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1 Introduction

In [3] it is proven that the set X of nowhere analytic functions in C∞([0, 1]) contains
a dense and Gδ subset of C∞([0, 1]). In [2] using Fourier methods it is shown that
X is itself a dense and Gδ subset of C∞([0, 1]). Furthermore, combining the above
methods with Borel’s Theorem [8] and a version of Michael’s Selection Theorem [12]
the above result has been extended to C∞(γ ), where γ is any analytic curve. In the
case where γ is the unit circle T every function f ∈ C∞(T ) can be written as a sum
f = g + w where g belongs to A∞(D) and is holomorphic on the open unit disk D
and very smooth up to the boundary and w has similar properties in Dc. Now if we
assume that f is extendable somewhere towards one side of T , say in Dc, then because
w is regular there, it follows that g ∈ A∞(D) is extendable. But the phenomenon of
somewhere extendability has been proven to be a rare phenomenon in the Fréchet space
A∞(D) [9]. It follows that the phenomenon of one-sided somewhere extendability is
a rare phenomenon in C∞(T ) or more generally in C p(γ ), p ∈ {∞} ∪ {0, 1, 2, . . .}
for any analytic curve γ [2].
After the preprint [2] has been circulated, P. Gautier noticed that the previous result
holdsmore generally for Jordan arcswithout the assumption of analyticity of the curve.
Indeed, applying complex methods appearing in the last section of [2] we prove this
result. It suffices to use the Oswood–Caratheodory Theorem combined with Montel’s
Theorem and the Poisson integral formula applied to the boundary values of bounded
holomorphic functions in H∞(D). In fact this complex method is most natural to
our considerations of extendability, real analyticity, and one-sided extendability. The
proofs are simplified, and the results hold under much more general assumptions than
the assumptions imposed by the Fourier method. This complex method is developed
in the present paper.
In Sect. 4, we prove that extendability and real analyticity are rare phenomena in
various spaces of functions on locally injective curves γ . For the real analyticity result,
we assume that γ is analytic and the result holds in any Ck(γ ), k ∈ {0, 1, 2, 3, . . .} ∪
{∞} endowedwith its nature topology. For the other results, the phenomena are proven
to be rare in Ck(γ ) provided that the locally injective curve γ has smoothness at least
of degree k.
In Sect. 5, initially, we consider a finite set of disjoint curves γ1, γ2, . . . , γn . Then in
the case where γ1, γ2, . . . , γn are disjoint Jordan curves inC bounding a domain � of
finite connectivity, we consider the spaces Ap(�), p ∈ {0, 1, 2, 3, . . .}∪{∞}which by
the maximum principle can be seen as function spaces on ∂� = γ ∗

1 ∪· · ·∪γ ∗
n . In these

spaces we show that the above phenomena of extendability or real analyticity are rare.
For the real analyticity result, we assume analyticity of ∂�, but for the extendability
result we do not need to assume any smoothness of the boundary.
In Sect. 6, we consider the one-sided extendability from a locally injective curve
γ and we prove that this is a rare phenomenon in various spaces of functions. We
construct a denumerable family Gn of Jordan domains G containing in their boundary
a non-trivial arc J of the image γ ∗ of γ , such that each other domain � with similar
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One-Sided Extendability and p-Continuous Analytic Capacities 1371

properties contains some Gn . We show that the phenomenon of extendability is rare
for each domain G. Then by denumerable union (or intersection of the complements),
we obtain our result with the aid of Baire’s Category Theorem. We mention that the
one-sided extendability of a function f : γ ∗ → C is meant as the existence of a
function F : G ∪ J → C which is holomorphic on the Jordan domain G, continuous
on G ∪ J and such that on the arc J of γ ∗ we have F |J = f |J . Such notions of
one-sided extendability have been considered in [4] and the references therein, but in
the present article and [2] it is, as far as we know, the first time where the phenomenon
is proven to be rare.
At the end of Sect. 6, we prove similar results on one-sided extendability on the space
Ap(�), where� is a finitely connected domain inC bounded by a finite set of disjoint
Jordan curves γ1, γ2, . . . , γn . Now the extension F of a function f ∈ Ap(�) has to
coincide with f only on a non-trivial arc of the boundary of�, not on an open subset of
�. Certainly if the continuous analytic capacity of ∂� is zero, the latter automatically
happens, but not in general.
In Sect. 7, we consider a domain � in C, a compact subset L of �, and we study
the phenomenon of extendability of a function f ∈ Ap(� \ L) to a function F
in Ap(�). There is a dichotomy. Either for every f this is possible or generically
for all f ∈ Ap(� \ L) this fails. In order to characterize when each horn of the
above dichotomy holds we are led to define the p-continuous analytic capacity ap(L)

(p ∈ {0, 1, 2, 3, . . .} ∪ {∞}), where a0(L) is the known continuous analytic capacity
a0(L) = a(L) [7].
The study of the above capacities and variants of it is done in Sect. 3. For p = 1,
the p-continuous analytic capacity a1 is distinct from the continuous analytic capacity
a0 = a. In particular if K1/3 is the usualCantor set lying on [0, 1] and L = K1/3×K1/3,
then a0(L) > 0, but a1(L) = 0. This means that for any open set U containing
L there exists a function in A(U \ L) which is not holomorphic on U , but if the
derivative of a function in A(U \ L) extends continuously on L , then the function
is holomorphic on U . Generic versions of this fact imply that A1(U \ L) is of first
category in A0(U \ L) = A(U \ L). If we replace the spaces Ap with the Ã p spaces of
Whitney type, then the extension on L is equivalent to the fact that the interior of L is
void. Thus we can define the continuous analytic capacities ã p(L)which vanish if and
only if the interior of L is empty. We prove what is needed in Sect. 7. More detailed
study of those capacities will be done in future papers; for instance, we can investigate
the semiadditivity of ap, whether the vanishing of ap on a compact set L is a local
phenomenon and whether replacing the continuous analytic capacity a by the Ahlfors
analytic capacity γ we can define capacities γp satisfying the analogous properties.
Certainly the spaces Ap(�) will be replaced by H∞

p (�), the space of holomorphic

functions on� such that for every l ∈ N, l ≤ p the derivative f (l) of order l is bounded
on �. We will also examine if a dichotomy result as in Sect. 7 holds for the spaces
H∞

p (�) in the place of Ap(�). All these in future papers.
In Sect. 2, some preliminary geometry of locally injective curves is presented; for
instance, a curve is real analytic if and only if real analyticity of a function on the curve
is equivalent to holomorphic extendability of the function on disks centered on points
of the curve. We also show that if the map γ defining the curve is a homeomorphism
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1372 E. Bolkas et al.

with non-vanishing derivative, then the spaces Ck(γ ), k ∈ {0, 1, 2, 3, . . .} ∪ {∞} are
independent of the particular parametrization γ and depend only on the image γ ∗ of
γ . Thus in some cases it makes sense to write Ck(∂�) and prove generic results in
these spaces.
Finally, we mention that some of the results of Sect. 5 are valid for analytic curves
γ ; that is, they hold when we use a conformal parametrization of γ . Naturally comes
the question whether these results remain true if we change the parametrization of the
curve; in particular what happens if we consider the parametrization with respect to
the arc length s? Answering this question was the motivation of [10] where it is proven
that arc length is a global conformal parameter for any analytic curve. Thus the results
of Sect. 5 remain true if we use the arc length parametrization. Finally, we mention
that in the present paper we start with qualitative categorical results, which lead us
to quantitative notions as the p-continuous analytic capacity ap and the p-analytic
capacity γp. A preliminary version of this paper can be found in [1], where some
proofs are more detailed than in the present paper.

2 Preliminaries

Inmost of our results it is important what is the degree of smoothness of a curve and the
relation of real analyticity of functions on a curve with the holomorphic extendability
of them around the curve. That is why we present here some basic results concerning
locally injective curves in C.

Unless otherwise specified I is an interval and X is an interval or the unit circle.

Definition 2.1 Let γ : X → C be a continuous and locally injective function and l ∈
{1, 2, 3, . . .}∪{∞}. The curveγ belongs to the classCl(X), if for k ∈ {1, 2, 3, . . .}, k ≤
l, the derivative γ (k) exists, and is a continuous function.

Definition 2.2 Let γ : X → C be a continuous and locally injective function and
k ∈ {1, 2, 3, . . .} ∪ {∞}. A function f : γ ∗ → C defined on the image γ ∗ = γ (X)

belongs to the classCk(γ ) if for every l ∈ {1, 2, 3, . . . , }, l ≤ k the derivative ( f ◦γ )(l)

exists, and is a continuous function. Let (Xn), n ∈ {1, 2, 3, . . .} be an increasing

sequence of compact intervals such that
∞⋃
n=1

Xn = X . The topology of the space

Ck(γ ) is defined by the seminorms

sup
t∈Xn

|( f ◦ γ )(l)(t)|, l = 0, 1, 2, . . . , k, n = 1, 2, 3, . . .

In this way Ck(γ ) becomes a Banach space if k < +∞ and X is compact. Otherwise
it is a Fréchet space. In every case, Baire’s Theorem is at our disposal.

Definition 2.3 Let γ : I → C be a continuous and locally injective function. We will
say that the curve γ is analytic at t0 ∈ I if there exist an open set t0 ∈ V ⊆ C, a real
number δ > 0 with (t0 − δ, t0 + δ)∩ I ⊂ V , and a holomorphic and injective function
F : V → C such that F |(t0−δ,t0+δ) = γ |(t0−δ,t0+δ). If γ is analytic at every t ∈ I , we
will say that γ is an analytic curve.
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Lemma 2.4 Let t0 ∈ I and γ : I → C be a continuous and locally injective function.
We suppose that for every function f : I → C items (1) and (2) are equivalent:

1. There exists a power series of a real variable
∞∑
n=0

an(t − t0)n, an ∈ C with positive

radius of convergence r > 0 and δ ∈ (0, r ], which coincides with f on (t0 −
δ, t0 + δ) ∩ I .

2. There exists a power series of a complex variable G(z) =
∞∑
n=0

bn(z − γ (t0))n,

bn ∈ C with positive radius of convergence s > 0 and ε ∈ (0, s] such that
f (t) = G(γ (t)) for t ∈ (t0 − ε, t0 + ε) ∩ I .

Then γ is analytic at t0.

Proof Implication (2) ⇒ (1) will only be used to prove that γ is differentiable on an
open interval that contains t0.We start by consideringβ > 0 and J = (t0−β, t0+β)∩I .
For every t ∈ J we choose f (t) = γ (t) = γ (t0) + (γ (t) − γ (t0)) and so by (2) ⇒
(1) we obtain that there exists 0 < δ < β such that

γ (t) =
∞∑

n=0

an(t − t0)
n

for some constants an ∈ C and for every t ∈ (t0 − δ, t0 + δ) ∩ I . Therefore γ is
differentiable on this interval. Now for g(t) = t = t0 + (t − t0) by (1) ⇒ (2) we have
that there is 0 < ε ≤ δ such that

t =
∞∑

n=0

bn(γ (t) − γ (t0))
n

for some constants bn ∈ C for every t ∈ (t0 − ε, t0 + ε). Differentiation of the above
equation at t = t0 yields the relation 1 = b1γ ′(t0) which implies that b1 �= 0. The

power series
∞∑
n=0

bn(z − γ (t0))n has a positive radius of convergence and so there

exists α > 0 such that γ (t) ∈ D(γ (t0), α) for every t ∈ (t0 − ε, t0 + ε) ∩ I and the
function f : D(γ (t0), α) → C with

f (z) =
∞∑

n=0

bn(z − γ (t0))
n

is holomorphic. Also, f (γ (t)) = t for every t ∈ (t0−ε, t0+ε)∩ I . Since f ′(γ (t0)) =
b1 �= 0 , f is locally invertible and thus the inverse, h, of f is well defined on the open
disk D(t0, η)where 0 < η < ε.Moreover, γ (t) = h(t) for every t ∈ (t0−η, t0+η)∩ I
and h is holomorphic and injective. ��
Remark 2.5 The above proof shows that if γ in Lemma 2.4 belongs to C1(I ), then
the conclusion of the lemma is true even if we only assume that (1) ⇒ (2) is true.
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The following lemma is the inverse of Lemma 2.4.

Lemma 2.6 Let t0 ∈ I and γ : I → C be a continuous and locally injective function,
which is analytic at t0, and f : I → C. Then the following are equivalent:

1. There exists a power series of a real variable
∞∑
n=0

an(t − t0)n, an ∈ C with positive

radius of convergence r > 0 and δ ∈ (0, r ]which coincides with f on (t0−δ, t0+
δ) ∩ I .

2. There exists a power series of a complex variable G(z) =
∞∑
n=0

bn(z−γ (t0))n, bn ∈
C with positive radius of convergence s > 0 and ε > 0 such that f (t) = G(γ (t))
for every t ∈ (t0 − ε, t0 + ε) ∩ I .

Proof Let us start with the following observation. Since γ is an analytic curve at t0
there is an open disk D(t0, ε) ⊆ C, where ε > 0 and a holomorphic and injective
function � : D(t0, ε) → C with �(t) = γ (t) for t ∈ (t0 − ε, t0 + ε) ∩ I .

(1) ⇒ (2) We define the function g(z) =
∞∑
n=0

an(z − t0)n , z ∈ D(t0, δ), which is

holomorphic on D(t0, δ). As�−1 is holomorphic on�(D(t0, ε)), we are led to consider
the function F = g◦�−1 and notice that (F◦�)(t) = f (t), t ∈ D(t0, ε)∩ I . It follows

that there are bn ∈ C, n ∈ N, and δ > 0 such that F(z) =
∞∑
n=0

bn(z−γ (t0))n for every

z ∈ D(γ (t0), δ) ⊆ �(D(t0, ε)). Thus f (t) = (F ◦ γ )(t) =
∞∑
n=0

bn(γ (t) − γ (t0))n in

an interval (t0 − s, t0 + s) ∩ I where s > 0.

(2) ⇒ (1) We consider the function G(z) =
∞∑
n=0

bn(z − γ (t0))n , z ∈ D(γ (t0), s).

Choose a > 0 with a < ε such that �(D(t0, a)) ⊆ D(γ (t0), s). The function G ◦ � :
D(t0, a) → C is holomorphic. Therefore, there are an ∈ C, n ∈ N such that

(G ◦ �)(z) =
∞∑

n=0

an(z − t0)
n, z ∈ D(t0, a)

and consequently

f (t) = G(γ (t)) =
∞∑

n=0

an(t − t0)
n, t ∈ (t0 − a, t0 + a).

��
Definition 2.7 Let γ : I → C be a locally injective curve and z0 = γ (t0), t0 ∈ I .
A function f : γ ∗ → C belongs to the class of non-holomorphically extendable at
(t0, z0 = γ (t0)) functions if there are no open disk D(z0, r), r > 0, and η > 0 and a
holomorphic function F : D(z0, r) → C, such that γ ((t0−η, t0+η)∩ I ) ⊂ D(z0, r)
and F(γ (t)) = f (γ (t)) for all t ∈ (t0−η, t0+η)∩ I . Otherwise, f is holomorphically
extendable at (t0, z0 = γ (t0)).
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Definition 2.8 Let γ : I → C be a continuous map and t0 ∈ I . A function f : γ ∗ →
C is real analytic at (t0, z0 = γ (t0)) if there exist δ > 0 and a power series

∞∑
n=0

an(t −

t0)n with a radius of convergence ε > δ > 0, such that f (γ (t)) =
∞∑
n=0

an(t − t0)n for

every t ∈ (t0 − δ, t0 + δ) ∩ I .

The following proposition associates the phenomenon of real analyticity and that
of holomorphically extendability.

Proposition 2.9 Let γ : I → C be an analytic curve at t0 and t0 ∈ I . A function
f : γ ∗ → C is real analytic at (t0, z0 = γ (t0)) if and only if f is holomorphically
extendable at (t0, z0 = γ (t0)).

Proof At first we will prove direction⇒:. If f is real analytic at (t0, z0 = γ (t0)), then
from Lemma 2.6

f (γ (t)) =
∞∑

n=0

bn(γ (t) − γ (t0))
n

for every t ∈ (t0 − ε, t0 + ε) ∩ I and for some bn ∈ C, ε > 0. From the continuity
of γ , there exists η > 0 such that γ ((t0 − η, t0 + η) ∩ I ) ⊂ D(z0, ε). Therefore the
function

F(z) =
∞∑

n=0

bn(z − γ (t0))
n

defined on D(z0, ε) is equal to f on γ ((t0 − η, t0 + η) ∩ I ). Thus the function f is
holomorphically extendable at (t0, z0 = γ (t0)).
Next we prove direction⇐: If f is extendable at (t0, z0 = γ (t0)), then there are r > 0
and a holomorphic function F : D(γ (t0), r) → C such that

f (γ (t)) = F(γ (t))

for every t ∈ (t0 − ε, t0 + ε) ∩ I and for some ε > 0. Let

∞∑

n=0

bn(z − γ (t0))
n

be the Taylor expansion of the holomorphic function F . It follows that

f (γ (t)) = F(γ (t)) =
∞∑

n=0

bn(γ (t) − γ (t0))
n

for every t ∈ (t0 − ε, t0 + ε) ∩ I and as a result, again from Lemma 2.6, we conclude
that f is real analytic at (t0, z0 = γ (t0)), because the curve γ is analytic at t0. ��
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The following theorem is a consequence of Lemma 2.4 and Proposition 2.9.

Theorem 2.10 Let γ : I → C be a continuous and locally injective curve and t0 ∈ I .
Then γ is analytic at t0 if and only if for every function f : γ ∗ → C the following are
equivalent:

1. f is real analytic at (t0, z0 = γ (t0)).
2. f is holomorphically extendable at (t0, z0 = γ (t0)).

Now we will examine a different kind of differentiability.

Definition 2.11 Let γ : X → C be a continuous and injective curve. We define the
derivative of a function f : γ ∗ → C at γ (t0), where t0 ∈ X by

d f

dz
(γ (t0)) = lim

t→t0

f (γ (t)) − f (γ (t0))

γ (t) − γ (t0)

if the above limit exists and is a complex number. Inductively, we define

dk f

dzk
(γ (t)) =

d

(
dk−1 f

dzk−1 (γ (t))

)

dz
(γ (t)).

Definition 2.12 Let γ : X → C be a homeomorphism onto γ ∗. A function f :
γ ∗ → C which belongs to the class Ck(γ ∗) if d

k f

dzk
(γ (t)) exists and is continuous for

t ∈ X . Finally, a function f : γ ∗ → C belongs to the class C∞(γ ∗) if dk f

dzk
(γ (t))

exists and is continuous for every t ∈ X and for every k ∈ {1, 2, 3, . . .}. Let also
(Xn), n ∈ {1, 2, 3, . . .} be an increasing sequence of compact subsets of γ ∗ such that
∞⋃
n=1

Xn = γ ∗. For k ∈ {1, 2, 3, . . .}∪{∞}, the topology of the spaceCk(γ ∗) is defined

by the seminorms

sup
z∈Xn

∣
∣
∣
dl f

dzl
(z)

∣
∣
∣, l = 0, 1, 2, . . . , k, n = 1, 2, 3, . . .

In this way Ck(γ ∗) becomes a Banach space if k < ∞ and I is compact. Otherwise,
Ck(γ ∗) is a Fréchet space.

Proposition 2.13 Let γ : X → C be a homeomorphism onto γ ∗ with γ ′(t) �= 0 for
every t ∈ X and k ∈ {1, 2, 3, . . .} ∪ {∞}. If Ck(X) = Ck(γ ∗) ◦ γ , then γ ∈ Ck(X).

Proof The function f : γ ∗ → C with f (γ (t)) = γ (t) for t ∈ X belongs to the class
Ck(γ ∗) and therefore the function γ = f ◦ γ : X → C belongs to the class Ck(X). ��

Now we will prove the converse of the previous proposition. If γ ∈ Ck(X), then
Ck(X) = Ck(γ ∗) ◦ γ . In order to do so we need the following lemma which will also
be useful to us later. Its proof is straightforward and thus omitted, but the interested
reader can find a proof in [1].
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Lemma 2.14 Let X be an interval I ⊂ R or the unit circle T , γ ∈ Ck(X), k ∈
{1, 2, . . . } ∪ {∞} and f ∈ Ck(γ ∗) and g = f ◦ γ . Then g ∈ Ck(X) and there exist
polynomials Pj,i defined on Ci , such that

g(i)(t) =
i∑

j=1

d j f

dz j
(γ (t))Pj,i (γ

′
(t), γ

′′
(t), . . . , γ (i)(t))

where the derivatives of γ are with respect to the real variable t in the case X = I
and with respect to the complex variable t , |t | = 1 in the case X = T .

Proposition 2.15 Let γ : X → C be a homeomorphism onto γ ∗ with γ ′(t) �= 0 and
k ∈ {1, 2, 3, . . .} ∪ {∞}. If γ ∈ Ck(X), then Ck(X) = Ck(γ ∗) ◦ γ .

Proof By Lemma 2.14 we have that Ck(X) ⊃ Ck(γ ∗) ◦ γ . We proceed by proving
inductively that Ck(X) ⊂ Ck(γ ∗) ◦ γ .

For k = 1 whenever f ∈ C1(X) we denote g = f ◦ γ −1. Then, it is easy to see
that

dg

dz
(γ (t0)) = f ′(t0)

γ
′
(t0)

for t0 ∈ X which implies that the function
dg

dz
is continuous and hence g ∈ C1(γ ∗).

Assume that the assertion holds for some k. Given f ∈ Ck+1(X) we denote g =
f ◦ γ −1. Notice that g ◦ γ = f and

dg

dz
(γ (t0)) = ( f ′ ◦ γ −1)(γ (t0))

γ
′
(t0)

for t0 ∈ X . From the induction hypothesis, we obtain that f ′ ◦ γ −1 ∈ Ck(γ ∗). It is
also true that γ ′ ∈ Ck(X). It follows immediately that

dg

dz
∈ Ck(γ ∗) or equivalently

g ∈ Ck+1(γ ∗) and the proof is complete for every finite k.
The case k = ∞ follows from the case of finite k. ��

As we have shown above if γ is a homeomorphism defined on X , then C(X) =
C(γ ∗) ◦ γ . If also γ ∈ Ck(X), where k ∈ {0, 1, 2, . . . } ∪ {∞}, and γ

′
(t) �= 0 for

every t ∈ X , then Ck(X) = Ck(γ ∗) ◦ γ . This implies that the spaces Ck(γ ∗) and
Ck(γ ) contain exactly the same elements. Now we will prove that they also share the
same topology.

Proposition 2.16 Let γ be a homeomorphism defined on X of class Ck(X) and
γ

′
(t) �= 0 for every t ∈ X. Then the spaces Ck(γ ) and Ck(γ ∗) share the same

topology.

Proof At first we will prove the proposition in the special case where X is a compact
interval I ⊂ R or the unit circle T and k �= ∞. In order to do so we will find
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0 < M, N < ∞ such that d1( f1, f2) ≤ Md2( f1, f2) and d2( f1, f2) ≤ Nd1( f1, f2)
for every f1, f2 ∈ Ck(γ ) = Ck(γ ∗), where d1, d2 are the metrics of Ck(γ ) and
Ck(γ ∗), respectively.

Let f1, f2 ∈ Ck(γ ∗) and g1 = f1 ◦ γ, g2 = f2 ◦ γ ∈ Ck(X). We notice that

sup
t∈X

|g1(t) − g2(t)| = sup
z∈γ ∗

| f1(z) − f2(z)| ≤ d2( f1, f2).

In addition,

(g1 − g2)
(i)(t) =

i∑

j=1

d j ( f1 − f2)

dz j

(
γ (t))Pj,i (γ

′
(t), γ

′′
(t), . . . , γ (i)(t)

)
, (1)

for 1 ≤ j ≤ i ≤ k, where Pj,i are the polynomials of Lemma 2.14. If m j,i =
sup
t∈X

|Pj,i ((γ
′
(t), γ

′′
(t), . . . , γ (i)(t))| and Mi = max{m j,i , 1 ≤ j ≤ i}, then from the

triangle inequality

sup
t∈X

|(g1 − g2)
(i)(t)| ≤ Mid2( f1, f2).

Consequently, d1( f1, f2) ≤ Md2( f1, f2), where M = 1 + M1 + M2 + · · · + Mk .
We also notice that

sup
z∈γ ∗

| f1(z) − f2(z)| = sup
t∈X

|g1(t) − g2(t)| ≤ d1( f1, f2).

We will prove inductively that

sup
z∈γ ∗

∣
∣
∣
∣
di ( f1 − f2)

dzi
(z)

∣
∣
∣
∣ ≤ Nid1( f1, f2),

for some Ni > 0, i = 1, 2, . . . , i ≤ k. It is easy to see that Pi,i (z1, z2, . . . , zi ) = z1i .
Moreover, γ ′(t) �= 0 for every t ∈ X implies

si = inf
t∈X

∣
∣
∣Pi,i ((γ

′
(t), γ

′′
(t), . . . , γ (i)(t))

∣
∣
∣ > 0

. For i = 1 ≤ k we have

sup
z∈γ ∗

∣
∣
∣
∣
d( f1 − f2)

dz
(z)

∣
∣
∣
∣ ≤ 1

s1
sup
t∈X

|(g1 − g2)
′(t)| ≤ 1

s1
d1( f1, f2),
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and thus N1 = 1

s1
. Assume that the assertion holds for every 1 ≤ j ≤ i < k. Using our

induction hypothesis and equation (1), we find from the reverse triangle inequality

sup
t∈X

|(g1 − g2)
(i+1)(t)| ≥ sup

z∈γ ∗

∣
∣
∣
∣
di+1( f1 − f2)

dzi+1 (z)

∣
∣
∣
∣ si+1 −

i∑

j=2

N jm j,i+1d1( f1, f2).

Therefore

sup
z∈γ ∗

∣
∣
∣
∣
di+1( f1 − f2)

dzi+1 (z)

∣
∣
∣
∣ ≤ Ni+1d1( f1, f2),

where Ni+1 = 1

si+1
+

i∑

j=2

N jm j,i+1

si+1
and the result holds also for i +1. The induction

is complete. Now it is easy to deduce that d2( f1, f2) ≤ Nd1( f1, f2), where N =
1 + N1 + N2 + · · · + Nk .

It follows immediately from the above that even in the case where X is any type
of interval I ⊂ R and/or k = ∞ the respective topologies of the spaces Ck(γ ) and
Ck(γ ∗) are the same. The basic open subsets ofCk(γ ) are defined by a compact subset
of X , an l ∈ {0, 1, 2, . . . }, l ≤ k, a function f ∈ Ck(γ ), and an ε > 0. But if we
recall the definition of the topology of Ck(γ ∗) and use the above we realize that this
basic open subset of Ck(γ ) is also an open subset of Ck(γ ∗). Similarly every basic
open subset of Ck(γ ∗) is an open subset of Ck(γ ). The proof is complete. ��

Combining Propositions 2.13, 2.15, and 2.16, we obtain the following theorem.

Theorem 2.17 Let γ : X → C be a homeomorphism onto γ ∗ with γ ′(t) �= 0 for
every t ∈ X and k ∈ {1, 2, 3, . . .} ∪ {∞}. Then Ck(X) = Ck(γ ∗) ◦ γ if and only if
γ ∈ Ck(X). In addition, the spaces Ck(γ ) and Ck(γ ∗) share the same topology.

Remark 2.18 One can prove a slightly stronger statement than that of Theorem 2.17.
We need not assume γ ′(t) �= 0. Then Ck(X) = Ck(γ ∗) ◦ γ if and only if γ ∈ Ck(X)

and γ ′(t) �= 0 for every t ∈ X .

Remark 2.19 With the definition of the derivative as in the Definition 2.12, we can
define the spaces Ck(E) for more general sets E ⊂ C but it may occur that the space
Ck(E) is not complete.

Theorem 2.17 shows that if γ is a homeomorphism and γ ′(t) �= 0 for t ∈ X , then
Ck(γ ) ≈ Ck(γ ∗). Therefore, we obtain the following corollary.

Corollary 2.20 Let γ : X → C be a homeomorphism onto γ ∗ with γ ′(t) �= 0 for
every t ∈ X and k ∈ {1, 2, 3, . . . } ∪ {∞}. Then the space Ck(γ ) is independent of the
parametrization of γ and coincides with the space Ck(γ ∗).
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3 Continuous Analytic Capacities

In this section, we present a few facts for the notion of continuous analytic capacity
[7] that we will need in Sects. 5 and 7. Section 7 leads us to generalize this notion and
thus define the notion of p-continuous analytic capacity.

Definition 3.1 Let U ⊂ C be open. A function f belongs to the class A(U ) if f ∈
H(U ) and f has a continuous extension on U , where the closure of U is taken in C.

Definition 3.2 Let � be the complement inC of a compact set. A function f belongs
to the class A(�∪{∞}) if f ∈ H(�)∩C(�∪{∞}) and f has a continuous extension
on �, where the closure of � is taken in C.

By Tietze’s extension Theorem, the extensions in both previous definitions can be
considered as extensions on the whole of C ∪ {∞} without increase of the original
norm ‖ f ‖∞.

Definition 3.3 Let L be a compact subset of C. Let also � = C \ L . We denote

a(L) = sup{| lim
z→∞ z( f (z) − f (∞))| : f ∈ A(� ∪ {∞}), ‖ f ‖∞ ≤ 1}

the continuous analytic capacity of L .

It is well known [7] that a(L) = 0 if and only if A(�∪{∞}) contains only constant
functions.

Theorem 3.4 Let L be a compact subset of C and U ⊂ C be open with L ⊂ U. Then
a(L) = 0 if and only if every f ∈ C(U ) ∩ H(U \ L) belongs to H(U ).

Proof Assume that every f ∈ C(U ) ∩ H(U \ L) belongs to H(U ).
We consider an arbitrary f ∈ A(� ∪ {∞}). Since f can be continuously extended

over L , it belongs to C(U ) ∩ H(U \ L) and thus to H(U ). Therefore, f is analytic in
C and continuous in C ∪ {∞} and hence it is constant.

Thus a(L) = 0.
Now assume a(L) = 0 and we consider any f ∈ C(U ) ∩ H(U \ L).
There exist two closed curves γ1 and γ2 inU so that γ1 surrounds L and γ2 surrounds

γ1. We define the analytic functions

φ1(z) = 1

2π i

∫

γ1

f (ζ )

ζ − z
dζ for z in the exterior of γ1

and

φ2(z) = 1

2π i

∫

γ2

f (ζ )

ζ − z
dζ for z in the interior of γ2.

Then the function g which equals φ2 − f in the interior of γ2 and φ1 in the exterior
of γ1 is well defined and belongs to A(� ∪ {∞}). Therefore g is constant and thus f
is analytic in the interior of γ2. Hence f ∈ H(U ). ��
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Due to the local nature of the proof of the next theorem, we shall state a few facts
about the so-called Vitushkin’s localization operator [5].

Let U ⊂ C be open and f ∈ C(C) ∩ H(U ). Let also g ∈ C1(C) have compact
support. We define the function

G(z) = 1

π

∫∫
f (z) − f (w)

z − w

∂g

∂w
(w) dm(w)

= f (z)g(z) − 1

π

∫∫
f (w)

z − w

∂g

∂w
(w) dm(w).

(2)

The functionG is continuous inC∪{∞}withG(∞) = 0, analytic inU ∪(C\supp g)
and f − G is analytic in the interior of the set g−1({1}).
Definition 3.5 Let L be a closed subset of C. We define

a(L) = sup{a(M) : M compact subset of L}

the continuous analytic capacity of L .

Theorem 3.6 Let L be a closed subset of C. Then a(L) = 0 if and only if for every
open set U ⊂ C every f ∈ C(U ) ∩ H(U \ L) belongs to H(U ).

Proof One direction is immediate from Theorem 3.4 and Definition 3.5 and hence we
assume that a(L) = 0.
We consider an arbitrary open set U ⊂ C which intersects L and an arbitrary f ∈
C(U ) ∩ H(U \ L) and we shall prove that f extends analytically over U ∩ L .
Now L may not be contained in U but since analyticity is a local property we shall
employ Vitushkin’s localization operator.

Let z0 ∈ U ∩L and D(z0, 3δ) ⊂ U . We consider g ∈ C1(C)with supp g ⊂ D(z0, 2δ)
such that g = 1 in D(z0, δ).
We also consider the restriction F of f in D(z0, 3δ) and we extend F so that it is
continuous in C ∪ {∞}.
We define as in (2) the function

G(z) = 1

π

∫∫
F(z) − F(w)

z − w

∂g

∂w
(w) dm(w).

Now G is continuous in C∪ {∞} with G(∞) = 0, analytic in (D(z0, 3δ) \ L) ∪ (C \
D(z0, 2δ)) = C \ (D(z0, 2δ) ∩ L) and f − G = F − G is analytic in D(z0, δ).
Since a(L) = 0, we have a(D(z0, 2δ) ∩ L) = 0 and hence G is constant 0 in C.
Therefore, f is analytic in D(z0, δ).
Since z0 ∈ U ∩ L is arbitrary we conclude that f ∈ H(U ). ��
Theorem 3.7 [7] If L is a Jordan arc with locally finite length, then a(L) = 0. The
same holds for any countable union of such curves. Therefore, line segments, circular
arcs, analytic curves, and boundaries of convex sets are all of zero continuous analytic
capacity.
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Definition 3.8 LetU be an open subset of C and p ∈ {0, 1, 2, . . .}∪ {∞}. A function
f belongs to the class Ap(U ) if f ∈ H(U ) and all derivatives f ( j), j ∈ {0, 1, 2, . . .},
0 ≤ j ≤ p, have continuous extensions f ( j) onU , where the closure ofU is taken in
C.

Definition 3.9 Let� be the complement inC of a compact set and p ∈ {0, 1, 2, . . .}∪
{∞}. A function f belongs to the class Ap(� ∪ {∞}) if f ∈ H(�) ∩ C(� ∪ {∞})
and all derivatives f ( j), j ∈ {0, 1, 2, . . .}, 0 ≤ j ≤ p, have continuous extensions
f ( j) on �, where the closure of � is taken in C.

Definition 3.10 Let L be a compact subset ofC and p ∈ {0, 1, 2, . . .}∪{∞}. Let also
� = C \ L . For p �= ∞ we denote the p-continuous analytic capacity as

ap(L) = sup
{∣
∣ lim
z→∞ z( f (z) − f (∞))

∣
∣ : f ∈ Ap(� ∪ {∞}), max

0≤ j≤p
‖ f ( j)‖∞ ≤ 1

}
.

Obviously, a0(L) = a(L).
For p = ∞,

a∞(L) = sup
{∣
∣ lim
z→∞ z( f (z) − f (∞))

∣
∣ : f ∈ A∞(� ∪ {∞}), d( f, 0) ≤ 1

}
,

where the Fréchet distance d( f, 0) is defined by

d( f, 0) =
∞∑

j=0

2− j ‖ f ( j)‖∞
1 + ‖ f ( j)‖∞

.

If L is a closed subset of C, then we define

ap(L) = sup
{
ap(M) : M compact subset of L

}
.

Definition 3.11 Let L be a compact subset ofC and p ∈ {0, 1, 2, . . .}∪{∞}. Let also
� = C \ L . We denote

a′
p(L) = sup

{∣
∣ lim
z→∞ z( f (z) − f (∞))

∣
∣ : f ∈ Ap(� ∪ {∞}), ‖ f ‖∞ ≤ 1

}
.

Obviously, a′
0(L) = a(L).

If L is a closed subset of C then we define

a′
p(L) = sup{a′

p(M) : M compact subset of L}.

It is obvious that ap(L) and a′
p(L) are decreasing functions of p.

The following theorem corresponds to Theorem 3.4.

Theorem 3.12 Let L be a compact subset of C and U ⊂ C be open with L ⊂ U and
let p ∈ {0, 1, 2, . . .} ∪ {∞}. Then ap(L) = 0 if and only if every f ∈ Ap(U \ L) has
an extension to Ap(U ), if and only if a′

p(L) = 0.
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The proof is a repetition of the proof of Theorem 3.4.

Definition 3.13 Let L be a compact subset ofC. For p ∈ {0, 1, 2, . . .}∪{∞},wedefine
bp(L) such that bp(L) = 0 when ap(L) = 0 and bp(L) = ∞ when ap(L) �= 0. For
p, q ∈ {0, 1, 2, . . .} ∪ {∞} we will say that ap(L) and aq(L) are essentially different
if bp(L) �= bq(L).

Definition 3.14 Let U be an open subset of C and p ∈ {1, 2, . . .} ∪ {∞}. A function
f belongs to the class Ã p(U ) if f ∈ Ap(U ) and for 0 ≤ j ≤ j ′ ≤ p the following is
true for z, w ∈ U

f ( j)(w) −
j ′− j∑

k=0

1

k! f
( j+k)(z)(w − z)k = o(|w − z| j ′− j ) as w → z. (3)

This is supposed to hold uniformly for z, w in compact subsets of U .
Analogously, if � is the complement in C of a compact set, then a function f belongs
to the class Ã p(� ∪ {∞}) if f ∈ Ap(� ∪ {∞}), and (3) holds for z, w ∈ �.

Note that, since f ∈ H(U ), relation (3) is automatically true for z ∈ U and thus
the ”point” of the definition is when z ∈ ∂U .

If p is finite, then f ∈ Ã p(U ) admits as a norm ‖ f ‖ Ã p(U )
the smallest M such

that

| f ( j)(z)| ≤ M for z ∈ U , 0 ≤ j ≤ p,
∣
∣
∣
∣
∣
∣
f ( j)(w) −

j ′− j∑

k=0

1

k! f
( j+k)(z)(w − z)k

∣
∣
∣
∣
∣
∣
≤ M |w − z| j ′− jw, z ∈ U , |w − z| ≤ 1,

0 ≤ j ≤ j ′ ≤ p.

It is easy to see that Ã p(U ) with this norm is complete.
If p is infinite, then using the norms for the finite cases in the standard way, Ã∞(U )

becomes a Fréchet space.
There is a fundamental result of Whitney [13] saying that if f ∈ Ã p(U ), then f

can be extended in C in such a way that the extended f belongs to C p(C) and that
the partial derivatives of f of order ≤ p in C are extensions of the original partial
derivatives of f in U .

Definition 3.15 Let L be a compact subset ofC and p ∈ {0, 1, 2, . . .}∪{∞}. Let also
� = C \ L . For p �= ∞, we denote

ãp(L) = sup
{∣
∣ lim
z→∞ z( f (z) − f (∞))

∣
∣ : f ∈ Ã p(� ∪ {∞}), ‖ f ‖ Ã p(U )

≤ 1
}
.

In the case p = ∞, the norm ‖ f ‖ Ã p(U )
is replaced by the distance from f to 0 in the

metric space structure of Ã∞(U ).
Obviously, ã0(L) = a(L).
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If L is a closed subset of C, then we define

ãp(L) = sup{ãp(M) : M compact subset of L}.

It turns out that in the case p ≥ 1, there is a simple topological characterization of
the compact sets L with ãp(L) = 0.

Theorem 3.16 Let L be a compact subset of C and p ≥ 1. Then ãp(L) = 0 if and
only if L has empty interior.

Proof Let L have non-empty interior and let the disk D(z0, r0) be contained in L .
Obviously, the non-constant function 1

z−z0
belongs to Ã p(�∪{∞}) for all p and thus

ãp(L) > 0 for all p.
Conversely, let L have empty interior and let f belong to Ã1(� ∪ {∞}). Then f is

analytic in � and at every z ∈ L , we have

f (w) − f (z) − f ′(z)(w − z) = o(|w − z|) as w → z, w ∈ � = C.

Thus f is analytic at z (with derivative equal to f ′(z)) and hence analytic in all of C.
Since f is continuous at ∞, it is a constant. Therefore, Ã1(� ∪ {∞}) contains only
the constant functions and ã1(L) = 0. ��
Theorem 3.17 There is a compact subset L of C such that ã1(L) = 0 < ã0(L).

Proof Due to the last theorem, it is enough to find a compact L with empty interior
and with ã0(L) = a(L) > 0.

This set L is a Cantor type set. We consider a sequence (an) with 0 < an < 1
2 for

every n = 1, 2, 3, . . . and construct a sequence (Ln) of decreasing compact sets as
follows. L0 is the unit square [0, 1] × [0, 1] and L1 is the union of the four squares at
the four corners of L0 with side length equal to a1. We then continue inductively. If
Ln is the union of 4n squares each of sidelength equal to

ln = a1 · · · an,

then each of these squares produces four squares at its four corners each of side length
equal to a1 · · · anan+1. The union of these new squares is Ln+1.

We denote In,k , k = 1, . . . , 4n , the squares whose union is Ln .
Finally, we define

L =
+∞⋂

n=1

Ln .

It is clear that L is a totally disconnected compact set. The area of Ln equals

|Ln| = 4n(a1 · · · an)2 = (2a1 · · · 2an)2.
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Now we assume that

+∞∑

n=1

(1 − 2an) < +∞.

Under this condition, we find that the area of L equals

|L| = lim
n→+∞ |Ln| = lim

n→+∞(2a1 · · · 2an)2 > 0.

Then it is well known [7] that the function

f (z) = 1

π

∫∫

L

1

z − w
dm(w)

is continuous in C ∪ {∞} with f (∞) = 0 and holomorphic on C \ L . Since

lim
z→∞ z f (z) = |L| > 0,

f is not identically equal to 0 and hence ã0(L) = a(L) > 0. ��
Remark 3.18 The latter part of the above proof shows that if a compact set L (not
necessarily of Cantor type) has strictly positive area, then a(L) > 0, which is a well-
known fact [7].

The problem of the characterization of the compact sets L with ap(L) = 0 seems
to be more complicated.

Wewill show that there is a compact set L such that a0(L) and a1(L) are essentially
different, i.e., a0(L) > 0 and a1(L) = 0.

Theorem 3.19 There is a compact subset L of C such that a1(L) = 0 < a0(L).

Proof We consider the same Cantor type set L which appeared in the proof of the
previous theorem. We keep the same notations.

We now take any f which belongs to A1(�∪{∞}). Subtracting f (∞) from f , we
may also assume that f (∞) = 0.

Let z0 ∈ �. Then there is n0 such that z0 /∈ Ln for all n ≥ n0.
By Cauchy’s formula, for every n ≥ n0, we have

f (z0) = − 1

2π i

4n∑

k=1

∫

γn,k

f (z)

z − z0
dz, (4)

where γn,k is the boundary curve of the square In,k .
Let zn,k be any point of � inside In,k (for example, the center of the square). It is

geometrically obvious that for every z ∈ γn,k there is a path (consisting of at most two
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line segments) γ with length l(γ ) ≤ 2ln joining z and zn,k and contained in � (with
the only exception of its endpoint z). Since f ∈ A1(� ∪ {∞}), we get

| f (z) − f (zn,k) − f ′(zn,k)(z − zn,k)| =
∣
∣
∣

∫

γ

( f ′(ζ ) − f ′(zn,k)) dζ
∣
∣
∣

≤
∫

γ

∣
∣ f ′(ζ ) − f ′(zn,k)

∣
∣ dζ ≤ εnl(γ ) ≤ 2εnln,

where εn → 0 uniformly for z ∈ γn,k and for k = 1, . . . , 4n .
Therefore,

∣
∣
∣

∫

γn,k

f (z)

z − z0
dz

∣
∣
∣ =

∣
∣
∣

∫

γn,k

f (z) − f (zn,k) − f ′(zn,k)(z − zn,k)

z − z0
dz

∣
∣
∣ ≤ εn

8l2n
δ0

,

where δ0 is the distance of z0 from Ln0 .
Thus from (4) we obtain

| f (z0)| ≤ 8 · 4nl2n
πδ0

εn = 8|Ln|
πδ0

εn ≤ 8

πδ0
εn .

This holds for all n ≥ n0 and hence f (z0) = 0 for all z0 ∈ �.
We proved that the only element f of A1(� ∪ {∞}) with f (∞) = 0 is the zero

function and thus a1(L) = 0. ��
We will now see a different proof of the above theorem. The proof is longer from

the previous one, but it provides a more general result.

Theorem 3.20 Let K1/3 be the usual Cantor set lying on [0, 1] and L = K1/3×K1/3.
Then a0(L) > 0, but a1(L) = 0.

Proof It is known [6,14] that there exists a function g continuous on S2 and holomor-
phic off L , such that

g′(∞) = lim
z→∞ z(g(z) − g(∞)) �= 0,

which implies that a0(L) > 0.
For the second statement we first observe that the area of L is 0, as

L =
∞⋂

n=0

Ln,

where each Ln is the union of 4n squares of area 9−n . We will prove that a1(L) = 0
or equivalently that every function in A1(� ∪ {∞}) is entire, where � = C \ L . Let
f ∈ A1(� ∪ {∞}), ε > 0, and ϕε = ε−2χε, where χε is the characteristic function of
the square Sε with center at 0 and sides parallel to the axes with length ε. It is easy to
see from the continuity of f that the convolutions f ∗ϕε belong toC1(C) and converge
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uniformly on D(0, 2) to f as ε → 0. Since f ∈ A1(� ∪ {∞}), the partial derivatives
∂u

∂x
,
∂u

∂y
and

∂v

∂x
,
∂v

∂y
of u = Ref and v = Im f , respectively, extend continuously on

C ∪ {∞} and hence are bounded. We will prove that

∂u ∗ ϕε

∂x
= ∂u

∂x
∗ ϕε (5)

on �. Let (a, b) ∈ � and h ∈ R
∗. Then

(u ∗ ϕε)(a + h, b) − (u ∗ ϕε)(a, b)

h

= ε−2
∫∫

Sε

u(a + h − x, b − y) − u(a − x, b − y)

h
dxdy.

It is easy to see that for almost every (x, y) ∈ Sε and every h ∈ R, the segment
[(a+ h − x, b− y), (a − x, b− y)] is a subset of �. Thus fromMean Value Theorem
for almost every (x, y) ∈ Sε and every h ∈ R

∗, there exists q ∈ R, such that

u(a + h − x, b − y) − u(a − x, b − y)

h
= ∂u

∂x
(a + q − x, b − y),

which remains bounded by a constant M > 0. For those (x, y) ∈ Sε

u(a + h − x, b − y) − u(a − x, b − y)

h

converges to

∂u

∂x
(a − x, b − y),

as h converges to 0. Using the Dominated Convergence Theorem, we obtain (5).
Similarly

∂u ∗ ϕε

∂y
= ∂u

∂y
∗ ϕε,

∂v ∗ ϕε

∂x
= ∂v

∂x
∗ ϕε,

∂v ∗ ϕε

∂y
= ∂v

∂y
∗ ϕε.

Since the Cauchy–Riemann equations are satisfied for f almost everywhere, we have
that

∂u

∂x
∗ ϕε = ∂v

∂y
∗ ϕε

and

∂u

∂y
∗ ϕε = −∂v

∂x
∗ ϕε.
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Thus the Cauchy–Riemann equations are satisfied for every f ∗ ϕε on �. Since the
interior of L is void, the set� is dense inC. From the continuity of the partial derivatives
of every f ∗ ϕε on C, the Cauchy–Riemann equations are satisfied for every f ∗ ϕε

on C, which implies that every f ∗ ϕε is entire. Finally, f ∗ ϕε converge uniformly on
D(0, 2) to f , as ε → 0, which implies that f is holomorphic on D(0, 2) and hence
entire. ��
Remark 3.21 The above proof also shows that if L is a compact subset of C of zero
area and if for almost every line ε which is parallel to the x-axis and for almost every
line ε which is parallel to the y-axis, ε ∩ L = ∅, then a1(L) = 0. In fact, it suffices
that these intersections are finite for a dense set of ε parallel to the x-axis and for a
dense set of ε parallel to the y-axis.

4 Real Analyticity on Analytic Curves

Let L ⊂ C be a closed set without isolated points. We denote by C(L) the set of
continuous functions f on L . This space endowed with the topology of uniform
convergence on the compact subsets of L is a complete metric space and thus Baire’s
Theorem is at our disposal.

Lemma 4.1 Let L ⊂ C be a closed set without isolated points. Let also z0 ∈ L be
the center and r > 0 be the radius of the open disk D(z0, r) and M > 0. The set
of functions f ∈ C(L) for which there exists a holomorphic on D(z0, r) function F
bounded by M such that F |D(z0,r)∩L = f |D(z0,r)∩L , is closed and has empty interior.

Proof Let A(M, z0, r) be the aforementioned set of functions. We distinguish two
cases according to whether D(z0, r) is contained or not in L .

If D(z0, r) ⊂ L , then the elements of A(M, z0, r) are holomorphic on D(z0, r)
and bounded by M . Let ( fn)n≥1 be a sequence in A(M, z0, r) converging uniformly
on the compact subsets of L to a function f defined on L . Then f is holomorphic on
D(z0, r) and bounded by M and A(M, z0, r) is a closed subset of C(L).

For the second part of the theorem, let us assume that A(M, z0, r) does not have
empty interior. Then there is a function f in the interior of A(M, z0, r), a compact set
K ⊂ L and δ > 0 such that

A( f, K , δ) =
{

g ∈ C(L) : sup
z∈K

| f (z) − g(z)| < δ

}

⊂ A(M, z0, r).

Then the function h(z) = f (z) + δ

2
z̄, z ∈ L belongs to A(M, z0, r) and therefore is

holomorphic on D(z0, r). But then the function
δ

2
z̄ will be holomorphic on D(z0, r)

which is absurd. Thus the interior of A(M, z0, r) is void.
If D(z0, r) is not contained in L , then there is w ∈ D(z0, r)\L . Let ( fn)n≥1

be a sequence in A(M, z0, r) where fn converges uniformly on compact subsets of
L to a function f defined on L . Then for every n there are holomorphic functions
Fn : D(z0, r) → C bounded byM such that Fn|D(z0,r)∩L = fn|D(z0,r)∩L . ByMontel’s
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Theorem, there is a subsequence (Fkn ) of (Fn)which converges uniformly to a function
F on the compact subsets of D(z0, r) which is holomorphic on D(z0, r) and bounded
by M . Because Fkn → f at D(z0, r)∩ L we have that F |D(z0,r)∩L = f |D(z0,r)∩L and
so f ∈ A(M, z0, r). Therefore A(M, z0, r) is a closed subset of C(L).

If A(M, z0, r) does not have empty interior, then there exists a function f in the
interior of A(M, z0, r), a compact set K ⊂ L and δ > 0 such that A( f, K , δ) ⊂
A(M, z0, r). We choose 0 < a < δ inf

z∈K |z − w|. We notice that this is possible

because inf
z∈K |z−w| > 0. The function h(z) = f (z)+ a

2(z − w)
for z ∈ L belongs to

A(M, z0, r) and therefore has a holomorphic and bounded extension H on D(z0, r),
such that H |D(z0,r)∩L = h|D(z0,r)∩L . However, there is a holomorphic function F :
D(z0, r) → C which coincides with f on D(z0, r) ∩ L . By analytic continuation

H(z) = F(z) + a

2(z − w)
for z ∈ D(z0, r) \ {z0}, since they are equal on L ∩

(D(z0, r) \ {z0}), which contains infinitely many points close to z0, all of them being
non-isolated. As a result, H is not bounded at D(z0, r)which is a contradiction. Thus,
A(M, z0, r) has empty interior. ��
Definition 4.2 Let L ⊂ C be a closed set without isolated points and z0 ∈ L . A
function f ∈ C(L) belongs to the class of non-holomorphically extendable at z0
functions if there is no pair of an open disk D(z0, r), r > 0 and a holomorphic
function F : D(z0, r) → C such that F |D(z0,r)∩L = f |D(z0,r)∩L .

Theorem 4.3 Let L ⊂ C be a closed set without isolated points and z0 ∈ L. The
class of non-holomorphically extendable at z0 functions of C(L) is dense and Gδ .

Proof The set

∞⋂

n=1

∞⋂

M=1

(

C(L)\A
(

M, z0,
1

n

))

is a dense Gδ subset of C(L) according to Baire’s Theorem and coincides with the
class of non-holomorphically extendable at z0 functions, since every holomorphic
function on D(z0, r) is bounded when restricted on D(z0, r ′) for r ′ < r . ��
Definition 4.4 Let L ⊂ C be a closed set without isolated points. A function f ∈
C(L) belongs to the class of nowhere holomorphically extendable functions defined
and continuous on L , if there exists no pair of an open disk D(z0, r), z0 ∈ L , r > 0
and a holomorphic function F : D(z0, r) → C, such that F |D(z0,r)∩L = f |D(z0,r)∩L .

Theorem 4.5 Let L ⊂ C be a closed set without isolated points. The class of nowhere
holomorphically extendable functions of C(L) is a dense and Gδ subset of C(L).

Proof Let zl ∈ L , l = 1, 2, 3, . . . be a dense sequence. Then the set

∞⋂

l=1

∞⋂

n=1

∞⋂

M=1

(

C(L)\A
(

M, zl ,
1

n

))
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is a dense Gδ subset of C(L) according to Baire’s Theorem. This set coincides
with the class of nowhere holomorphically extendable functions of C(L), since
every holomorphic function on D(z0, r) is bounded when restricted on D(z0, r ′)
for r ′ < r . ��

The proof of the above results can be used to prove similar results at some special
cases. Let γ : I → C be a continuous and locally injective curve, where I is an
interval in R of any type. The symbol γ ∗ will be used instead of γ (I ). It is obvious
that γ ∗ has no isolated points.

Definition 4.6 Let γ : I → C be a locally injective curve and z0 = γ (t0), t0 ∈ I .
A function f : γ ∗ → C belongs to the class of non-holomorphically extendable at
(t0, z0 = γ (t0)) functions, if there are no open disk D(z0, r), r > 0, and η > 0 and a
holomorphic function F : D(z0, r) → C, such that γ ((t0−η, t0+η)∩ I ) ⊂ D(z0, r)
and F(γ (t)) = f (γ (t)) for all t ∈ (t0−η, t0+η)∩ I . Otherwise, f is holomorphically
extendable at (t0, z0 = γ (t0)).

Theorem 4.7 Let k, l ∈ {0, 1, 2, . . . } ∪ {∞} such that l ≤ k. Let also γ : I → C

be a locally injective function of Ck(I ) and t0 ∈ I . The class of non-holomorphically
extendable at (t0, z0 = γ (t0)) functions belonging to Cl(γ ) is a dense and Gδ subset
of Cl(γ ).

Proof Let r > 0 and η > 0 such that γ (t0 − η, t0 + η) ⊂ D(γ (t0), r). Let also
A(M, z0, r, η, l) be the set ofCl(I ) functions forwhich there is a holomorphic function
F defined on D(z0, r) and bounded by M , such that F(γ (t)) = f (γ (t)) for every
t ∈ (t0 − η, t0 + η) ∩ I .

Since γ ∈ Ck(I ) the open disk D(z0, r) is not contained in γ ∗ (see Proposition 6.2)
and thus there isw ∈ D(z0, r)\γ ∗. Similar to the proof ofLemma4.1, A(M, z0, r, η, l)
is a closed subset of Cl(γ ).

If A(M, z0, r, η, l) does not have empty interior, then there is a function f in the
interior of A(M, z0, r, η, l), b ∈ {0, 1, 2, . . . }, a compact set K ⊂ I , and δ > 0 such
that

{g ∈ Ck(γ ) : sup
t∈K

∣
∣
∣( f ◦ γ )( j)(t) − (g ◦ γ )( j)(t)

∣
∣
∣<δ, 0 ≤ j ≤ b} ⊂ A(M, z0, r, η, l).

Wechoose 0 < a < δmin{ inf
t∈K |γ (t)−w|, inf

t∈K |γ (t)−w|2, . . . , 1

b! inft∈K |γ (t)−w|b+1}.
This is possible because w /∈ γ ∗ and γ (K ) ⊂ γ ∗. The function h(z) = f (z) +

a

2(z − w)
for z ∈ γ ∗ belongs to A(M, z0, r, η, l), since γ ∈ Ck(I ). Similar to the

proof of Lemma 4.1, we are led to a contradiction. Therefore, A(M, z0, r, η, l) has
empty interior.

Let sn,m , n,m = 1, 2, 3, . . . be a sequence such that lim
m→∞ sn,m = 0 for every n

and γ (t0 − sn,m, t0 + sn,m) ⊂ D

(

γ (t0),
1

n

)

for every n and every m. Then the class

of non-holomorphically extendable at (t0, z0 = γ (t0)) functions belonging to Cl(γ )

coincides with the set
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∞⋂

n=1

∞⋂

m=1

∞⋂

M=1

(

Cl(γ )\A
(

M, z0,
1

n
, sn,m, l

))

,

because every holomorphic function on D(z0, r) becomes bounded if we restrict
it on D(z0, r ′) for r ′ < r . Thus according to Baire’s Theorem, the class of non-
holomorphically extendable at (t0, z0 = γ (t0)) functions of Cl(γ ) is a dense and Gδ

subset of Cl(γ ). ��
Definition 4.8 Let γ : I → C be a locally injective curve. A function f : γ ∗ → C

belongs to the class of nowhere holomorphically extendable functions if there are no
open disk D(z0, r), z0 = γ (t0), t0 ∈ I, r > 0 and η > 0 and a holomorphic function
F : D(z0, r) → C, such thatγ ((t0−η, t0+η)∩I ) ⊂ D(z0, r) and F(γ (t)) = f (γ (t))
for every t ∈ (t0 − η, t0 + η) ∩ I .

Theorem 4.9 Let k, l ∈ {0, 1, 2, . . . }∪ {∞} such that l ≤ k. Let also γ : I → C be a
locally injective function of Ck(I ). The class of nowhere holomorphically extendable
functions of Cl(γ ) is dense and Gδ .

Proof Let tn ∈ I , n = 1, 2, 3, . . . be a dense sequence in I . Then the class of nowhere
holomorphically extendable functions of Ck(γ ) coincides with the intersection over
every n of the classes of non-holomorphically extendable at (tn, zn = γ (tn)) functions
of Cl(γ ). Since the classes of non-holomorphically extendable at (tn, zn = γ (tn))
functions of Cl(γ ) are dense and Gδ subsets of Cl(γ ) according to Theorem 4.7, it
follows that the class of nowhere holomorphically extendable functions of Cl(γ ) is a
dense and Gδ subset of Cl(γ ) from Baire’s Theorem. ��

We intend to prove results about real analyticity using results about non-
extendability. At first we notice that Proposition 2.9 and Theorem 4.9 immediately
prove the following theorems.

Theorem 4.10 Let γ : I → C be an analytic curve and t0 ∈ I . For k = 0, 1, 2, . . . or
k = ∞ the class of functions f ∈ Ck(γ )which are not real analytic at (t0, z0 = γ (t0))
is a dense and Gδ subset of Ck(γ ).

Theorem 4.11 Let γ : I → C be an analytic curve. For k = 0, 1, 2, . . . or k = ∞
the class of functions f ∈ Ck(γ ) which are nowhere real analytic is a dense and Gδ

subset of Ck(γ ).

Remark 4.12 The fact that the class of functions f ∈ C∞([0, 1]) which are nowhere
real analytic is itself a dense and Gδ subset of C∞([0, 1]) strengthens the result [3],
where it is only proven that this class contains a dense and Gδ subset of C∞([0, 1]).
Proposition 4.13 Let γ : I → C be an analytic curve and γ ∗ = γ (I ). Let also
� : γ ∗ → C be a homeomorphism of γ ∗ on �(γ ∗) ⊂ C and δ = � ◦ γ . Then the set
of functions f ∈ Ck(δ), k ∈ {0, 1, 2, . . . } ∪ {∞} which are nowhere analytic is a Gδ

and dense subset of Ck(δ).

Proof The map S : Ck(γ ) → Ck(δ) defined by S(g) = g ◦ �−1, g ∈ Ck(γ ) is a
surjective isometry. Also a function g ∈ Ck(γ ) is nowhere analytic if and only if S(g)
is nowhere analytic. Theorem 4.11 combined with the above facts yields the result. ��
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Corollary 4.14 Assume that J is an interval and γ (t) = t or J = R and γ (t) = eit .
Let X denote the image of γ and� : X → C be a homeomorphism of X on�(X) ⊂ C

and δ = � ◦ γ . Then the set of functions f ∈ Ck(δ), k ∈ {0, 1, 2, . . . } ∪ {∞} which
are nowhere analytic is a Gδ and dense subset of Ck(δ).

Proof The curve γ is an analytic curve defined on an interval. The result follows from
Proposition 4.13. ��
Remark 4.15 According to Corollary 4.14 for any Jordan curve or Jordan arc δ with a
suitable parametrization generically onCk(δ), k ∈ {0, 1, 2, . . . }∪{∞} every function
is nowhere analytic. In fact this holds for all parametrizations of δ∗ and the spaces
Ck(δ) are the same for all parametrizations so that δ is a homeomorphism between
the unit circle T or [0, 1] and δ∗ (see Preliminaries).

5 Extendability of Functions on Domains of Finite Connectivity

We start this section with the following general fact. Its proof is skipped, but the
interested reader can find one in [1].

Proposition 5.1 Let n ∈ {1, 2, . . . }. Let also X1, . . . , Xn be complete metric spaces
and A1, . . . , An dense and Gδ subsets of X1, . . . , Xn, respectively. Then the metric
space X1×· · ·×Xn, endowedwith the product topology, is complete and A1×· · ·×An

is a dense and Gδ subset of X1 × · · · × Xn.

Definition 5.2 Let n ∈ {1, 2, . . . } and γi : Ii → C, i = 1, . . . , n be con-
tinuous and locally injective curves, where Ii are intervals. We define the space
C p1,...,pn (γ1, . . . , γn) = C p1(γ1)×· · ·×C pn (γn), where pi ∈ {0, 1, 2, . . . }∪{∞} for
i = 1, . . . , n. The space C p1,...,pn (γ1, . . . , γn) is endowed with the product topology
and becomes a complete metric space.

We can regard the above space as the class of functions f , which are defined on
the disjoint union γ ∗

1 ∪ · · · ∪ γ ∗
n of the locally injective curves γ1, . . . , γn , where f |γi

belongs to C pi (γi ).

Definition 5.3 Let n ∈ {1, 2, . . . } and γi : Ii → C, i = 1, . . . , n, be locally injective
curves, where Ii are intervals. A function f defined on the disjoint union γ ∗

1 ∪· · ·∪γ ∗
n

for z ∈ γ ∗
i belongs to the class of nowhere holomorphically extendable functions if

the restriction of f on γ ∗
i belongs to the class of nowhere holomorphically extendable

functions defined on γ ∗
i , respectively, for every i = 1, . . . , n.

Theorem 5.4 Let n ∈ {1, 2, . . . }, pi , qi ∈ {0, 1, . . . } ∪ {∞} such that pi ≤ qi for
i = 1, . . . , n . Let also γi : Ii → C, i = 1, . . . , n, be locally injective functions
of Cqi (Ii ), where Ii are intervals. The class of nowhere holomorphically extendable
functions of C p1,...,pn (γ1, . . . , γn) is a dense and Gδ subset of C p1,...,pn (γ1, . . . , γn).

Proof Let Ai be the class of nowhere holomorphically extendable functions of
C pi (γi ). Then the set A1 ×· · ·× An coincides with the class of nowhere holomorphi-
cally extendable functions of C p1,...,pn (γ1, . . . , γn). It follows from Theorem 4.9 that
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the sets A1, . . . , An are dense and Gδ subsets of C p1(γ1), . . . ,C pn (γn), respectively,
which combined with Proposition 5.1 implies that the class A1 × · · · × An is a dense
and Gδ subset of C p1,...,pn (γ1, . . . , γn). ��
Definition 5.5 Let n ∈ {1, 2, . . . }. Let also γi : Ii → C, i = 1, . . . , n, be locally
injective curves, where Ii are intervals. A function f on the disjoint union γ ∗

1 ∪· · ·∪γ ∗
n ,

f (z) = fi (z) for z ∈ γ ∗
i , is nowhere real analytic if the functions fi are nowhere real

analytic for i = 1, . . . , n.

The proof of the following theorem is similar to the proof of Theorem 5.4.

Theorem 5.6 Let n ∈ {1, 2, . . . } and pi ∈ {0, 1, . . . } ∪ {∞}, i = 1, . . . , n. Let
also γi : Ii → C be analytic curves, where Ii are intervals, �i : γ ∗

i → C be
homeomorphisms of γ ∗

i on �i (γi ) ⊂ C and let δi = �i ◦ γi , i = 1, . . . , n. The class
of nowhere analytic functions f ∈ C p1,...,pn (δ1, . . . , δn) is a dense and Gδ subset of
C p1,...,pn (δ1, . . . , δn).

From now on, we will consider that p1 = p2 = · · · = pn . As we did for the spaces
C p1,...,pn , we will prove analogue generic results in the space Ap(�), where � is a
planar domain bounded by the disjoint Jordan curves γ1, . . . , γn . More specifically,
we will define the following spaces.

Definition 5.7 Let p ∈ {0, 1, . . . } ∪ {∞} and let � be a bounded domain in C. A
function f belongs to the class Ap(�) if it is holomorphic on � and every derivative
f ( j) can be continuously extended on � for every j ∈ {0, 1, . . . }, j ≤ p. The space
Ap(�) is endowed with the topology of uniform convergence on� of every derivative
f ( j) for all j ∈ {0, 1, . . . }, j ≤ p and becomes a complete metric space.

Remark 5.8 In particular cases it is true that Ap(�) is included inC p(∂�) as a closed
subset. We will not examine now under which more general sufficient conditions this
remains true.

Remark 5.9 If� is a (possibly unbounded) open set inC, then a holomorphic function
f belongs to the class Ap(�) if for every j ∈ {0, 1, 2, . . .}, j ≤ p the derivative f ( j)

has a continuous extension from � to its closure � in C. The topology of Ap(�) is
defined by the seminorms sup

z∈�,|z|≤n

| f (l)(z)|, l ∈ {0, 1, 2, . . .}, l ≤ p, n ∈ N.

Definition 5.10 Let� be a bounded domain inC defined by a finite number of disjoint
Jordan curves and z0 ∈ ∂�. A continuous function f : � → C belongs to the class
of non-holomorphically extendable at z0 functions in the sense of Riemann surfaces if
there do not exist open disks D(z0, r), r > 0 and D(z1, d), z1 ∈ D(z0, r) ∩ �, d > 0
such that D(z1, d) ⊆ D(z0, r) ∩ �, and a holomorphic function F : D(z0, r) → C

such that F |D(z1,d) = f |D(z1,d).

Theorem 5.11 Let p ∈ {0, 1, . . . } ∪ {∞} and � be a bounded domain in C defined
by a finite number of disjoint Jordan curves. Let also z0 ∈ ∂�. The class of non-
holomorphically extendable at z0 functions of Ap(�) in the sense of Riemann surfaces
is a dense and Gδ subset of Ap(�).
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Proof Let M > 0, r > 0, z1 ∈ D(z0, r) ∩ �, and d > 0 such that D(z1, d) ⊂
D(z0, r) ∩ �. Let also A(r, z1, d, M) be the set of Ap(�) functions f for which
there exists a holomorphic function F on D(z0, r), such that |F(z)| ≤ M for every
z ∈ D(z0, r) and F |D(z1,d) = f |D(z1,d). We will first show that A(r, z1, d, M) is a
closed subset of Ap(�) with empty interior.

Let ( fn)n≥1 be a sequence in A(r, z1, d, M) converging in the topology of Ap(�)

to a function f of Ap(�). Then, there are holomorphic functions Fn : D(z0, r) → C

bounded by M such that Fn|D(z1,d) = fn|D(z1,d). By Montel’s Theorem there is a
subsequence (Fkn ) of (Fn) which converges uniformly on the compact subsets of
D(z0, r) to a function F which is holomorphic and bounded by M on D(z0, r). Since
Fkn converges to f on D(z1, d) we have that F |D(z1,d) = f |D(z1,d) and so f ∈ A.
Therefore, A(r, z1, d, M) is a closed subset of Ap(�).

Following the strategy of Theorem 4.7, if A has non-empty interior, then there exist
f ∈ A(r, z1, d, M), l ∈ {0, 1, 2, . . . } and ε > 0, such that

B = {g ∈ Ap(�) : sup
z∈�

∣
∣
∣ f ( j)(z) − g( j)(z)

∣
∣
∣ < ε, 0 ≤ j ≤ l} ⊂ A(r, z1, d, M).

We choose w ∈ D(z0, r) \ � and 0 < δ small enough such that the function h(z) =
f (z) + δ

2(z − w)
belongs to B. By definition, h has a holomorphic and bounded

extension H on D(z0, r). However, there is a holomorphic function F : D(z0, r) →
C which coincides with f on D(z1, d). By analytic continuation H(z) = F(z) +

δ

2(z − w)
for every z ∈ D(z0, r) \ {z0}, since they are equal on D(z1, d). As a

result, H is not bounded on D(z0, r) which yields the desired contradiction. Thus
A(r, z1, d, M) has empty interior.

Next, let us consider B be the set of (r, z, d, M), where r = 1/n, d = 1/m for some
n,m ∈ {1, 2, . . . } for which there exists z ∈ Q+iQ such that D(z, d) ⊂ D(z0, r)∩�,
and M ∈ {1, 2, . . . }. Consider an enumeration (bn) of B. Then the class of nowhere
holomorphically extendable functions of Ap(�) coincides with the set

∞⋂

n=1

(
Ap(�) \ A(bn)

)
.

Thus, according to Baire’s Theorem, the class of non-holomorphically extendable at
z0 functions of Ap(�) is dense and Gδ . ��
Definition 5.12 Let� be a bounded domain inC defined by a finite number of disjoint
Jordan curves. A continuous function f : � → C belongs to the class of nowhere
holomorphically extendable functions in the sense of Riemann surfaces if for every
z0 ∈ ∂� f belongs to the class of non-holomorphically extendable at z0 functions in
the sense of Riemann surfaces.

Theorem 5.13 Let p ∈ {0, 1, . . . }∪{∞} and let� be a bounded domain inC defined
by a finite number of disjoint Jordan curves. The class of nowhere holomorphically
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extendable functions of Ap(�) in the sense of Riemann surfaces is a dense and Gδ

subset of Ap(�).

Proof Let zl , l = 1, . . . be a dense sequence of ∂�. The class A(zl) of non-
holomorphically extendable at zl functions of Ap(�) in the sense of Riemann surface

is a dense and Gδ subset of Ap(�) from Theorem 5.11. Notice that the set
∞⋂
l=1

A(zl)

coincides with the class of nowhere holomorphically extendable functions of Ap(�)

in the sense of Riemann surfaces and from Baire’s Theorem is a dense and Gδ subset
of Ap(�). ��
Remark 5.14 In [9] it has been also proved that the class of nowhere holomorphically
extendable functions of A∞(�) in the sense of Riemann surfaces is a dense and Gδ

subset of A∞(�). The method in [9] comes from the theory of Universal Taylor Series
and is different from the method in the present paper.

Now we will examine a different kind of extendability.

Definition 5.15 Let� be a bounded domain inC defined by a finite number of disjoint
Jordan curves γ1, . . . , γn . Let also z0 ∈ ∂�. A continuous function f : � → C

belongs to the class of non-holomorphically extendable at z0 functions if there exist
no pair of an open disk D(z0, r), r > 0 and a holomorphic function F : D(z0, r) → C

such that F(z) = f (z) for every z ∈ D(z0, r) ∩ ∂�. Otherwise we will say that f is
holomorphically extendable at z0.

Remark 5.16 If γi : Ii → C, Ii = [ai , bi ], ai < bi is continuous and γi (x) = γi (y)
for x, y ∈ [ai , bi ] if and only if x = y or x, y ∈ {ai , bi }, thenweobserve that a function
f belongs to the class of non-holomorphically extendable at z0 = γi (t0), t0 ∈ I ◦

i of
Definition 5.15 if and only if there are no open disk D(z0, r), r > 0, and η > 0 and a
holomorphic function F : D(z0, r) → C, such that γi ((t0−η, t0+η)∩ Ii ) ⊂ D(z0, r)
and F(γi (t)) = f (γi (t)) for all t ∈ (t0 − η, t0 + η) ∩ Ii . This holds true because of
the following observations:

1. For some constant η > 0, we can find r > 0 such that D(z0, r) ∩ γ ∗
i ⊆ γi ((t0 −

η, t0 + η) ∩ Ii ). This follows from the fact that the disjoint compact sets γi [Ii \
(t0 − η, t0 + η)] and {z0} have a strictly positive distance.

2. For some constant r > 0 we can find η > 0 such that γi ((t0 − η, t0 + η) ∩ Ii ) ⊂
D(z0, r), because of the continuity of the map γi .

The above remark remains valid for t0 = ai or t0 = bi , because a Jordan curve
gamma can also be parametrized on [ai + ε, bi + ε].
Theorem 5.17 Let p ∈ {0, 1, . . . } ∪ {∞} and � be a bounded domain in C defined
by a finite number of disjoint Jordan curves. Let also z0 ∈ ∂�. The class of non-
holomorphically extendable at z0 functions of Ap(�) is a dense and Gδ subset of
Ap(�).

Proof Let M > 0, r > 0, and A(r, M) = A(p,�, z0, r, M) be the class of functions
f ∈ Ap(�) for which there exist a holomorphic function F : D(z0, r) → C such that
F |D(z0,r)∩∂� = f |D(z0,r)∩∂� and |F(z)| ≤ M for z ∈ D(z0, r).

123



1396 E. Bolkas et al.

Similar to the proof of Lemma 4.1, A(r, M) is a closed subset of Ap(�).
IfA(r, M) does not have empty interior, then there exist a function f in the interior

of A(r, M), a number b ∈ {0, 1, 2, . . . }, and δ > 0 such that

{
g ∈ Ap(�) : sup

z∈�

∣
∣
∣ f ( j)(z) − g( j)(z)

∣
∣
∣ < δ, 0 ≤ j ≤ b

}
⊂ A(r, M).

Then similar to the proof of Theorem 4.7 choosing w ∈ D(z0, r) \ � and a small
enough, we are led to a contradiction. Thus A(r, M) has empty interior.

Notice that the set

∞⋂

M=1

∞⋂

n=1

(
Ap(�) \ A(1/n, M)

)

coincides with the class of non-holomorphically extendable at z0 functions of Ap(�)

and Baire’s Theorem implies that this set is a dense and Gδ subset of Ap(�). ��
Definition 5.18 Let� be a bounded domain inC defined by a finite number of disjoint
Jordan curves. A continuous function f : � → C belongs to the class of nowhere
holomorphically extendable functions if for every z0 ∈ ∂�, f belongs to the class of
non-holomorphically extendable at z0 functions.

Theorem 5.19 Let p ∈ {0, 1, . . . }∪{∞} and let� be a bounded domain inC defined
by a finite number of disjoint Jordan curves. The class of nowhere holomorphically
extendable functions of Ap(�) is a dense and Gδ subset of Ap(�).

Proof The proof is similar to the proof of Theorem 4.9, taking into account the state-
ment of Theorem 5.17. ��
Remark 5.20 If the continuous analytic capacity of the boundary of � is zero, then
Definition 5.10 implies Definition 5.15.

Now as in Sect. 4, we will associate the phenomenon of non-extendability with that
of real analyticity on the spaces Ap(�).

Definition 5.21 Let n ∈ {1, 2, . . . } and let � be a bounded domain in C defined by
disjoint Jordan curves γ1, . . . , γn . A function f : � → C is real analytic at (t0, γi (t0)),
γi (t0) ∈ γ ∗

i , i ∈ {1, 2, . . . , n} if f |γi is real analytic at (t0, γi (t0)).
At this point we observe that if � is a bounded domain in C defined by disjoint

Jordan curves γ1, . . . , γn and f ∈ Ap(�), then the analogous of Proposition 2.9 under
the above assumptions holds true, since nothing essential changes in its proof. So, we
have the following proposition:

Proposition 5.22 Let p ∈ {0, 1, . . . } ∪ {∞}, n ∈ {0, 1, . . . } and let � be a bounded
domain in C defined by disjoint analytic Jordan curves γ1, . . . , γn. A continuous
function f : � → C is real analytic at (t0, γi (t0)), γi (t0) ∈ γ ∗

i , i ∈ {1, 2, . . . , n} if
and only if is holomorphically extendable at γi (t0).
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Definition 5.23 Let p ∈ {0, 1, . . . } ∪ {∞}, n ∈ {0, 1, . . . } and let � be a bounded
domain in C defined by disjoint Jordan curves γ1, . . . , γn . A function f ∈ Ap(�) is
nowhere real analytic if there exist no i ∈ {1, 2, . . . , n} and γi (t0) ∈ ∂� such that f
is real analytic at (t0, γi (t0)).

Now combining Proposition 5.22 with Theorem 5.19, we obtain the following
theorem.

Theorem 5.24 Let p ∈ {0, 1, . . . }∪{∞} and let� be a bounded domain inC defined
by a finite number of disjoint analytic Jordan curves. The class of nowhere real analytic
functions of Ap(�) is a dense and Gδ subset of Ap(�).

Remark 5.25 We recall that for an analytic Jordan curve γ defined on [0, 1] there exist
0 < r < 1 < R and a holomorphic injective function � : D(0, r, R) → C, such that
γ (t) = �(eit ), where D(0, r, R) = {z ∈ C : r < |z| < R}. This yields a natural
parametrization of the curve γ ∗; the parameter t is called a conformal parameter for the
curve γ ∗. Theorem 5.24 holds if each of the Jordan curves γ1, . . . , γn is parametrized
by such a conformal parameter t. Naturally one asks if the same result holds for other
parametrizations; for instance, does Theorem 5.24 remain true if each γ1, . . . , γn is
parametrized by arc length? This was the motivation of [10], where it is proved that
arc length is a global conformal parameter for any analytic curve. Thus Theorem 5.24
remains also true if arc length is used as a parametrization for each analytic curve γi .

6 One-Sided Extendability

In this section, we consider one-sided extensions from a locally injective curve γ . For
instance, if γ ∗ is homeomorphic to [0, 1], one can find an open disk D and an open
arc J of γ ∗ separating D to two components D+ and D−. Those are Jordan domains
containing in their boundaries a subarc J of γ . We will show that generically inCk(γ )

every function h cannot be extended to a function F : � ∪ J → C continuous on
� ∪ J and holomorphic on �, where � = D+ or � = D−. That is, the one-sided
extendability is a rare phenomenon in Ck(γ ), provided that γ is of class at least Ck .
In order to prove this fact we need the following lemmas, which are well known in
algebraic topology. The interested reader can find their proofs in [1].

Lemma 6.1 Let δ : [0, 1] → C be a continuous and injective curve. Then the interior
of δ∗ in C is void.

Proposition 6.2 Let γ : I → C be a continuous and locally injective curve. Then the
interior of γ ∗ in C is void.

Proposition 6.2 implies the following.

Corollary 6.3 Let γ : I → C be a continuous and locally injective curve and � be a
Jordan domain whose boundary contains an arc γ ([t1, t2]), t1 < t2, t1, t2 ∈ I of γ ∗.
Then the set � \ γ ∗ is non-empty.
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Let γ : I → C be a continuous and locally injective curve defined on the interval
I ⊂ R. Naturally, one asks if a Jordan domain as in Corollary 6.3 exists. Our goal is
to construct denumerably many such Jordan domains, so that every �, as in Corollary
6.3, contains one of these domains and then use Baire’s Category Theorem.

Let t0 in the interior I ◦ of I and� be a Jordan domain whose boundary contains an
arc γ ([t1, t2]), t1 < t0 < t2. Let us assume that t1, t2 are rational numbers. Pick s1, s2 ∈
(t1, t2) ∩ Q such that s1 < t0 < s2. By definition, the point γ (s1) does not belong to
the compact set �1 := ∂� \ γ (t1, t0). As a result their distance δ := dist (γ (s1),�1)

is positive. From Proposition 6.2 there exists P ∈ (Q + iQ) ∩ D(γ (s1), δ/2) ∩ �

with P /∈ γ ([t1, t0]). Notice that there is r ∈ (t1, t0) such that |γ (r) − P| = a, where
a := dist (P, γ ([t1, t0])) ≤ |P − γ (s1)| < δ/2, because for every z ∈ �1 we have

|z − P| ≥ |z − γ (s1)| − |γ (s1) − P| > δ − δ/2 = δ/2.

By definition, the segment [P, γ (r)] intersects ∂� only at γ (r). Similarly we pick
Q ∈ (Q + iQ) ∩ � and r̃ ∈ (t0, t2), such that the segment [Q, γ (̃r)] intersects ∂�

only at γ (̃r).
We distinguish two cases according to whether the segments [P, γ (r)], [Q, γ (̃r)]

intersect or not. If the segments [P, γ (r)], [Q, γ (̃r)] intersect at a point w, then the
union of the segments [w, γ (r)], [w, γ (̃r)], and γ [̃r , r ] is the image of a Jordan
curve, the interior of which is the desired Jordan domain. If the segments [P, γ (r)],
[Q, γ (̃r)] do not intersect, then we consider a simple polygonal line (that is without
self-intersections) in�, which connects P, Q, the vertices of which belong toQ+ iQ.
This is possible, since� is a domain [11]. The union of the aforementioned polygonal
line with the segments [P, γ (r)] and [Q, γ (̃r)] has possibly self-intersections. For
this reason, we consider one of the connected components of this simple polygonal
line minus the segments [P, γ (r)], [Q, γ (̃r)] with the property that the closure of this
connected component is a simple polygonal line connecting two points z1 ∈ [P, γ (r)],
z2 ∈ [Q, γ (̃r)]. Then the union of the last simple polygonal line with the segments
[z1, γ (r)], [z2, γ (̃r)] and the arc γ [̃r , r ] of γ ∗ is the image of a Jordan curve, the
interior of which is the desired Jordan domains. We notice that t0 ∈ [̃r , r ] and that the
constructed Jordan domains are denumerably many.

Proposition 6.4 Let γ : I → C be a locally injective map of class Cl(I ), l ∈
{0, 1, 2, . . . }∪{∞}, and 0 < M < ∞. Let also� be a Jordan domainwhose boundary
contains an arc γ ([t1, t2]), t1 < t2, t1, t2 ∈ I of γ ∗ and k ∈ {0, 1, 2, . . . } ∪ {∞},
k ≤ l. The set of functions f ∈ Ck(γ ) for which there exists a continuous function
F : � ∪ γ ((t1, t2)), ‖F‖∞ ≤ M, such that F is holomorphic on � and F |γ ((t1,t2)) =
f |γ ((t1,t2)), is a closed subset of Ck(γ ) with empty interior.

Proof Let � be a homeomorphism of D ∪ J ⊂ C on � ∪ γ (t1, t2), which is also
holomorphic on �, where J = {eit : 0 < t < 1}. This is possible because of
the Caratheodory–Osgood Theorem. Let also A(k,�, M) be the set of functions f ∈
Ck(γ ) for which there exists a continuous function F : �∪γ ((t1, t2)) → C, ‖F‖∞ ≤
M , such that F is holomorphic on � and F |γ ((t1,t2)) = f |γ ((t1,t2)).

First, we will prove that A(k,�, M) is a closed subset of Ck(γ ). Let ( fn)n≥1 be a
sequence in A(k,�, M) converging in the topology ofCk(γ ) to a function f ∈ Cl(γ ).
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This implies that fn converges uniformly on the compact subsets of γ ∗ to f . Then for
n = 1, 2, . . . there exist continuous functions Fn : �∪γ ((t1, t2)) → C, ‖Fn‖∞ ≤ M ,
such that Fn are holomorphic on � and Fn|γ ((t1,t2)) = fn|γ ((t1,t2)). If Gn = Fn ◦ �,
gn = fn ◦ � and g = f ◦ � for n = 0, 1, 2, . . . , it follows that gn converges
uniformly on the compact subsets of J to g. Also, the functions Gn are holomorphic
and bounded by M on D. By Montel’s Theorem, there exists a subsequence of (Gn),
(Gkn ) which converges uniformly on the compact subsets of D to a function G which
is holomorphic and bounded by M on D. Without loss of generality, we assume that
(Gn) = (Gkn ). Now it is sufficient to prove that for any circular sector K , which
has boundary [0, eia] ∪ [0, eib] ∪ {

eit : a ≤ t ≤ b
}
, 0 < a < b < 1, the sequence

(Gn) converges uniformly on K , because then the limit of (Gn), which is equal to g
at the arc J and equal to G on the remaining part of the circular sector K , will be
a continuous function. In order to do so we will prove that (Gn) forms a uniformly
Cauchy sequence on K . Since each Gn is a bounded holomorphic function on D, we
know that for every n the radial limits of Gn exist almost everywhere on the unit circle
and so we can consider the respective functions gn defined almost everywhere on the
unit circle which are extensions of the previous gn . These gn are also bounded by M .

Let ε > 0. Using the identity Gn(reiθ ) = 1

2π

π∫

−π

Pr (t)gn(θ − t)dt , where Pr is the

Poisson kernel, we obtain

∣
∣
∣Gn(re

iθ ) − Gm(reiθ )
∣
∣
∣ ≤ 1

2π

∫ π

−π

Pr (t)|gn(θ − t) − gm(θ − t)|dt.

Our strategy is to split the integral into two parts. We choose 0 < δ < min{1 − b, a}
and pick r0 ∈ (0, 1) such that sup

δ≤|t |≤π

Pr (t) < ε
8M for every r ∈ [r0, 1). Then (Gn)

is a uniformly Cauchy sequence on K ∩ {z ∈ C : |z| ≤ r0}, and thus there exists n1
such that for every n,m ≥ n1,

sup
z∈K∩{z∈C:|z|≤r0}

|Gn(z) − Gm(z)| <
ε

2
. (6)

In addition, as gn converges uniformly to g on J there exists n2, such that for every

n,m ≥ n2, sup
z∈J

|gn(z) − gm(z)| <
ε

4
. Consequently, for n,m ≥ max{n1, n2}, θ ∈

[a, b], and r ∈ (r0, 1), we obtain

1

2π

∫ δ

−δ

Pr (t)|gn(θ − t) − gm(θ − t)|dt ≤ ε

4

1

2π

∫ δ

−δ

Pr (t)dt ≤ ε

4

and

1

2π

∫

δ≤|t |≤π

Pr (t)|gn(θ − t) − gm(θ − t)|dt ≤
sup

δ≤|t |≤π

Pr (t)

2π

∫

δ≤|t |≤π

2Mdt ≤ ε

4
.
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Therefore |Gn(reiθ ) − Gm(reiθ )| ≤ ε

2
and by the continuity of the functions Gn on

D∪ J , making r → 1− we find that |Gn(eiθ )−Gm(eiθ )| ≤ ε

2
for every θ ∈ [a, b]. It

follows immediately that (Gn) is a uniformly Cauchy sequence on the circular sector
K and thus the set A(k,�, M) is a closed subset of Ck(γ ).

If A(k,�, M) does not have empty interior, then there exists a function f in the
interior of A(k,�, M), a compact set L ⊂ I and δ > 0 such that

{g ∈ Ck(γ ) : sup
t∈L

∣
∣
∣( f ◦ γ )( j)(t) − (g ◦ γ )( j)(t)

∣
∣
∣ < δ, 0 ≤ j ≤ b} ⊂ A(k,�, M).

From Corollary 6.3, we can find w ∈ � \ γ ∗. We choose 0 < a < δmin{ inf
t∈K |γ (t) −

w|, . . . , 1

b! inft∈K |γ (t)−w|b+1}.The function h(γ (t)) = f (γ (t))+ a

2(γ (t) − w)
, t ∈ I

belongs to A(k,�, M) and therefore has a continuous and bounded extension H on
� ∪ γ ((t1, t2)) with H |γ ((t1,t2)) = h|γ ((t1,t2)) which is holomorphic on �. Then the
function H ◦ � is continuous and bounded on D ∪ J and holomorphic on D. It is

easy to see that H(�(z)) = F(�(z))+ a

2(�(z) − w)
for z ∈ D \ {�−1(w)}. Indeed,

let �(z) = H(�(z)) − F(�(z)) − a

2(�(z) − w)
. Then �|J = 0 and by Schwarz

Reflection Principle � is extended holomorphically on

(D ∪ J ∪ (C \ D)) \
{

�−1(w),
1

�−1(w)

}

.

Therefore because � = 0 on J , by analytic continuation, H(�(z)) − F(�(z)) −
a

2(�(z) − w)
= 0 on (D ∪ J ) \ {�−1(w)}. As a result H ◦ � is not bounded on D

which is absurd. Thus A(k,�, M) has empty interior. ��
Definition 6.5 Let γ : I → C be a locally injective map and t0 ∈ I ◦, where I ◦ is
the interior of I in R. A function f : γ ∗ → C is non- one-sided holomorphically
extendable at (t0, γ (t0)) if there is no pair of a Jordan domain�, such that ∂� contains
an arc of γ ∗, γ ([t1, t2]), t1 < t0 < t2, t1, t2 ∈ I and a continuous function F :
� ∪ γ ((t1, t2)), which is holomorphic on � and F |γ ((t1,t2)) = f |γ ((t1,t2)).

Theorem 6.6 Let γ : I → C be a locally injective map of class Cl(I ), l ∈
{0, 1, 2, . . . } ∪ {∞}, and k ∈ {0, 1, 2, . . . } ∪ {∞}, k ≤ l. Consider t0 ∈ I ◦, where
I ◦ is the interior of I in R. The class of non-one-sided holomorphically extendable at
(t0, γ (t0)) functions of Ck(γ ) is a dense and Gδ subset of Ck(γ ).

Proof Let � be a Jordan domain whose boundary contains an arc γ ([t1, t2]), of γ ∗,
where t1 < t0 < t2. A(k,�, M) denotes the set of functions f ∈ Ck(γ ) for which
there is a continuous function F : �∪γ ((t1, t2)), which is holomorphic on�, bounded
by M and F |γ ((t1,t2)) = f |γ ((t1,t2)). Let Gn , n ≥ 1 be the denumerably many Jordan
domains constructed above.
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From Proposition 6.4, the sets A(k,Gn, M) are closed subsets ofCk(γ )with empty
interior. We will prove that the class of non-one-sided holomorphically extendable at
(t0, γ (t0)) functions of Ck(γ ) coincides with the set

∞⋂

n=1

∞⋂

M=1

(Ck(γ ) \ A(k,Gn, M)),

and thus Baire’s Theorem will imply that the above set is a dense and Gδ subset of
Ck(γ ).

Obviously, the set

∞⋂

n=1

∞⋂

M=1

(Ck(γ ) \ A(k,Gn, M))

contains the class of non-one-sided holomorphically extendable at (t0, γ (t0)) functions
of Ck(γ ). Conversely, let � be a Jordan domain whose boundary contains an arc
γ ([t1, t2]), t1 < t0 < t2, t1, t2 ∈ I . Let also f ∈ Ck(γ ), for which there is a continuous
function F : �∪γ ((t1, t2)), which is holomorphic on � and F |γ ((t1,t2)) = f |γ ((t1,t2)).
From the construction of the aforementioned Jordan domainsGn , we can find a Jordan
domain Gn0 such that Gn0 is contained in �. It easily follows that F |Gn0

is bounded
by some number M = 1, 2, 3, . . . and thus f belongs to A(k,Gn0 , M). Therefore the
class of non- one-sided holomorphically extendable at (t0, γ (t0)) functions of Ck(γ )

is a subset of the set

∞⋂

n=1

∞⋂

M=1

(Ck(γ ) \ A(k,Gn, M)),

which combined with the above completes the proof. ��
Definition 6.7 Let γ : I → C be a locally injective map on the interval I ⊂ R. A
function f : γ ∗ → C is nowhere one-sided holomorphically extendable if there is no
pair of a Jordan domain �, such that ∂� contains an arc of γ ∗, γ ([t1, t2]), t1 < t2,
t1, t2 ∈ I and a continuous function F : � ∪ γ ((t1, t2)), which is holomorphic on �

and F |γ ((t1,t2)) = f |γ ((t1,t2)).

Theorem 6.8 Let γ : I → C be a locally injectivemap of class Cl , l ∈ {0, 1, 2, . . . }∪
{∞} on the interval I ⊂ R and k ∈ {0, 1, 2, . . . } ∪ {∞}, k ≤ l. The class of nowhere
one-sided holomorphically extendable functions of Ck(γ ) is a dense and Gδ subset of
Ck(γ ).

Proof Let tn ∈ I ◦, n = 1, 2, . . . be a sequence which is dense in I . Then the class of
nowhere one-sided holomorphically extendable functions ofCk(γ ) coincides with the
intersection of the classes of non-one-sided holomorphically extendable at (tn, γ (tn))
functions of Ck(γ ), which is from Theorem 6.6 and Baire’s Theorem a dense and Gδ

subset of Ck(γ ). ��
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Let γi : Ii → C be continuous and locally injective curves. As we did in Sect. 5,
we will prove generic results for the spaces C p1,...,pn (γ1, . . . , γn).

Definition 6.9 Let n ∈ {1, 2, . . . } and γi : Ii → C, i = 1, . . . , n, be locally injec-
tive curves, where Ii are intervals and t0 a point of some Ii0 . A function f on the
disjoint union γ ∗

1 ∪ · · · ∪ γ ∗
n , f (z) = fi (z) for z ∈ γ ∗

i , is non-one-sided holomor-
phically extendable at (t0, γi0(t0)) if the function fi0 defined on γ ∗

i0
is non-one-sided

holomorphically extendable at (t0, γi0(t0)).

Theorem 6.10 Let n ∈ {1, 2, . . . } and pi , qi ∈ {0, 1, . . . }∪{∞} such that pi ≤ qi for
every i = 1, . . . , n. Let also γi : Ii → C be locally injective functions of class Cqi (Ii ),
where Ii are intervals, and t0 a point of some Ii0 . The class of non-one-sided holo-
morphically extendable at (t0, γi0(t0)) functions belonging to C

p1,...,pn (γ1, . . . , γn) is
a dense and Gδ subset of C p1,...,pn (γ1, . . . , γn).

Proof Similar to the proof of Theorem 5.4. ��
Definition 6.11 Let n ∈ {1, 2, . . . } and γi : Ii → C be locally injective curves, where
Ii are intervals. A function f on the disjoint union γ ∗

1 ∪ · · · ∪ γ ∗
n , f (z) = fi (z) for

z ∈ γ ∗
i , is nowhere one-sided holomorphically extendable if the functions fi defined

on γ ∗
i are nowhere one-sided holomorphically extendable functions.

The proof of the following theorem is again similar to the proof of Theorem 5.4.

Theorem 6.12 Let n ∈ {1, 2, . . . }, pi , qi ∈ {0, 1, . . . } ∪ {∞} such that pi ≤ qi for
i = 1, . . . , n. Let also γi : Ii → C be locally injective functions of Cqi (Ii ), where Ii
are intervals. The class of nowhere one-sided holomorphically extendable functions
belonging to C p1,...,pn (γ1, . . . , γn) is a dense and Gδ subset of C p1,...,pn (γ1, . . . , γn).

Definition 6.13 Let n ∈ {1, 2, . . . } and � be a bounded domain in C defined by
disjoint periodic Jordan curves γi : R → C. Let also t0 ∈ R. A function f : � → C

is non-one-sided holomorphically extendable at (t0, γi0(t0)) outside � if there is no
pair of a Jordan domain G ⊂ C \ �, such that ∂G contains a Jordan arc γi0([t1, t2])
of γ ∗

i0
and a continuous function F : � ∪ γ ((t1, t2)), which is holomorphic on G and

F |γi0 ((t1,t2)) = f |γi0 ((t1,t2)).

The following theorem is a simple combination of proofs similar to those of Propo-
sition 6.4 and Theorem 6.6.

Theorem 6.14 Let p ∈ {0, 1, . . . }∪{∞}, n ∈ {1, 2, . . . } and� be a bounded domain
in C defined by disjoint periodic Jordan curves γi : R → C. Let also t0 ∈ R. The
class of non-one-sided holomorphically extendable at (t0, γi0(t0)) outside� functions
of Ap(�) is a dense and Gδ subset of Ap(�).

Definition 6.15 Let n ∈ {1, 2, . . . } and � be a bounded domain in C defined by
disjoint periodic Jordan curves γi : R → C. A function f : � → C is nowhere one-
sided holomorphically extendable outside � if f is non-one-sided holomorphically
extendable at (t0, γi0(t0)) outside � for every t0 ∈ R and i0 = 1, 2, . . . , n.
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Combining Theorem 6.14 for a dense in R sequence tn and Baire’s Theorem, we
obtain the following:

Theorem 6.16 Let p ∈ {0, 1, . . . } ∪ {∞} and let � be a bounded domain in C

defined by a finite number of disjoint Jordan curves. The class of nowhere one-sided
holomorphically extendable functions outside of� is a dense and Gδ subset of Ap(�).

7 Removability of Singularities in the Spaces Ap and the p-Continuous
Analytic Capacities: A Dichotomy Result

Let � denote an open and bounded subset of C and L be a compact subset of �.
Consider the open set G = � \ L , p ∈ {0, 1, . . . }∪ {∞} and f0 ∈ Ap(G). Then there
are two cases:

(i) Either there is a function F0 ∈ Ap(�), such that F0|G = f0
(ii) or there exists no F0 ∈ Ap(�), such that F0|G = f0.

Theorem 7.1 Let p ∈ {0, 1, . . . } ∪ {∞}, � be an open and bounded subset of C and
L be a compact subset of �. Let also G = � \ L. Suppose that there is a function
f0 ∈ Ap(G) for which there exists no F0 ∈ Ap(�), such that F0|G = f0. Then the
set A(p,G) of functions f ∈ Ap(G) for which there exists no F ∈ Ap(�) such that
F |G = f is an open and dense subset of Ap(G).

Proof First, we will prove that the set S = Ap(G) \ A(p,G) is closed. Let (hn)n≥1
be a sequence in S converging in the topology of Ap(G) to a function h ∈ Ap(G). By
the maximum modulus principle, the extensions Hn of hn form a uniformly Cauchy
sequence on �. Thus, the limit H of Hn on � is an extension of h. Therefore g ∈ S
and S is a closed subset of Ap(G).

Now we will prove that the set S has empty interior. If S does not have empty
interior, then there is a function f in the interior of S and l ∈ {0, 1, . . . }, l ≤ p and
d > 0, such that

{

f ∈ Ap(G) : sup
z∈G

∣
∣ f ( j)(z) − g( j)(z)

∣
∣ < d, 0 ≤ j ≤ l|

}

⊂ S.

Obviously, f0 is not identically equal to zero which implies

m = max

{

sup
z∈G

| f0( j)(z)|, j = 0, 1, . . . , l

}

> 0.

From the definitions, the function h(z) = f (z)+ d

2m
f0(z), z ∈ G belongs to S. Since

f, h belong to S, there are F, H ∈ Ap(�), such that F |G = f , H |G = h. Then
2m

d
(H(z) − F(z)) belongs to Ap(�) and is equal to f0 in G which contradicts our

hypothesis. Thus the set S has empty interior. ��
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Remark 7.2 If the interior of L in C is non-empty, then there always exists a function
f0 ∈ Ap(G) for which there does not exist a function F0 ∈ Ap(�), such that F0|G =
f0|G .
Remark 7.3 From the previous results, we have a dichotomy: Either every f ∈ Ap(G)

has an extension in Ap(�) or generically all functions f ∈ Ap(G) do not admit any
extension in Ap(�). The first case holds if ap(L) = 0 and the second case if ap(L) > 0
(Theorem 3.12).

Remark 7.4 In a similar way, we can prove that if L is a compact set contained in the
open setU , then either every f ∈ Ã p(U \L) has an extension in Ã p(U ) or generically
every f ∈ Ã p(U \ L) does not have an extension in Ã p(U ), p ∈ {0, 1, 2, . . .} ∪ {∞}.
The first horn of this dichotomy holds if and only if ãp(L) = 0 which is equivalent
with the fact that the interior of L is void in C (Theorem 3.16).

Now we present some local versions of the above results.

Definition 7.5 Let L be a compact subset ofC andU be an open subset ofC, such that
L ⊆ U . Let also z0 ∈ ∂L . A function f ∈ H(U \ L) is extendable at z0 if there exists
r > 0 and F ∈ H(D(z0, r)) such that F |(U\L)∩D(z0,r) = f |(U\L)∩D(z0,r). Otherwise,
f is not extendable at z0.

Below we will use the above definition of extendability.

Proposition 7.6 Let L be a compact subset of C and U be an open subset of C, such
that L ⊆ U. Let also M and r be positive real numbers, p ∈ {0, 1, 2, . . .} ∪ {∞}
and z0 ∈ ∂L. The set EM,p,U,L ,z0,r of functions f ∈ Ap(U \ L) such that there is
F ∈ H(D(z0, r))with F |(U\L)∩D(z0,r) = f |(U\L)∩D(z0,r) and ‖F‖∞ ≤ M is a closed
subset of Ap(U \ L). Also, if there exists f0 ∈ Ap(U \ L) which is not extendable at
z0, then the interior of EM,p,U,L ,z0,r is void in Ap(U \ L).

Proof We will first prove that the set EM,p,U,L ,z0,r is a closed subset of Ap(U \ L).
Let ( fn)n≥1 be a sequence in EM,p,U,L ,z0,r converging in the topology of A

p(U \ L)

to a function f ∈ Ap(U \ L). Without of loss of generality we assume that U is
bounded. This implies that fn converges uniformly onU \ L to f and that there exists
a sequence (Fn)n≥1 in H(D(z0, r)) such that Fn|(U\L)∩D(z0,r) = fn|(U\L)∩D(z0,r)

and ‖ F ‖∞≤ M for every n ≥ 1. By Montel’s Theorem there exists a subsequence
of (Fn), (Fkn ), which converges uniformly on the compact subsets of D(z0, r) to a
function F which is holomorphic and bounded byM on D(z0, r). Since Fkn converges
to f on (U \ L) ∩ D(z0, r), the functions f and F are equal on (U \ L) ∩ D(z0, r).
Thus f belongs to EM,p,U,L ,z0,r and EM,p,U,L ,z0,r is a closed subset of Ap(U \ L).
If there exists f0 ∈ Ap(U \ L) which is not extendable at z0, the interior of
EM,p,U,L ,z0,r is void in Ap(U \ L), the proof of which is similar to the proof of
Theorem 7.1. ��

Here we have another dichotomy which is a local version of the first one.

Theorem 7.7 Let L be a compact subset of C and U be an open subset of C, such
that L ⊆ U and let p ∈ {0, 1, 2, . . .} ∪ {∞}, z0 ∈ ∂L. The set Ep,U,L ,z0 =
∞⋃

M=1

∞⋃
n=1

EM,p,U,L ,z0,
1
n
is the set of extendable functions of Ap(U \ L) at z0. Then
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(i) either every function f ∈ Ap(U \ L) is extendable at z0
(ii) or generically all functions f ∈ Ap(U \ L) are not extendable at z0.

Proof If (i) is not true, then Proposition 7.6 shows that EM,p,U,L ,z0,
1
n
is closed with

empty interior for all natural numbers n ≥ 1, M ≥ 1. Then

Ap(U \ L) \ Ep,U,L ,z0 =
∞⋂

M=1

∞⋂

n=1

(
Ap(U \ L) \ EM,p,U,L ,z0,

1
n

)

is the intersection of a countable number of open and dense subsets of Ap(U \ L) and
Baire’s Theorem shows that Ap(U \ L) \ Ep,U,L ,z0 , which coincides with the set of
non-extendable functions of Ap(U \ L) at z0, is a dense and Gδ subset of Ap(U \ L).
��

In what follows, we compare two notions: local extendability and existence of a
holomorphic extension. At first, we examine the case of a compact set L with empty
interior.

Proposition 7.8 Let L be a compact subset of C and U be an open subset of C, such
that L ⊆ U and L◦ = ∅. Let also f ∈ H(U \ L). Then f is extendable at every
z0 ∈ ∂L if and only if there exists a holomorphic extension F of f onU. If additionally
f ∈ Ap(U \ L) for some p ∈ {0, 1, . . . } ∪ {∞}, then F ∈ Ap(U ).

Proof If there exists a holomorphic extension F of f on U , then obviously f is
extendable at every z0 ∈ ∂L = L .

Conversely, if f is extendable at every z0 ∈ L , then for every z0 ∈ L there is a
holomorphic function Fz0 defined on D(z0, rz0) ⊆ U such that Fz0 |(U\L)∩D(z0,rz0 ) =
f |(U\L)∩D(z0,rz0 ). Let z1, z2 ∈ L with V = D(z1, rz1) ∩ D(z2, rz2) �= ∅. Since
L◦ = ∅, V \ L is a non-empty open set, Fz1, Fz2 are holomorphic on the domain V
and coincide with f on V \ L . By analytic continuation, Fz1 = Fz2 on V . So, the
function F defined on U such that F(z) = Fz(z) for every z ∈ L and F(z) = f (z)
for every z ∈ U \ L is a holomorphic extension of f on U . Obviously, if f ∈
Ap(U \ L), then F ∈ Ap(U ). ��
Remark 7.9 Whenever L◦ �= ∅, the equivalence of Proposition 7.8 is not true. Indeed
if w ∈ L◦ �= ∅, then the holomorphic function f (z) = 1

z−w
for z ∈ U \ L cannot be

extended to a holomorphic function on U , but it is extendable at every z0 ∈ ∂L .

We consider again a compact set L ⊆ C and an open set U ⊆ C, such that L ⊆ U
and a p ∈ {0, 1, 2, . . .} ∪ {∞}. Now we want to find a similar connection between
ap(L) and ap(L ∩ D(z0, r)); that is, is the condition ap(L) = 0 equivalent to the
condition ap(L ∩ D(z0, r)) = 0 for all z0 ∈ L?

If we suppose that L◦ �= ∅, then there exist z0 and r > 0 such that D(z0, r) ⊆ L .
Thus ap(L) and ap(L ∩ D(z0, r)) are strictly positive.

So, we need not assume that L◦ = ∅, since it follows from both the conditions
ap(L) = 0 and ap(L ∩ D(z0, r)) = 0 for every z0 ∈ L and for some r = rz0 > 0.
Also, the first condition obviously implies the second one.
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Probably Theorem 3.6 holds even for p ≥ 1. Specifically, if ap(L) = 0 and V is
an open set, then every function g ∈ Ap(V \ L) belongs to Ap(V ). This leads us to
believe that the above conditions are in fact equivalent. However, this will be examined
in future papers.
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