dense subsets of the special unitary group SU(n), Sp(n) and SO(n). Their
elements are ingredients for a recipe of harmonic morphisms, as we nowwill describe.
We just carry out the considerations for the group U(n), the proof for the other two
cases are the same.

The following notion of an eigenfamily was introduced in the paper [4].

Definition 10.1 Let (M, g) be a Riemannian manifold. Then a set

E = {φi : M → C | i ∈ I }

of complex-valued functions is called an eigenfamily on M if there exist complex
numbers λ,μ ∈ C such that

τ(φ) = λ φ and κ(φ,ψ) = μφ ψ,

for all φ,ψ ∈ E . A set

� = {φi : M → C | i ∈ I }

is called an orthogonal harmonic family on M if for all φ,ψ ∈ �

τ(φ) = 0 and κ(φ,ψ) = 0.

The reader should note that that every element of an orthogonal harmonic family
is a harmonic morphism since it is both harmonic and horizontally conformal.

Below let β ∈ {1, . . . , n} be fixed. Let Pj , Q : U(n) → C be given as in Sect. 6,
that is

Pj =
n∑

k=1

pka j zk j and Q := Qβ =
n∑

k=1

qkbβ zkβ.

Further let f j : W → C be the quotient f j = Pj/Q defined on the open and dense
subset

W = {z ∈ U(n)| Q(z) �= 0}
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of the unitary group U(n). According to Theorem 4.4 the functions f j are harmonic
and proper biharmonic if and only if j �= β.

Proposition 10.2 Let k ∈ N
+ and Ek be the following set of complex-valued functions,

defined on the open and dense subset W of U(n),

Ek = {τ( f j )
k : W → C| α �= β}.

Then Ek is an eigenfamily on W. The corresponding statement holds for the induced
family on the special unitary group SU(n).

Proof This is an immediate consequence of Lemma7.2. �
The next result shows how the eigenfamily E in Proposition 10.2 produces a large

collection of harmonic morphisms on the special unitary group SU(n).

Theorem 10.3 [4] Let (M, g) be a Riemannian manifold and

E = {φ1, . . . , φn}

be a finite eigenfamily of complex-valued functions on M. If P, Q : Cn → C are
linearily independent homogeneous polynomials of the same positive degree then the
quotient

P(φ1, . . . , φn)

Q(φ1, . . . , φn)

is a non-constant harmonic morphism on the open and dense subset

{p ∈ M | Q(φ1(p), . . . , φn(p)) �= 0}.

We now discuss the special case when the eigenfamily is both orthogonal and
harmonic.

Proposition 10.4 Let q ∈ C
n be non-zero and define the complex-valued polynomial

functions Qα : U(n) → C by

Qα(z) =
∑

j

q j z jα.

Then the collection

� = {Qα/Qβ | α �= β}

is a harmonic orthogonal family on the following open subset of the unitary group
U(n)

W =
n⋂

α=1

{z ∈ U(n)| Qα(z) �= 0}.
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The corresponding statement holds for the induced family on the special unitary group
SU(n).

Proof It is a direct consequence of Lemma 4.3 that

QαQβ + κ(Qα, Qβ) = 0 (10.1)

so according to Theorem 4.4 all the elements of � are harmonic. Finally, a simple
computation, repeatedly using Eq. (10.1), shows that κ( f , h) = 0 for all f , h ∈ �. �

For this special case we have the following useful result. This tells us how the
family � in Proposition 10.4 provides a large collection of harmonic morphisms on
the special unitary group SU(n).

Theorem 10.5 [3] Let (M, g) be a Riemannian manifold and

� = {φk : M → C | k = 1, . . . , n}

be a finite orthogonal harmonic family on M. Let � : M → C
n be the map given by

� = (φ1, . . . , φn) and U be an open subset of Cn containing the image �(M) of �.
If

H = {hi : U → C | i ∈ I }

is a collection of holomorphic functions then

�̃ = {ψ : M → C | ψ = h(φ1, . . . , φn), h ∈ H}

is an orthogonal harmonic family on M.
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