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Abstract We propose a framework for bilinear multiplier operators defined via the
(bivariate) spectral theorem. Under this framework, we prove Coifman–Meyer type
multiplier theorems and fractional Leibniz rules. Our theory applies to bilinear mul-
tipliers associated with the discrete Laplacian on Zd , general bi-radial bilinear Dunkl
multipliers, and to bilinear multipliers associated with the Jacobi expansions.
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1 Introduction

The theory of spectral multipliers is now a well-established and vast branch of linear
harmonic analysis. Its origins lie in trying to extend the Fourier multiplier operators
on R given by

f �→ 1

2π

∫
R

m(ξ) f̂ (ξ)eixξ dξ, x ∈ R,

to other settings. Here m is a bounded function on R while f̂ (ξ) = ∫
R

f (x)e−i xξ dx,

ξ ∈ R. For a self-adjoint operator L , its spectral multipliers are the operators m(L)

defined by the spectral theorem. In the Fourier case, L is merely i d
dx .As in the Fourier
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Bilinear Multipliers via a Functional Calculus 3049

case, the boundedness of m(L) on L2 is equivalent with the boundedness of m. The
main task in the theory of spectral multipliers is to extend the boundedness of m(L)

to L p, for some 1 < p < ∞, p �= 2.
The bilinear multipliers for the Fourier transform are the operators

Fm( f1, f2)(x) = 1

4π2

∫∫
R2

m(ξ1, ξ2) f̂1(ξ1) f̂2(ξ2)e
ix(ξ1+ξ2) dξ, x ∈ R, (1.1)

with m : R2 → C being a bounded function. As far as we know, in the bilinear case,
there has been no systematic approach to extend the operators Fm outside of the Fourier
transform setting. Themain idea behind the creation of this paper is to provide a theory
for bilinear multipliers defined by the (bivariate) spectral theorem that parallels the
correspondence between the linear Fourier multipliers and spectral multipliers.

Our starting point is the observation that (1.1) may be rephrased as

Fm( f1, f2)(x) = m(i∂1, i∂2)( f1 ⊗ f2)(x, x), x ∈ R.

Here, ∂1, ∂2 denote the partial derivatives, while m(i∂1, i∂2) is defined by the bivariate
spectral theorem. Note that ∂1 = ∂ ⊗ I and ∂2 = I ⊗∂,where ∂ denotes the derivative
on R, while I is the identity operator. We investigate the possibility of replacing i∂1
and i∂2 by some other operators L1 = L ⊗ I and L2 = I ⊗ L . The bilinear multipliers
we consider are of the form

Bm( f1, f2)(x) = m(L1, L2)( f1 ⊗ f2)(x, x), x ∈ X. (1.2)

Here L is a self-adjoint non-negative operator on L2(X, ν), and m(L1, L2) is defined
by the bivariate spectral theorem. We also assume that L is injective on its domain,
and that the contractivity condition (CT) (see p. 8) and the well definiteness condition
(WD) (see p. 5) are satisfied. These assumptions should be regarded as technical ones.
Themain assumptions on L that are in force in this paper are the existence of aMikhlin-
Hörmander functional calculus (MH), see p. 4, together with a product formula for the
spectral multipliers of L , see (PF) on p. 6. Roughly speaking (PF) states that spectral
multipliers of L behave well under pointwise multiplication.

There are two main goals of our paper. Firstly, we would like to prove Coifman–
Meyer type multiplier theorems outside of the Fourier transform setting. Secondly, we
would like to apply these results to obtain fractional Leibniz rules.

The classical Coifman–Meyer multiplier theorem [8] says that the Mikhlin-
Hörmander condition supξ∈R2 |ξ |α1+α2 |∂αm(ξ)| ≤ Cα, α ∈ N

2, implies the
boundedness of Fm from L p1 × L p2 to L p, 1/p = 1/p1 + 1/p2, p1 > 1, p2 > 1,
p > 1/2. This was proved by Coifman and Meyer for p > 1, while for p > 1/2 it is
due to Grafakos and Torres [14] and Kenig and Stein [18]. There are also Coifman–
Meyer type multiplier theorems which are known in settings other than the Fourier
transform. For bilinear multipliers on the torus, a theorem of Coifman–Meyer type
may be deduced from Fan and Sato [11, Theorems 1–3]. Similarly, for bilinear multi-
pliers on the integers such a theorem follows from Blasco [5, Theorem 3.4]. Next, in
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3050 B. Wróbel

the product Dunkl setting, a Coifman–Meyer type multiplier theorem was proved by
Amri et al. [3].

The main result of this paper is the following generalized Coifman–Meyer type
theorem.

Theorem (Theorem 2.3) Let m : (0,∞)2 → C satisfy the Hörmander’s condition

|λ|α1+α2 |∂αm(λ)| ≤ Cα, λ ∈ (0,∞)2,

for sufficiently many multi-indices α ∈ N
2. Then Bm given by (1.2) is bounded from

L p1(X) × L p2(X) to L p(X), where 1/p1 + 1/p2 = 1/p, with p1, p2, p > 1.

Theorem 2.3 is formally stated and proved in Sect. 2. The main difficulty in obtain-
ing the theorem lies in finding an appropriate proof of the classical Coifman–Meyer
multiplier theorem, which is prone to modifications towards our setting. The proof we
present in Sect. 2 follows the scheme by Muscalu and Schlag [20, pp. 67–71] and is
close to the original proof of Coifman and Meyer [7]. An important ingredient in our
proof is a spectrally defined Littlewood–Paley theory. For this method to work, the
assumption (PF) (see p. 6) is very useful. Unfortunately, this assumption is violated in
some interesting cases. In particular, it fails whenever L has a discrete eigenfunction
decomposition with the property that a product of eigenfunctions is not in the linear
span of eigenfunctions. This happens for instance when L is the harmonic oscillator
on R (in which case the Hermite functions constitute its basis of eigenfunctions). It
would be interesting to try to replace (PF) with a less rigid condition.

An application of Theorem 2.3 provides Coifman–Meyer type multiplier results for
bilinear multipliers given by (1.2) in three cases different from the Fourier transform
setting. In Theorem 3.1, we treat bilinear multipliers for L being the discrete Laplacian
on Z

d . This is close to [5, Theorem 3.4]; however, our results here are of a different
kind. In Theorem 4.1, we consider bi-radial bilinear Dunkl multipliers; here, L is the
general Dunkl Laplacian. In Corollary 4.2we also reprove [3, Theorem 4.1]. Finally, in
Theorem5.1, we give aCoifman–Meyer typemultiplier result for Jacobi trigonometric
polynomials; here, L is the Jacobi operator.

The secondmain goal of this paper is to obtain fractional Leibniz rules for operators
different from the Laplacian. The fractional Leibniz rule states that, if �Rd is the
Laplacian onRd , then for each s ≥ 0 and 1/p = 1/p1 +1/p2, p1, p2 > 1, p > 1/2,
we have

‖(−�Rd )
s( f g)‖p � ‖(−�Rd )

s( f )‖p1‖g‖p2 + ‖(−�Rd )
s(g)‖p2‖ f ‖p1 .

The proof of this inequality can be found in Grafakos and Ou [13], see also Bourgain
and Li [6] for the endpoint case. The fractional Leibniz rule is also known as the
Kato–Ponce inequality, as Kato and Ponce studied a similar estimate [16] (see also
[17]). Generalizations of Kato–Ponce or similar inequalities were considered by many
authors. For example, Gulisashvili and Kon [15] developed a fractional Leibniz rule
which allowed derivatives of negative orders. Muscalu et al. [19] extended the Kato–
Ponce inequality by admitting partial fractional derivatives in R

2. Bernicot et al. [4]
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obtained the Kato–Ponce inequality in weighted Lebesgue spaces. Coulhon et al. [9]
proved fractional Leibniz rules on Lie groups and Riemannian manifolds. Frey [12]
obtained a fractional Leibniz rule for general operators satisfying Davies–Gaffney
estimates and p1 = p = 2, p2 = ∞.

In the present paper, we obtain fractional Leibniz rules of the form

‖Ls( f g)‖p �s ‖Ls( f )‖p1‖g‖p2 + ‖Ls(g)‖p2‖ f ‖p1 ,

where s > 0 and 1/p1 + 1/p2 = 1/p, with p1, p2, p > 1, in two other settings. In
Corollary 3.2, we prove a fractional Leibniz rule for L being the discrete Laplacian
on Zd , while in Corollary 4.3 we justify a fractional Leibniz rule when L is the Dunkl
Laplacian in the product setting. The proofs of these fractional Leibniz rules rely
on two properties of L . Firstly, we need appropriate Coifman–Meyer type multiplier
results; these are Theorems 3.1 and 4.1 and are deduced from Theorem 2.3. Secondly,
we require the existence of certain operators related to L that satisfy (or almost satisfy)
an integer order Leibniz rule. As we do not know such an operator in the Jacobi setting
we do not provide a fractional Leibniz rule there.

The article is organized as follows: In Sect. 2, we provide a general Coifman–Meyer
typemultiplier result, seeTheorem2.3.This is then abasis to establishCoifman–Meyer
typemultiplier results in various cases. In Sect. 3,we applyTheorem2.3 for the discrete
Laplacian on Zd , see Theorem 3.1. As a consequence, in Corollary 3.2 we also obtain
a fractional Leibniz rule. Next, in Sect. 4 we deduce from Theorem 2.3 a Coifman–
Meyer multiplier theorem for general bi-radial Dunkl multipliers, see Theorem 4.1.
From this result, we obtain a fractional Leibniz rule for the Dunkl Laplacian in the
product case, see Corollary 4.3. Finally, in Sect. 5, using Theorem 2.3 we prove a
bilinear multiplier theorem for Jacobi trigonometric polynomial expansions.

It is straightforward to extend the result of this paper to themultilinear setting. How-
ever, to keep the presentation simple, we decided to limit ourselves to the bilinear case.

Throughout the paper, we use the variable constant convention, where C, C p,

Cs, etc. may denote different constants that may change even in the same chain of
inequalities. We write X � Y, whenever X ≤ CY, with C being independent of
significant quantities. Similarly, by X ≈ Y wemean thatC−1Y ≤ X ≤ CY.ByS(Rd)

we denote the space of Schwartz functions. The symbols Z and N denote the sets of
integers and non-negative integers, respectively. For a multi-index α ∈ N

2 by |α|, we
denote its length α1+α2.Throughout the paper, for a functionψ : [0,∞) → Cwe set

ψk(λ) = ψ(2−kλ), λ ∈ [0,∞).

2 General Bilinear Multipliers

We say that a function μ : (0,∞) → C satisfies the (one-dimensional) Mikhlin–
Hörmander condition of order ρ ∈ N if it is differentiable up to order ρ and

‖μ‖M H(ρ) := sup
j≤ρ

sup
λ∈(0,∞)

∣∣∣∣λ j d j

dλ j
μ(λ)

∣∣∣∣ < ∞. (2.1)
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Similarly, we say that m : (0,∞)2 → C satisfies the (two-dimensional) Mikhlin–
Hörmander condition of order s ∈ N, if the partial derivatives ∂αm exist for multi-
indices |α| ≤ s and

‖m‖M H(s) := sup
|α|≤s

sup
λ∈(0,∞)2

|λ||α||∂αm(λ1, λ2)| < ∞. (2.2)

Consider a non-negative self-adjoint operator L on L2(X, ν) with domain Dom(L).

Here, (X, ν) is a σ -finite measure space with ν being a Borel measure. Throughout
the paper, we assume that L generates a symmetric contraction semigroup, namely

‖e−t L f ‖L p(X,ν) ≤ ‖ f ‖L p(X,ν), f ∈ L p(X, ν) ∩ L2(X, ν), (CT)

for 1 ≤ p ≤ ∞, and that L is injective on Dom(L). Then, for μ : (0,∞) → C, the
spectral theorem allows us to define themultiplier operatorμ(L) = ∫

(0,∞)
μ(λ)d E(λ)

on the domain

Dom(μ(L)) =
{

f ∈ L2(X, ν) :
∫

(0,∞)

|μ(λ)|2 d E f, f (λ) < ∞
}
.

Here, E is the spectral measure of L , while E f, f is the complex measure defined by
E f, f (·) = 〈E(·) f, f 〉L2(X,ν).

We shall need the following assumption on L;

L has a Mikhlin-Hörmander functional calculus of a finite order ρ > 0.
More precisely, every function μ that satisfies (2.1) gives rise to an operator
μ(L) which is bounded on all L p(X, ν), 1 < p < ∞, and

‖μ(L)‖L p(X,ν)→L p(X,ν) ≤ C p‖μ‖M H(ρ).

(MH)

Note that if L = (−�R)1/2 then (MH) follows from the Mikhlin-Hörmander multi-
plier theorem.

There are two consequences of (MH) which will be needed later. The first of them
is well known and follows from Khintchine’s inequality.

Proposition 2.1 Let ψ : [0,∞) → C be a function supported in [ε, ε−1], for some
ε > 0, and assume that ψ ∈ Cρ([0,∞)). Then the square function

f �→ Sψ( f ) =
(∑

k∈Z
|ψk(L) f |2

)1/2

is bounded on L p(X, ν), 1 < p < ∞, and

‖Sψ( f )‖L p(X,ν) ≤ Cε ‖ψ‖Cρ([0,∞))‖ f ‖L p(X,ν). (2.3)
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The second of the required consequences is proved in [26, Corollary 3.2].

Proposition 2.2 Let ϕ : [0,∞) → C be compactly supported, and assume that ϕ ∈
Cα([0,∞)) for some α > ρ + 2. Then the maximal operator

f �→ Mϕ( f ) = sup
k∈Z

|ϕk(L) f |

is bounded on L p(X, ν), 1 < p < ∞, and

‖Mϕ( f )‖L p(X,ν) ≤ ‖ϕ‖Cρ+2([0,∞))‖ f ‖L p(X,ν). (2.4)

To simplify the proof of our main Theorem 2.3, we will need an auxiliary subspace
of L2(X, ν). Namely, consider the spaces

A2 = {g ∈ L2(X, ν) : g = E(ε,ε−1)g, for some ε > 0}
and A = A2 ∩

⋂
1<p<∞

L p(X, ν). (2.5)

Then, (MH) implies that A is dense in L p(X, ν) for 1 < p < ∞.

For the convenience of the reader, we shall justify this statement. Letψ : [0,∞) →
C be a smooth function which is supported in [1/2, 2] and such that∑k∈Z ψk(λ) = 1,
λ > 0. Then, for each N ∈ N and f ∈ L1(X, ν) ∩ L∞(X, ν), the partial sum SN f =∑N

k=−N ψk(L) f belongs to A by (MH). We claim that SN f → f in L p(X, ν). To
see this, we take 1 < r < ∞ if p ≤ 2 or r > p if p > 2. Then we observe that
‖SN f ‖Lr (X,ν) is uniformly bounded in N (this follows from (MH)) and that SN f → f
in L2(X, ν) (this follows from the spectral theorem, since E{0} = 0 by the injectivity
of L). Therefore, the log-convexity of L p norms proves the claim. Finally, a density
argument together with the fact that ‖SN f ‖L p(X,ν) is uniformly bounded in N shows
that A is dense in L p(X, ν) and finishes our task.

Besides being dense in L p(X, ν), the spaceA has the nice property that each f ∈ A
satisfies f = ∑N ( f )

k=−N ( f ) ψk(L) f, where N ( f ) is a fixed integer depending on f and
ψ is the function from the previous paragraph. This allows us to deal easily with some
rather delicate questions on convergence in the proof of Theorem 2.3.

We proceed to define formally the bilinear multipliers studied in this paper. To do
this, we will need the operators L1 = L ⊗ I and L2 = I ⊗ L . These may be regarded
as non-negative self-adjoint operators on L2(X × X, ν ⊗ ν), see [24, Theorem 7.23]
and [28, Proposition A.2.2]. Moreover, the spectral measure of L1 is EL ⊗ I,while the
spectral measure of L2 is I ⊗ EL . Thus, the operators L1 and L2 commute strongly
and the bivariate spectral theorem, see e.g. [24, Theorem 5.21], allows us to consider
multiplier operators

m(L1, L2) =
∫

(0,∞)2
m(λ) d E⊗(λ)
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on the domain

Dom(m(L1, L2)) =
{

F ∈ L2(X × X, ν ⊗ ν) :
∫

(0,∞)

|m(λ)|2 d E⊗
F,F (λ) < ∞

}
.

Here m : [0,∞)2 → C is a Borel measurable function, E⊗ = EL ⊗ EL is the
joint spectral measure of (L1, L2), while E⊗

F,F is the complex measure defined by
(E⊗)F,F (·) = 〈E⊗(·)F, F〉L2(X×X,ν⊗ν).

In the most general form, the bilinear multiplier operators studied in the paper are
given by

Bm( f1, f2)(x) = m(L1, L2)( f1 ⊗ f2)(x, x)

=
(∫∫

(0,∞)2
m(λ) d(E f1 ⊗ E f2)

)
(x, x), (2.6)

where L1 = L ⊗ I and L2 = I ⊗ L . Since the diagonal {(x, x) : x ∈ X} may be of
measure 0 in (X × X, ν ⊗ ν), Eq. (2.6) is not formal. In order to make it rigorous, we
assume that

if f1, f2 ∈ A and m : (0,∞)2 → C is bounded, then

• m(L1, L2)( f1 ⊗ f2) has a continuous representative on X × X
• ‖m(L1, L2)( f1 ⊗ f2)‖L∞((X×X),ν⊗ν) ≤ C f1, f2‖m‖L∞((0,∞)2).

(WD)

Thus, restrictingm(L1, L2)( f1⊗ f2)(x1, x2) to the diagonal, we have a formal defini-
tion of Bm( f1, f2), for f1, f2 ∈ A. For instance, if L = (−�R)1/2, then the operator
Bm coincides with a bilinear multiplier for the Fourier transform. Namely, denoting
m̃(ξ1, ξ2) = m(|ξ1|, |ξ2|), ξ ∈ R

2, we have

Bm( f1, f2)(x) =
∫∫

R2
m̃(ξ1, ξ2) f̂ (ξ1) f̂ (ξ2)e

ix(ξ1+ξ2) dξ = Fm̃( f1, f2)(x).

If m is bounded and f1, f2 ∈ A then m(ξ1, ξ2) f̂ (ξ1) f̂ (ξ2) ∈ L1(Rd), and thus
Bm( f1, f2)(x) is well defined (in fact continuous) by the Lebesgue dominated con-
vergence theorem.

We need onemore assumption to prove the main theorem. Namely, we require that:

there is b > 0 with the following property: if ϕ and ψ are bounded smooth
functions such that supp ϕk ⊆ [0, 2k−b] and suppψk ⊆ [2k−2, 2k+2], k ∈ Z,

then

ϕk(L)( f1) ·ψk(L)( f2)= ψ̃k(L)[ϕk(L)( f1) ·ψk(L)( f2)], for f1, f2∈A,

where ψ̃k is a smooth function which is bounded by 1, equals 1 on
[2k−3−b, 2k+3+b] and vanishes outside [2k−5−b, 2k+5+b].

(PF)
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We remark that, since f1, f2 ∈ A, the function g = ϕk(L)( f1) · ψk(L)( f2) belongs
to L2(X, ν), so that an application of ψ̃k(L) to g is legitimate. Note that when L =
(−�R)1/2 the formula (PF) can be easily deduced by using the convolution structure
on the frequency space associated with Fourier multipliers.

In what follows we often abbreviate L p := L p(X, ν) and ‖ · ‖p := ‖ · ‖L p . Let
p, p1, p2 > 1. We say that a bilinear operator B is bounded from L p1 × L p2 to L p if

‖B( f1, f2)‖p ≤ C‖ f1‖p1‖ f2‖p2 , f1, f2 ∈ A.

Note that in this case B has a unique bounded extension from L p1 × L p2 to L p.

The main result of this paper is a Coifman–Meyer type general bilinear multiplier
theorem.

Theorem 2.3 Let L be a non-negative self-adjoint operator on L2(X, ν), which is
injective on its domain and satisfies (CT), (MH), (WD), and (PF). Assume that
m : (0,∞)2 → C satisfies the Mikhlin–Hörmander condition (2.2) of an order
s > 2ρ + 4. Then the bilinear multiplier operator Bm, given by (2.6), is bounded
from L p1 × L p2 to L p, where 1/p1 + 1/p2 = 1/p, and p1, p2, p ∈ (1,∞). More-
over, for such p, p1, p2, there is C = C(p1, p2, p, s) such that

‖Bm( f1, f2)‖p ≤ C ‖m‖M H(s) ‖ f1‖p1‖ f2‖p2 . (2.7)

Proof Let ψ be a smooth function supported in [1/2, 2] and such that
∑

k ψk ≡ 1.
We set F = f1 ⊗ f2 : X × X → C and split

Bm( f1, f2)(x) =
∑

k1,k2∈Z
[ψk1(L1)ψk2(L2)m(L1, L2)](F)(x, x)

=
∑

|k1−k2|≤b+2

. . . +
∑

k1>k2+b+2

. . . +
∑

k2>k1+b+2

. . . := T1 + T2 + T3.

There is no issue of convergence here as for f1, f2 ∈ A each of the sums defining
T1, T2, and T3 is finite.

We estimate separately each of the operators Ti , i = 1, 2, 3, starting with T1. This
is the easiest part, in fact here the assumption (PF) is redundant.

For k ∈ Z set

mk(λ1, λ2) = ψk(λ1)
∑

k2 : |k−k2| ≤ b+2

ψk2(λ2)m(λ) = ψk(λ1)φk(λ2)m(λ),

with φ(λ2) = ∑
| j | ≤ b+2 ψ j (λ2), so that suppφ ⊆ [2−b−3, 2b+3], and

suppψ ⊗ φ ⊆ [2−1, 21] × [2−b−3, 2b+3].
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3056 B. Wróbel

Let ψ̃ be another smooth function, which vanishes outside [2−b−4, 2b+4] and equals
1 on [2−b−3, 2b+3]. Then

mk(λ1, λ2) = [ψ̃k(λ1)ψ̃k(λ2)]ψk(λ1)φk(λ2)m(λ),

Moreover, suppmk ⊆ [2k−b−4, 2k+b+4]2, and, consequently, Mk(λ) := mk(2kλ) is
supported in [−2b+4, 2b+4]2 := [−a, a]2. Thus, Mk can be expanded into a double
Fourier series inside [−a, a]2, i.e.,

Mk(λ) =
∑

n1,n2∈Z
cn,keπ in1λ1/aeπ in2λ2/a, λ ∈ [−a, a]2,

with the Fourier coefficients

cn,k = 1

4a2

∫∫
[−a,a]2

[ψ ⊗ φ]m(2kξ) eπ in1ξ1/aeπ in2ξ2/a dξ.

Now, using integration by parts, together with the assumption (2.2), and the fact that
ψ ⊗ φ is compactly supported away from 0, we obtain the uniform in k ∈ Z bound

|cn,k | ≤ C ‖m‖M H(s) (1 + |n|)−s, n ∈ Z
2. (2.8)

We remark that here, in order to conclude (2.8), it is perfectly enough to assume the
Marcinkiewicz ’product’ condition

sup
γ1,γ2∈{0,...,s}

sup
λ∈(0,∞)2

|λ1|γ1 |λ2|γ2 |∂γ m(λ)| < ∞,

instead of (2.2).
Coming back to mk we now write, for λ ∈ [2k−b−4, 2k+b+4]2,

ψk(λ1)φk(λ2)m(λ) =
∑
n∈Z2

cn,k e2π in12−kλ1/ae2π in22−kλ2/a .

Thus, mk can be expressed as

mk(λ1, λ2) =
∑
n∈Z2

cn,k[ψ̃k(λ1)e
(2π/a)in12−kλ1 ][ψ̃k(λ2)e

(2π/a)in22−kλ2 ]

:=
∑
n∈Z2

cn,kψ
n1
k (λ1)ψ

n2
k (λ2).

By (2.8) and the bivariate spectral theorem, we have that

mk(L1, L2)(F)(x1, x2) =
∑
n∈Z2

cn,k [ψ̃k(L1)e
(2π/a)in12−k L1( f1)](x1)

×[ψ̃k(L2)e
(2π/a)in22−k L2 ]( f2)(x2),
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for a.e. x1, x2 ∈ X; here we have convergence in L2(X × X, ν ⊗ ν). Moreover, (2.8)
and the assumption (WD) imply that the above sum converges also pointwise (and
gives a continuous function on X × X ).

Consequently, for x ∈ X , we have

T1( f1, f2)(x) =
∑
k∈Z

mk(L1, L2)(F)(x, x)

=
∑
n∈Z2

∑
k∈Z

cn,k ψ
n1
k (L)( f1)(x) · ψ

n2
k (L)( f2)(x),

wherewe have used the fact that the sum in k is finitewhen f1, f2 ∈ A.NowSchwarz’s
inequality (first inequality below) and Hölder’s inequality together with (2.8) (second
inequality below) lead to the estimate

‖T1( f1, f2)‖p

≤
∑

n∈Z2

sup
k∈Z

|cn,k |
∥∥∥∥∥∥
( ∑

k∈Z
|ψn1

k (L)( f1)|2
)1/2( ∑

k∈Z
|ψn2

k (L)( f2)|2
)1/2

∥∥∥∥∥∥
p

� ‖m‖M H(s)

∑
n∈Z2

(1+|n|)−s

∥∥∥∥∥∥
( ∑

k∈Z
|ψn1

k (L)( f1)|2
)1/2

∥∥∥∥∥∥
p1

∥∥∥∥∥∥
( ∑

k∈Z
|ψn2

k (L)( f2)|2
)1/2

∥∥∥∥∥∥
p2

.

(2.9)

Thus, taking into account the presence of the modulations e2π in j2−kλ j /a in the defini-
tion of ψ

n j
k , j = 1, 2, and using Proposition 2.1, we obtain

∥∥∥∥∥
( ∑

k∈Z
|ψn j

k (L)( f j )|2
)1/2

∥∥∥∥∥
p j

� (1 + |n j |)ρ ‖ f j‖p j .

However, since we have the rapidly decaying factor in (2.9), if s > 2ρ + 4, we arrive
at the desired bound

‖T1( f1, f2)‖p � ‖m‖M H(s) ‖ f1‖p1‖ f2‖p2 .

Now we pass to estimating T2 and T3. Since the proofs are mutatis mutandis the
same, we treat only the former operator. Setting ϕ = ∑

j<−b−2 ψ j , we rewrite T2 as

T2( f1, f2)(x) =
∑

k1>k2+b+2

[ψk1(L1)ψk2(L2)m(L1, L2)](F)(x, x)

=
∑
k1

[ψk1(L1)

( ∑
k2<k1−b−2

ψ(2−k2 L2)

)
m(L1, L2)]( f1 ⊗ f2)(x, x)

=
∑

k

[ψk(L1)ϕk(L2)m(L1, L2)]( f1 ⊗ f2)(x, x),
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3058 B. Wróbel

where ϕ(λ2) = ∑
k2<−b−2 ψk2(λ2). Then clearly suppϕ ⊆ [0, 2−b−1]. Recall that

in the above decomposition of T2 all the appearing sums in k, k1, and k2, are in fact
finite since f1, f2 ∈ A.

Set mk := ψkϕkm and note that mk is supported in [2k−1, 2k+1]× [0, 2k−b−1]; this
is because

suppψ ⊗ ϕ ⊆ [2−1, 21] × [0, 2−b−1].

Similarly to the case of T1, we expand the function Mk = mk(2kλ) in a Fourier series.
Namely, let ψ̃ be a smooth function vanishing outside [2−2, 22] and equal to 1 on
[2−1, 21], and let ϕ̃ be a smooth function vanishing outside [0, 2−b] and equal to 1 on
[0, 2−b−1]. Then

mk(λ1, λ2) = [ψ̃k(λ1)ϕ̃k(λ2)]ψk(λ1)ϕk(λ2)m(λ),

Moreover, suppmk ⊆ [2k−1, 2k+1] × [0, 2k−b−1], and, consequently, Mk(λ) =
mk(2kλ) is supported in [−2, 2]2. Hence, Mk can be expanded into a double Fourier
series inside [−2, 2]2, i.e., for λ ∈ [−2, 2]2,

Mk(λ) =
∑

n1,n2∈Z
cn,ke

π
2 in1λ1e

π
2 in2λ2 ,

with the Fourier coefficients

cn,k = 1

16

∫∫
[−2,2]2

[ψ ⊗ ϕ]m(2kξ) e
π
2 in1ξ1e

π
2 in2ξ2 dξ.

As with T1, we now use integration by parts, together with the assumption (2.2). Here,
it is important that we assume the stronger Mikhlin–Hörmander condition instead of
merely the Mikhlin–Marcinkiewicz condition. Indeed, from integration by parts we
obtain, for arbitrary β

cn,k = O((1 + |n|)−β)

∫∫
[−2,2]2

dβ

dξβ
([ψ ⊗ ϕ]m(2kξ)) e

π
2 in1ξ1e

π
2 in2ξ2 dξ.

However, as ψ ⊗ ϕ does not vanish for λ2 close to zero, in order to conclude that the
above integral is uniformly bounded, we do need (2.2). In summary, we proved that
(2.8) holds also in this case.

Coming back to mk we now write, for λ ∈ [2k−2, 2k+2] × [0, 2k−b]

ψk(λ1)ϕk(λ2)m(λ) =
∑
n∈Z2

cn,k e
π
2 in12−kλ1e

π
2 in22−kλ2 .
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Thus, mk, k ∈ Z, can be expressed as

mk(λ1, λ2) =
∑

n

cn,k[ψ̃k(λ1)e
π
2 in12−kλ1 ][ϕ̃k(λ2)e

π
2 in22−kλ2 ]

:=
∑
n∈Z

cn,kψ
n1
k (λ1)ϕ

n2
k (λ2).

With the aid of (WD) and (2.8), arguing as on p. 7 we see that

mk(L1, L2)(F)(x, x) =
∑
n∈Z2

cn,k ψ
n1
k (L)( f1)(x) · ϕ

n2
k (L)( f2)(x),

where the series on the right converges pointwise to a continuous function on X.

Summarizing the above, we have just decomposed

T2( f1, f2)(x) =
∑
k∈Z

mk(L1, L2)(F)(x, x)

=
∑
n∈Z2

∑
k∈Z

cn,k ψ
n1
k (L)( f1)(x) · ϕ

n2
k (L)( f2)(x).

Now, let ψ̃ be a real-valued smooth function equal to 1 on [2−3−b, 23+b] and van-
ishing outside [2−5−b, 25+b]. Since, for each n = (n1, n2) ∈ Z

2, the function ϕ
n2
k is

supported in [0, 2k−b], and the function ψ
n1
k is supported in [2k−2, 2k+2], using the

assumption (PF) we have

T2( f1, f2)(x) =
∑
n∈Z2

∑
k∈Z

cn,kψ̃k(L)[ψn1
k (L)( f1) · ϕ

n2
k (L)( f2)](x).

Hence, if h is a function in Lq , 1/p + 1/q = 1, then we obtain

∫
X

T2( f1, f2)(x)h(x) dν(x)

=
∫

X

∑
n∈Z2

∑
k∈Z

cn,k ψ
n1
k (L)( f1)(x) · ϕ

n2
k (L)( f2)(x)ψ̃k(L)(h)(x) dν(x),

and, consequently,

∣∣∣∣
∫

X
T2( f1, f2)(x)h(x) dν

∣∣∣∣ ≤
∑
n∈Z2

sup
k∈Z

|cn,k |

×
∫

X

[( ∑
k∈Z

|ψn1
k (L)( f1)|2

)1/2

sup
k∈Z

ϕ
n2
k (L)( f2)

]( ∑
k∈Z

|ψ̃k(L)(h)|2
)1/2

dν
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� ‖m‖M H(s)

∑
n∈Z2

(1 + |n|)−s

∥∥∥∥∥
( ∑

k∈Z
|ψn1

k (L)( f1)|2
)1/2

∥∥∥∥∥
p1

×
∥∥∥∥sup

k∈Z
|ϕn2

k (L)( f2)|
∥∥∥∥

p2

, (2.10)

where we used Proposition 2.1 with ψ̃ in the second inequality above. Similarly to the
estimate for T1, applying Propositions 2.1 and 2.2 leads to

∥∥∥∥∥
(∑

k

|ψn1
k (L)( f1)|2

)1/2
∥∥∥∥∥

p1

� (1 + |n1|)ρ‖ f1‖p1 (cf. (2.3))

∥∥∥∥sup
k

|ϕn2
k (L)( f2)|

∥∥∥∥
p2

� (1 + |n2|)ρ+2‖ f2‖p2 (cf. (2.4)).

Finally, the rapidly decaying factor in (2.10) gives, for s > 2ρ + 4, the desired bound

‖T2( f1, f2)‖p � ‖m‖M H(s) ‖ f1‖p1‖ f2‖p2 .

The proof of Theorem 2.3 is thus completed. ��

3 Bilinear Multipliers on Z
d

In the present section, we formalize Theorem 2.3 for bilinear multiplier operators on
Z

d . We also prove a fractional Leibniz rule for the discrete Laplacian.
Let e j = (0, . . . , 1, . . . , 0) ∈ Z

d be the j-th coordinate vector. Consider the
discrete Laplacian on Z

d , given by

�Zd ( f )(n) = −2d f (n) +
d∑

j=1

( f (n + e j ) + f (n − e j ))

= −2d I f (n) +
d∑

j=1

( f ∗ δe j (n) + f ∗ δ−e j (n)),

for n ∈ Z
d . The multilinear operators (2.6) for the discrete Laplacian are defined via

Fourier analysis on Z
d . Namely, let Td ≡ (−1/2, 1/2]d be the d-dimensional torus,

and let

FZd ( f )(ξ) =
∑
n∈Zd

f (k)e2π in·ξ , ξ ∈ T
d
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be the Fourier transform on Zd , and define

Sin2(ξ) = 4
d∑

j=1

sin2(πξ j ), ξ ∈ T
d .

Then, since

FZd (−�Zd ( f ))(ξ) = Sin2(ξ)FZd ( f )(ξ), ξ ∈ T
d ,

the formula (2.6) takes the form

Bm( f1, f2)(n) := m((−�Zd )
1/2 ⊗ I, I ⊗ (−�Zd )

1/2)( f1 ⊗ f2)(n, n)

=
∫
Td

∫
Td

m(|Sin(ξ1)|, |Sin(ξ2)|)
FZd ( f1)(ξ1)FZd ( f2)(ξ2)e

−2π in(ξ1+ξ2) dξ,

(3.1)

where n ∈ Z
d . Note that the space A2 from (2.5) in this case is given by

A2 = {g ∈ L2(Td) : FZd (g)(ξ) = 0 for some ε > 0 and all |ξ | < ε.}

Throughout this section,we denote by L p the space l p(Zd) equippedwith the count-
ing measure. Using Theorem 2.3, we prove the following Coifman–Meyer multiplier
theorem for the discrete Laplacian.

Theorem 3.1 Assume that m satisfies Hörmander’s condition (2.2) of order s > d+4.
Then the bilinear multiplier operator given by (3.1) is bounded from L p1 × L p2 to
L p, where 1/p1 + 1/p2 = 1/p, and p1, p2, p > 1. Moreover, the bound (2.7) holds.

Proof It iswell known that L = (−�Zd )1/2 is injective on L2 and satisfies (CT).More-
over, it also satisfies (WD) since for f1, f2 ∈ A we have FZd ( f1)(ξ1)FZd ( f2)(ξ2) ∈
L1(Td ×T

d). From [1, Theorem 1.1] it follows that −�Zd has a Mikhlin–Hörmander
functional calculus (of order [d/2]+1). Then, clearly, the same is true for (−�Zd )1/2.

Hence, (MH) has been justified.
To apply Theorem 2.3, it remains to show that L = (−�Zd )1/2 satisfies (PF). We

prove it with b = 7 + 1
2 log2 d. Since the spectrum of (−�Zd )1/2 is contained in

[0, 2√d], we have ψk((−�Zd )1/2) ≡ 0, if k > 2 + 1
2 log2 d. Hence, it suffices to

show (PF) for k ≤ 2+ 1
2 log2 d. Using elementary Fourier analysis on Zd , we see that

to prove (PF) it is enough to show that

ψ̃k ◦ |Sin | = 1 on the support of

((ψk ◦ |Sin |)FZd ( f1)) ∗Td ((ϕk ◦ |Sin |))FZd ( f2)),
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3062 B. Wróbel

where ψ̃k, ψk, and ϕk are the functions from (PF). In other words that we are left with
proving that if |Sin(ξ)| < 2k−3−b or |Sin(ξ)| > 2k+3+b, then

∫
Td

ψk(|Sin(ξ − η)|)FZd ( f1)(ξ − η) · ϕk(|Sin(η)|)FZd ( f2)(η) dη = 0. (3.2)

The formula

sin π(t − s) = sin π t cosπs − sin πs cosπ t, s, t ∈ T, (3.3)

leads to | sin π(ξ j )| ≤ | sin π(ξ j −η j )|+| sin πη j |, j = 1, . . . , d, and, consequently,

|Sin(ξ)| ≤ √
d(|Sin(ξ − η)| + |Sin(η)|), η ∈ T

d .

From the above, it follows that if |Sin(ξ)| > 2k+3+b, then for every η ∈ T
d the

integrand in (3.2) vanishes.
It remains to show that also |Sin(ξ)| < 2k−3−b forces (3.2). We argue by contra-

diction assuming that |Sin(ξ)| < 2k−3−b yet the integral in (3.2) is non-zero. Then,
for some η ∈ T

d , we must have ψk(|Sin(ξ − η)|) ϕk(|Sin(η)|) �= 0, which implies
that

2k−1 ≤ |Sin(ξ − η)| ≤ 2k+1 and |Sin(η)| ≤ 2k−b. (3.4)

Note that since k ≤ 2+ 1
2 log2 d, the integral in (3.2) runs over |Sin(η)| ≤ 2k−b ≤ 2−1,

and, consequently, we consider only those η satisfying | cosπη j | >
√
3/2 > 1/2, for

every j = 1, . . . , d. Now, using (3.3) (with t − s = ξ j , s = −η j ), we obtain

| sin πξ j | ≥ | sin π(ξ j − η j )|| cosπη j | − | cosπ(ξ j − η j )|| sinπη j |
≥ 1

2
| sin π(ξ j − η j )| − | sin πη j |.

Summing the above estimate in j and using Schwarz inequality, we arrive at

√
d|Sin(ξ)| ≥

d∑
j=1

| sin πξ j | ≥ 1

2

d∑
j=1

| sin π(ξ j − η j )| −
d∑

j=1

| sin πη j |

≥ 1

2
|Sin(ξ − η)| − √

d|Sin(η)|.

Now, since |Sin(ξ)| < 2k−3−b, using (3.4) we arrive at

2k−b−3 > |Sin(ξ)| >
1√
d

(
2k−1 − √

d2k−b)

= 1√
d

(
2k−1 − 2k−7

)
>

1√
d
2k−2 = 2k−b+5,

which is a contradiction. ��
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As a corollary of Theorem 3.1, we prove a fractional Leibniz rule for the discrete
Laplacian on Z

d . For Re(z) ≥ 0 and h ∈ L2, the complex derivative (−�Zd )zh is
given by

FZd ((−�Zd )zh)(ξ) = |Sin ξ |2zFZd (h)(ξ), ξ ∈ T
d .

This coincides with taking the n-th composition of (−�Zd ) when z = n is a non-
negative integer. Clearly, (−�Zd )z is bounded on L2. Moreover, when z = s ∈ R,

s ≥ 0, then (−�Zd )s is also bounded on all L p, 1 ≤ p ≤ ∞. To see this, we just
use the Taylor series expansion of the function xs = (1 − (1 − x))s, with x replaced
by (−�Zd )/(2d). This is legitimate since I + �Zd /(2d) is a contraction on all L p

spaces. Our fractional Leibniz rule is the following.

Corollary 3.2 Let 1/p = 1/p1 + 1/p2, with p, p1, p2 > 1. Then, for every s > 0,

‖(−�Zd )s( f g)‖p � ‖(−�Zd )s f ‖p1‖g‖p2 + ‖(−�Zd )s g‖p2‖ f ‖p1 , (3.5)

where f, g ∈ A.

Remark 1 Note that if f, g ∈ A then f g ∈ L2, and hence (−�Zd )s( f g)makes sense.

Remark 2 Since (−�Zd )s is bounded on all L p spaces, 1 ≤ p ≤ ∞, a version of
(3.5) without the Laplacians on the right-hand side is obvious. This is in contrast with
the fractional Leibniz rule on R

d .

In the proof of the corollary, we shall need two lemmata. The first of them is the
l p(Z) boundedness of a discrete Hilbert transform.

Lemma 3.3 The one-dimensional linear multiplier operator

H( f )(n) =
∫ 1/2

0
FZ( f )(ξ)e2π iξn dξ, n ∈ Z,

is bounded on all l p(Z) spaces, 1 < p < ∞.

Proof (sketch) The convolution kernel of H is given by K (0) = 1/2 and

K (n) =
∫ 1/2

0
e2π iξn dξ = eπ in − 1

2π in
, n ∈ Z\{0}.

Let K̃ (0) = 0 and K̃ (n) = (2π in)−1, for n ∈ Z\{0}. Then we have

K (n) = δ0(n)

2
+ eπ in K̃ (n) − K̃ (n), n ∈ Z,

and therefore

‖H f ‖�p(Z) ≤ ‖ f ‖�p(Z) + ‖(eπ i · K̃ (·)) ∗Z f ‖�p(Z) + ‖K̃ ∗Z f ‖�p(Z).

123



3064 B. Wróbel

Since |(eπ i · K̃ (·)) ∗Z f (n)| = |K̃ ∗Z (e−π i · f (·))(n)|, it remains the prove the �p(Z)

boundedness of f �→ K̃ ∗Z f. This can be deduced from the boundedness of the
Hilbert transform on R, see e.g. [21]. ��

The second of the lemmata is the following.

Lemma 3.4 Let d = 1. Assume that ϕ : (0,∞)2 → C is a bounded function that
satisfies the Mikhlin–Hörmander condition (MH) of order 6. Then, for Re(z) ≥ 0, we
have

(−�Z)z(Bϕ( f, g))(n)

=
∫∫

T2
ϕ(2| sin πξ1|, 2| sin πξ2|) |2 sin π(ξ1 + ξ2)|2ze2π i(ξ1+ξ2)n FZ( f )(ξ1)FZ(g)(ξ2) dξ,

(3.6)
where f, g ∈ A, and n ∈ Z.

Proof From Theorem 3.1 and the assumptions on ϕ, it follows that Bϕ( f, g) ∈ �2(Z).

Thus, the left-hand side of (3.6) makes sense as a function on �2(Z). Moreover, a
continuity argument shows that it suffices to demonstrate (3.6) for Re(z) > 0.

Set ϕ̃(ξ1, ξ2) = ϕ(2| sin πξ1|, 2| sin πξ2|). Since −�Z(e2π i t ·)(n) = 4(sin2 π t)
e2π i tn, for t ∈ T andn ∈ Z,wededuce that (−�Z)k(e2π i t ·)(n) = 22k | sin π t |2ke2π i tn,

k ∈ N. Hence, for k, n ∈ N, we have

(−�Z)k(Bϕ( f, g))(n) =
∫∫

T2
ϕ̃(ξ1, ξ2) (4 sin2 π(ξ1 + ξ2))

ke2π i(ξ1+ξ2)n FZ( f )(ξ1)FZ(g)(ξ2) dξ.

Thus, for P being a polynomial, we obtain

P(−�Z)(Bϕ( f, g))(n)

=
∫∫

T2
ϕ̃(ξ1, ξ2) P(4 sin2 π(ξ1 + ξ2))e

2π i(ξ1+ξ2)n FZ( f )(ξ1)FZ(g)(ξ2) dξ,

where n ∈ Z.

Finally, a density argument shows that the above formula remains true for contin-
uous functions in place of polynomials. In particular, taking λ �→ λz, Re(z) > 0, we
obtain (3.6). ��
We proceed to the proof of the corollary.

Proof of Corollary 3.2 We claim that it is enough to prove the corollary in dimension
d = 1. Indeed, fix s > 0 and assume that (3.5) is true in this case. Let �Z be the
one-dimensional discrete Laplacian onZ.Define L j := −�Z⊗ I( j), j = 1, . . . , d, to
be the one-dimensional discrete Laplacian acting on the j-th variable, so that, clearly,
−�Zd = ∑d

j=1 L j . Since each L j generates a symmetric contraction semigroup,
using e.g., the multivariate multiplier theorem [27, Corollary3.2] we see that the oper-
ator

(∑
L j

)s (∑
Ls

j

)−1
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is bounded on L p, p > 1. In other words, we have the bound

‖(−�Zd )
s( f g)‖p � ‖

d∑
j=1

Ls
j ( f g)‖p ≤

d∑
j=1

‖Ls
j ( f g)‖p.

Since the multiplier Ls
j (−�Zd )−s is bounded on all L p, p > 1, (this again follows

from [27, Corollary 3.2]) in order to conclude the proof of our claim it is thus enough
to show that

‖Ls
j ( f g)‖p � ‖Ls

j f ‖p1‖g‖p2 + ‖Ls
j g‖p2‖ f ‖p1 , (3.7)

for every j = 1, . . . , d.

For notational simplicity, we justify (3.7) only for j = 1, the proofs for other j are
analogous. For a sequence h : Zd → C denote hn(k) := h(k, n), k ∈ Z, n ∈ Z

d−1.

Clearly, we have ( f g)n(·) = fn(·)gn(·). Then, using (3.5) in the dimension d = 1
(first inequality below), together with the simple fact that (a +b)p ≈ a p +bp (second
and last inequalities below), and Hölder’s inequality with exponents p1/p, p2/p > 1
(third inequality below) we obtain

‖Ls
1( f g)‖p =

∑
n∈Zd−1

‖Ls
1(( f g)n(·))‖p

l p(Z)
=

∑
n∈Zd−1

‖Ls
1( fn(·)gn(·))‖p

l p(Z)

�
∑

n∈Zd−1

(‖Ls
1( fn)‖l p1 (Z)‖gn‖l p2 (Z) + ‖Ls

1(gn)‖l p1 (Z)‖ fn‖l p2 (Z)

)p

�
∑

n∈Zd−1

‖Ls
1( fn)‖p

l p1 (Z)
‖gn‖p

l p2 (Z)
+ ‖Ls

1(gn)‖p
l p1 (Z)

‖ fn‖p
l p2 (Z)

�
( ∑

n∈Zd−1

‖Ls
1( fn)‖p1

l p1 (Z)

)p/p1( ∑
n∈Zd−1

‖gn‖p2
l p2 (Z)

)p/p2

+ ( ∑
n∈Zd−1

‖Ls
1(gn)‖p2

l p2 (Z)

)p/p2( ∑
n∈Zd−1

‖ fn‖p1
l p1 (Z)

)p/p1

= ‖Ls
1( f )‖p

p1‖g‖p
p2 + ‖Ls

1(g)‖p
p2‖ f ‖p

p1

�
(‖Ls

1( f )‖p1‖g‖p2 + ‖Ls
1(g)‖p2‖ f ‖p1

)p
.

Hence, (3.7) is proved.
Having justified the claim, we now focus on proving (3.5) for d = 1. Till the end of

the proof of the corollary, we work onZ and write l p and ‖·‖p for l p(Z) and ‖·‖l p(Z),

respectively.
Let η0 and η1 be smooth functions satisfying supp η0 ⊆ [0, 1/4], supp η1 ⊆

[1/8, 10] and η0 + η1 = 1 on [0, 4]. For a function h ∈ A we set h0 =
η0((−�Z)1/2)(h) and h1 = η1((−�Z)1/2)(h), so that h = h0 + h1. From [1, The-
orem 1.1] it follows that for each fixed s > 0 the multiplier (−�Z)−sη1(−�Z)

is bounded on all l p, 1 < p < ∞. Moreover, h0, h1 ∈ A. Since h1 =
(−�Z)−sη1(−�Z)[(−�Z)s(h)], we thus have the estimate

‖h1‖p � ‖(−�Z)sh‖p.
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Hence, using the boundedness of (−�Z)s and Hölder’s inequality, we obtain

‖(−�Z)s( fi1gi2)‖p � ‖ fi1‖p1‖gi2‖p2

� ‖(−�Z)s f ‖p1‖g‖p2 + ‖(−�Z)s g‖p1‖ f ‖p2 ,

for i1, i2 ∈ {0, 1} not both equal to 0. In summary, to finish the proof, it is enough to
demonstrate that

‖(−�Z)s( f0g0)‖p � ‖(−�Z)s f ‖p1‖g‖p2 + ‖(−�Z)s g‖p1‖ f ‖p2 .

Clearly, FZ( f0)(x) = η0(| sin πx |)FZ( f )(x) and FZ(g)(y) = η0(| sin πy|)
FZ(g0)(y). Hence, denoting I = [0, 1/2) and using Lemma 3.4 together with (3.3),
we now write

(−�Z)s( f0g0)(n)

= 22s
∫
T

∫
T

[| sin πξ1 cosπξ2 + sin πξ1 cosπξ2|2sη0(| sin πξ1|)η0(| sin πξ2|)]
× e2π i(ξ1+ξ2)n FZ( f )(ξ1)FZ(g)(ξ2) dξ

= 22s
∑

ε∈{−1,1}2

∫
ε1 I

∫
ε2 I

| sin πξ1

√
1 − sin2 πξ2

+ sin πξ2

√
1 − sin2 πξ1|2sη0(| sin πξ1|)η0(| sin πξ2|)

× e2π i(ξ1+ξ2)n FZ( f )(ξ1)FZ(g)(ξ2) dξ :=
∑

ε∈{−1,1}2
Tε( f, g)(n), n ∈ Z.

Thus, in order to finish the proof, it is enough to show that for ε ∈ {−1, 1}2 it holds

‖Tε( f, g)‖p � ‖(−�Z)s f ‖p1‖g‖p2 + ‖(−�Z)s g‖p2‖ f ‖p1 . (3.8)

It is enough to justify (3.8) only for T1,1 and T1,−1 as the proofs for T−1,1 and T−1,−1 are
symmetric. In what followswe let φ be a function inC∞([0,∞)) supported in [0, 1/4]
and such that φ(t) + φ(t−1) = 1. Note that then φ(λ2/λ1) satisfies Hörmander’s
condition (2.2) of arbitrary order.

Let (η⊗
0 )(λ) = η0(λ1)η0(λ2), λ ∈ [0,∞)2. To justify (3.8) for T1,1, we set

ms
1,1(λ) = |λ1(1 − λ22/4)

1/2 + λ2(1 − λ21/4)
1/2|2s

λ2s
1

φ(λ2/λ1)(η
⊗
0 )(λ),

m̃s
1,1(λ) = |λ1(1 − λ22/4)

1/2 + λ2(1 − λ21/4)
1/2|2s

λ2s
2

φ(λ1/λ2)(η
⊗
0 )(λ).

Then, using (3.1) (in the case d = 1), we rewrite T1,1 as

T1,1( f, g) = Bms
1,1

(H(−�Z)s f, Hg) + Bm̃s
1,1

(H f, H(−�Z)s g).
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In view of Lemma 3.3, to demonstrate (3.8) it suffices to show that

‖Bms
1,1

( f, g)‖p + ‖Bm̃s
1,1

( f, g)‖p ≤ C‖ f ‖p1‖g‖p2 .

This, however, follows directly from Theorem 3.1, since, for each s > 0, the
multipliers ms

1,1, and m̃s
1,1, satisfy Hörmander’s condition (2.2) of arbitrary order.

Finally, we prove (3.8) for T1,−1. For Re(z) ≥ 0, we set

mz
1,−1(λ) = |λ1(1 − λ22/4)

1/2 − λ2(1 − λ21/4)
1/2|2z

λ2z
1

φ(λ2/λ1)(η
⊗
0 )(λ),

m̃z
1,−1(λ) = |λ1(1 − λ22/4)

1/2 − λ2(1 − λ21/4)
1/2|2z

λ2z
2

φ(λ1/λ2)(η
⊗
0 )(λ).

Then using (3.1) (in the case d = 1), we rewrite T1,−1 as

T1,−1( f, g) = Bms
1,−1

(H(−�Z)s f, (I − H)g) + Bm̃s
1,−1

(H f, (I − H)(−�Z)s g).

Note that A is preserved by (−�Z)s . Thus, by Lemma 3.3, to demonstrate (3.8) it is
enough to prove, for f, g ∈ A, the bounds

‖Bms
1,−1

(H f, (I − H)g)‖p ≤ C‖H f ‖p1‖(I − H)g‖p2 ,

‖Bm̃s
1,−1

(H f, (I − H)g)‖p ≤ C‖H f ‖p1‖(I − H)g‖p2 .
(3.9)

We focus only on the first estimate, the reasoning for the second being analogous. We
are going to apply Stein’s complex interpolation theorem [25] for each fixed f ∈ A.
The argument used here takes ideas from the proof of [15, Theorem 1.4]. For further
reference, we note that the formula

Bmz
1,−1

(H f, (I − H)g)(n) =
∫ 1/2

0

∫ 0

−1/2
φ

( | sin πξ2|
| sin πξ1|

)
η0(| sin πξ1|)η0(| sin πξ2|)

× | sin πξ1
√
1 − sin2 πξ2 − sin πξ2

√
1 − sin2 πξ1|2z

| sin πξ1|2z
e2π i(ξ1+ξ2)n FZ( f )(ξ1)FZ(g)(ξ2) dξ

(3.10)
makes sense not only for f, g ∈ A but more generally, for f, g ∈ �2.

Let n be an even integer larger than 8. Then the multipliers mn+iv
1,−1 , v ∈ R, satisfy

the Mikhlin–Hörmander condition (2.2) of order 8. Thus, Theorem 3.1 (with d = 1)
gives

‖Bmn+iv
1,−1

(H f, (I − H)g)‖p ≤ C(1 + |v|)8‖H f ‖p1‖(I − H)g‖p2 , v ∈ R.

Now, Lemma 3.4 applied to ϕ(λ) = φ(λ2/λ1)η
⊗
0 (λ), λ ∈ (0,∞)2, implies

Bmiv
1,−1

(H f, (I − H)g) = (−�Z)iv[Bφ(λ2/λ1)η
⊗
0
(H(−�Z)−iv f, (I − H)g)

]
.
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By [1, Theorem 1.1], we have ‖(−�Z)iv‖�q→�q ≤ Cq(1+|v|)4, 1 < q < ∞. Hence,
Theorem 3.1 applied to the multiplier φ(λ1/λ2)η

⊗
0 produces

‖Bmiv
1,−1

(H f, (I − H)g)‖p ≤ C(1 + |v|)8‖H f ‖p1‖(I − H)g‖p2 , v ∈ R.

By (3.10), for fixed f ∈ A, the family {Bmz
1,−1

(H f, (I − H)g)}Re(z)>0 consists of
analytic operators. This family has admissible growth, more precisely, for each finitely
supported g, h we have

∣∣〈Bmz
1,−1

(H f, (I − H)g), h〉l2(Z)

∣∣ ≤ C f,g,h, |Re(z)| ≤ s.

Consequently, an application of Stein’s complex interpolation theorem is permitted
and leads to the first inequality in (3.9). The proof of the corollary is thus finished. ��

4 Bilinear Radial Multipliers for the Generic Dunkl Transform

Here, we apply Theorem 2.3 for bilinear multiplier operators associated with the
generic Dunkl transform. In the case when the underlying group of reflections is
isomorphic to Z2, we also prove a fractional Leibniz rule.

Let R be a root system inRd and G the associated reflection group (see [22, Chapter
2]). Let σα(x) denote the reflection of x in the hyperplane orthogonal to α ∈ R

d and let
κ be a non-negative, G invariant function on R. The differential-difference (rational)
Dunkl operators are defined as

δ j f (x) = ∂ j f (x) +
∑

α∈R+
α jκ(α)

f (x) − f (σα(x))

〈α, x〉 , j = 1, . . . , d.

Here, f is a Schwartz function; R+ is a fixed positive subsystem of R; and 〈x, y〉 =∑d
j=1 x j y j is the standard inner product. The fundamental property of the operators

δ j is that, similarly to the usual partial derivatives (which appear when we take κ ≡ 0),
they commute, i.e., δlδ j = δ jδl , l, j = 1, . . . , d. The operators δ j are also symmetric
on L2 = L2(Rd , w(x)dx), with w(x) = wκ(x) := ∏d

i=1 |〈α, x〉|2κ(α) . Moreover,
they leave S(Rd) invariant. Additionally, the Leibniz rule

δ j ( f1 f2)(x) = δ j ( f1)(x) f2(x) + δ j ( f1)(x) f2(x), x ∈ R
d , (4.1)

holds under the extra assumption that one of the functions f1, f2 is invariant under G.

The easiest case ofDunkl operators ariseswhenG ∼ Z
d
2 . In other words,G consists

of reflections through the coordinate axes. In this case,

δ j f (x) = ∂ j f (x) + κ j
f (x) − f (σ j (x))

x j
, j = 1, . . . , d,
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where κ j ≥ 0, while σ j (x) denotes the reflection of x in the hyperplane orthogonal
to the j-th coordinate vector. In this case, the weight wκ(x) takes the product form
wκ(x) = ∏d

j=1 wκ j (x j ), x ∈ R
d .

In the (general) Dunkl setting, there is an analogue of the Fourier transform, called
the Dunkl transform. It is defined by

D f (ξ) = cκ

∫
Rd

E(−iξ, x) f (x)wκ(x) dx,

where E(z, w) = Eκ(z, w) = Eκ(w, z) is the so called Dunkl kernel. A defining
property of this kernel is the equation

δ j,x (Eκ(iξ, x)) = iξ j Eκ(iξ, x), x ∈ R
d . (4.2)

The operator D has properties similar to the Fourier transform. Namely, we have the
Plancherel formula

∫
Rd

f (x)g(x) w(x) dx = cκ

∫
Rd

D( f )(ξ)D(h)(ξ)w(ξ) dξ, (4.3)

and the inversion formula,

f (x) = D2 f (−x) = c
∫
Rd

D( f )(ξ)E(iξ, x) w(ξ) dξ, f ∈ S(Rd). (4.4)

Additionally, theDunkl transform diagonalizes simultaneously theDunkl operators
δi , i.e.,

δ jD f = −D(i x j f ), Dδ j f = iξ jD. (4.5)

The Dunkl Laplacian is given by �κ = ∑d
i=1 δ2i . Using the identity

D(�κ f )(ξ) = −|ξ |2D( f )(ξ), ξ ∈ R
d ,

the operator −�κ may be formally defined as a non-negative self-adjoint operator on
L2(Rd , w). The same is true for L := (−�κ)1/2. Then, for a bounded function μ, the
spectral multiplier μ(L) is uniquely determined on S(Rd) by

D(μ(L) f )(ξ) = μ(|ξ |)D( f )(ξ) ξ ∈ R
d . (4.6)

Consider now L1 := L ⊗ I and L2 = I ⊗ L . Analogously to the case of bilinear
Fourier multipliers, the formula (2.6) can given by the Dunkl transform. Namely, for
a bounded function m : [0,∞)2 → C, we have

Bm( f1, f2)(x)

=
∫
Rd

∫
Rd

m(|ξ1|, |ξ2|)D( f )(ξ1)D(g)(ξ2) E(iξ1, x)E(iξ2, x) w(ξ1)w(ξ2)dξ1dξ2.

(4.7)

123



3070 B. Wróbel

The above formula is valid pointwise e.g., for Schwartz functions f1 and f2 on R
d .

We observe that in this section the space A2 from (2.5) is

A2 = {g ∈ L2(Rd , wκ) : there is ε > 0 such that D(g)(ξ) = 0 for |ξ | /∈ [ε, ε−1]}.
(4.8)

Thus, by (4.5) the Dunkl derivatives δ j , j = 1, . . . , d, preserve A2.

In this section, we will heavily rely on the concepts of Dunkl translation and Dunkl
convolution. For x, y ∈ R

d , the Dunkl translation is defined by

τ y f (x) = cκ

∫
Rd

D( f )(ξ)E(iξ, x)E(iξ, y) w(ξ) dξ.

The inversion formula (4.4) and the properties of the Dunkl kernel imply

D(τ y f )(ξ) = E(−iξ, y)D( f )(ξ).

For f, g ∈ A, the Dunkl convolution is

f ∗κ g(x) =
∫
Rd

f (y) τx ǧ(y) w(y) dy,

where ǧ(x) = g(−x). It is known that the Dunkl transform turns this convolution into
multiplication, i.e.,

D( f ∗κ g)(x) = D( f )(x)D(g)(x), [D( f ) ∗κ D(g)](x) = D( f g)(x), f, g ∈ A.

(4.9)
Thefirst result of this section is the followingCoifman–Meyer type theorem. Inwhat

followswe setλκ = (d−1)/2+∑
α∈R+ κ(α) and for brevitywrite L p := L p(Rd , wκ)

and ‖ · ‖p = ‖ · ‖L p .

Theorem 4.1 Assume that m satisfies the Mikhlin–Hörmander condition (2.2) of an
order s > 2λκ + 6. Then the bilinear multiplier operator given by (4.7) is bounded
from L p1 × L p2 to L p, where 1/p1 + 1/p2 = 1/p, and p1, p2, p > 1. Moreover, the
bound (2.7) holds.

Proof We are going to apply Theorem 2.3. In order to do so, we need to check that
its assumptions are satisfied for the operator L = (−�κ)1/2. To see that L is injective
on its domain, we merely note that wκ(ξ) dξ is absolutely continuous with respect to
Lebesgue measure. The contractivity condition (CT) follows from [22, Theorem 4.8]
and the subordination method. The assumption (WD) is straightforward from (4.7)
and the Lebesgue dominated convergence theorem, while (MH) was proved by Dai
and Wang [10, Theorem 4.1] (with arbitrary ρ > λκ + 1).

Thus, we are left with verifying the property (PF), which we prove with b = 2. This
will be deduced by using the convolution structure associated with Dunkl operators.
Let ϕk and ψk be smooth functions such that suppϕk ⊆ [0, 2k−2] and suppψk ⊆
[2k−1, 2k+1]. Let ψ̃k be a smooth function equal 1 on [2k−5, 2k+5] and vanishing
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outside of [2k−7, 2k+7]. Taking the Dunkl transform of the both sides of (PF) and
using (4.6), we see that our task is equivalent to proving the formula

D(ϕk(L)( f1)ψk(L)( f2)) = ψ̃k(|ξ |)D(ϕk(L)( f1)ψk(L)( f2)), ξ ∈ R
d .

Denote g j = D( f j ), j = 1, 2. By (4.9) and (4.6) the equation above is exactly

[(ϕk(| · |)g1) ∗κ (ψk(| · |)g2)](ξ)

= ψ̃k(|ξ |)[(ϕk(| · |)g1) ∗κ (ψk(| · |)g2)](ξ), ξ ∈ R
d .

By definition of ψ̃ to prove the last formula it is enough to show that

supp[h1 ∗κ h2] ⊆ [2k−5, 2k+5], (4.10)

for any functions h1 supported in B(0, 2k−2) and h2 supported in B(0, 2k+1)\
B(0, 2k−1). Take |ξ | /∈ [2k−5, 2k+5] and y ∈ B(0, 2k−2). We claim that τ ξ ȟ2(y) = 0.
This implies (4.10).

Till the end of the proof, we thus focus on proving the claim. Let γξ,y be the
distribution given by γξ,y( f ) = (τ ξ f )(y), f ∈ S(Rd). In [2, Theorem 5.1] Amri,
Anker, and Sifi proved that γξ,y is supported in the spherical shell

Sξ,y := {
z ∈ R

d : ||ξ | − |y|| ≤ |z| ≤ |ξ | + |y|}.
Therefore, if we prove that supp h2∩ Sξ,y = ∅, then τ ξ h2(y) = 0.Recall that we have
|ξ | /∈ [2k−5, 2k+5] and y ∈ B(0, 2k−2). Take z ∈ Sξ,y and consider two possibilities,
either |ξ | < 2k−5 or |ξ | > 2k+5. In the first case, we obtain |z| ≤ 2k−5+2k−2 < 2k−1,

while in the second |z| ≥ |ξ | − |y| ≥ 2k+5 − 2k−2 > 2k+1. Thus, in both the cases
z /∈ supp ȟ2, and the proof of (PF) is completed. ��

Theorem4.1 is quite far from a general bilinearDunklmultiplier theorem, i.e., when
the multiplier function m is not necessarily radial in each of its variables. However, in
the case d = 1 (and G ∼ Z2), Theorem 4.1 implies [3, Theorem 4.1] by Amri, Gasmi,
and Sifi. We slightly abuse the notation and, for ϕ : R2 → C, f1, f2 ∈ A, and x ∈ R,

define

Bϕ( f1, f2)(x) =
∫
R

∫
R

ϕ(ξ)D( f1)(ξ1)D( f2)(ξ2) E(iξ1, x)E(iξ2, x)w(ξ1)w(ξ2) dξ.

(4.11)
This will cause no confusion with (4.7), as till the end of the present section we only
use Bϕ given by (4.11).

Corollary 4.2 (Theorem 4.1 of [3]) Let G ∼ Z2. Assume that ϕ : R2 → C satisfies
the Mikhlin-Hörmander condition on R

2 of an order s > 2λκ + 6, namely

‖ϕ‖M H(R2,s) := sup
|α|≤s

sup
ξ∈R2

|ξ ||α||∂αϕ(ξ1, ξ2)| < ∞. (4.12)
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Then the bilinear multiplier operator given by (4.11) is bounded from L p1 × L p2 to
L p, where 1/p1 + 1/p2 = 1/p, and p1, p2, p > 1.

Remark When κ = 0 we recover the Coifman–Meyer multiplier theorem in the
Fourier transform setting.

Proof of Corollary 4.2 (sketch) Let �( f )(x) = D−1(χξ>0)D( f )(ξ))(x) be the pro-
jection onto the positive Dunkl frequencies. The corollary can be deduced from the
boundedness of � on all L p spaces 1 < p < ∞. ��

For Re z ≥ 0, let (−�κ)z be the complex Dunkl derivative

D[(−�κ)z(h)](ξ) = |ξ |2zD(h)(ξ), ξ ∈ R
d .

The natural L2 domain of this operator is

DomL2((−�κ)z) = {h ∈ L2 : |ξ |2Re zD(h)(ξ) ∈ L2}.

By Plancherel’s formula for the Dunkl transform (−�κ)z(h) ∈ L2 for h ∈ A. The
second main result of this section is the following fractional Leibniz rule for (−�κ)s,

in the case G ∼ Z
d
2 .

Corollary 4.3 Let G ∼ Z
d
2 and take 1/p = 1/p1 + 1/p2, with p, p1, p2 > 1. Then,

for any s > 0, we have

‖(−�κ)s( f g)‖p � ‖(−�κ)s( f )‖p1‖g‖p2 + ‖ f ‖p1‖(−�κ)s(g)‖p2 ,

where f, g ∈ A and at least one of the functions f or g is invariant by G.

Before proving the fractional Leibniz rule, we need a lemma which is an analogue
of Lemma 3.4. Its proof is similar, however a bit more technical. Therefore we give
more details.

Lemma 4.4 Take d = 1 and let G ∼ Z2. Assume that at least one of the functions
f, g ∈ A is G-invariant. Take Re(z) ≥ 0 and let ϕ : R2 → C be a bounded function
that satisfies the Mikhlin–Hörmander condition (4.11) of order s > 2λκ + 6. Then

(−�κ)z(Bϕ( f, g))(x) =
∫∫

R2
ϕ(ξ)|ξ1 + ξ2|2z D( f )(ξ1)D(g)(ξ2)

E(iξ1, x)E(iξ2, x) w(ξ1)w(ξ2)dξ,

for almost all x ∈ R
d .

Remark It is not obvious why Bϕ( f, g) ∈ DomL2((−�κ)z). This is explained in the
proof of the lemma.
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Proof Since the argument is symmetric in f and g, we assume that f is G-invariant.
Denote EG(iξ1, x) = |G|−1 ∑

g∈G E(iξ1, gx), and observe that EG is G-invariant in
x . Then, since both f and D( f ) are G-invariant our task reduces to proving that

(−�κ)z(Bϕ( f, g))(x) =
∫
R

∫
R

ϕ(ξ)|ξ1 + ξ2|2z D( f )(ξ1)D(g)(ξ2)

EG(iξ1, x)E(iξ2, x) w(ξ1)w(ξ2)dξ, (4.13)

for almost all x ∈ R
d .

For z = n ∈ N, this formula is a direct computation, and follows from the Leibniz
rule. Indeed, by (4.1) and (4.2) we have

δ(Bϕ( f, g))(x) =
∫∫

R2
ϕ(ξ)D( f )(ξ1)D(g)(ξ2) δx

[EG(iξ1, x)E(iξ2, x)] w(ξ1)w(ξ2)dξ

=
∫∫

R2
ϕ(ξ)D( f )(ξ1)D(g)(ξ2) i(ξ1 + ξ2)

EG(iξ1, x)E(iξ2, x) w(ξ1)w(ξ2)dξ,

the interchange of differentiation and integration being allowed since f, g ∈ A. Iter-
ating the above equality 2n times, we obtain (4.13) for z = n.

We remark that (4.13) for z ∈ N also explains why does (−�κ)z(Bϕ( f, g)) make
sense for general Re(z) ≥ 0. Indeed, let n be an integer larger than Re(z). Then,
to prove that Bϕ( f, g) ∈ DomL2((−�κ)z), it is enough to show that Bϕ( f, g) ∈
DomL2((−�κ)n). Now, using (4.13) for z = n, together with the binomial formula
and (4.5), we arrive at

(−�κ)n(Bϕ( f, g))(x)

=
2n∑
j=0

(
2n

j

) ∫
R

∫
R

ϕ(ξ)D(δ j f )(ξ1)D(δ2n− j g)(ξ2)

EG(iξ1, x)E(iξ2, x) w(ξ1)w(ξ2)dξ,

with δ being the Dunkl operator on R. Since f, g belong to A2 the same is true
for δ j f and δ2n− j g. Thus, an application of Corollary 4.2 proves that Bϕ( f, g) ∈
DomL2((−�κ)n), as desired.

We come back to demonstrating (4.13) for general Re(z) ≥ 0. Note first that by a
continuity argument it suffices to consider Re(z) > 0. Denoting

Tz( f, g)(x)

=
∫∫

R2
ϕ(ξ)|ξ1 + ξ2|2z D( f )(ξ1)D(g)(ξ1) E(iξ1, x)E(iξ2, x) w(ξ1)w(ξ2)dξ,
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our task is reduced to proving that

〈(−�κ)z(Bϕ( f, g)), h〉L2 = 〈Tz( f, g), h〉L2 , (4.14)

for h ∈ A2∩S(R) (recall thatA2 is given by (4.8)). This is enough becauseA2∩S(R)

is dense in L2. From (4.13) for z ∈ N, we deduce that for any polynomial P it holds

P(−�κ)(Bϕ( f, g))(x)

=
∫∫

R2
ϕ(ξ)P(|ξ1 + ξ2|2)D( f )(ξ1)D(g)(ξ2) EG(iξ1, x)E(iξ2, x) w(ξ1)w(ξ2)dξ.

(4.15)
For brevity, we denote by T P ( f, g)(x) the right-hand side of (4.15). Note that D( f ),

D(g), and D(h) are supported in [−N , N ] for some large N . Let {Pr (t)}r∈N be a
sequence of polynomials that converges uniformly to t z on [0, 4N 2]. Then, (4.3),
(4.5), and (4.15) imply

∫
R

Pr (|ζ |2)D(Bϕ( f, g))(ζ )D(h̄)(ζ )w(ζ ) dζ = 〈Pr (−�κ)(Bϕ( f, g)), h〉L2

= 〈T Pr ( f, g), h〉L2 .

(4.16)
Now, since suppD(h̄) ⊆ [−N , N ] and D(Bϕ( f, g))D(h̄) ∈ L1, the domi-
nated convergence theorem shows that the left-hand side of (4.16) converges to
〈(−�κ)z(Bϕ( f, g)), h〉L2 as r → ∞. Similarly, sinceD( f ) andD(g) are supported in
[−N , N ], the expression T Pr ( f, g)(x) is uniformly bounded in r ∈ N and x ∈ R and
converges to Tz( f, g)(x) as r → ∞. As h ∈ S(R) the dominated convergence theo-
rem implies limr→∞〈T Pr ( f, g), h〉L2 = 〈Tz( f, g), h〉L2 . Therefore, (4.14) is justified
and hence, also (4.13). This completes the proof of Lemma 4.4. ��

We now pass to the proof of Corollary 4.3.

Proof By repeating the argument from the beginning of the proof of Corollary 3.2
(with sums replaced by integrals), our task is reduced to d = 1. We devote the present
paragraph to a brief justification of this statement. Here we need the fact that for s ≥ 0
and L j = −δ2j , the operators (L j )

s(−�κ)−s , as well as (−�κ)s(
∑d

j=1(L j )
s)−1, are

bounded on all L p, 1 < p < ∞. This is true by e.g., [27, Corollary 3.2], since in the
product setting each L j , j = 1, . . . , d, generates a symmetric contraction semigroup.
Then we are left with showing that

‖Ls
j ( f g)‖p � ‖Ls

j f ‖p1‖g‖p2 + ‖Ls
j g‖p1‖ f ‖p2 (4.17)

cf. (3.7). The proof of (4.17) is similar to that of (3.7); thus, we give a sketch when
j = 1. For t ∈ R and x ∈ R

d−1, consider the auxiliary functions fx (t) = f ((t, x))

and gx (t) = g((t, x)). Then, setting w
(1)
κ (x) = ∏d

i=2 wκi (x), we write

‖Ls
1( f g)‖p =

∫
Rd−1

‖Ls
1( fx (·)gx (·))‖p

L p(R,wκ1 )
w(1)

κ (x) dx .
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From this point on, we repeat the steps in the proof of (3.7). Namely, we apply the
fractional Leibniz rule for d = 1 and Hölder’s inequality (for integrals). We omit the
details here. From now on, we focus on proving Corollary 4.3 for d = 1.

Let φ be a function in C∞([0,∞)) supported in [0, 1/4] and such that φ(t) +
φ(t−1) = 1. Setting

T1( f, g)(x) =
∫∫

R2
φ(|ξ2|/|ξ1|)|ξ1 + ξ2|2s D( f )(ξ1)D(g)(ξ2)

E(iξ1, x)E(iξ2, x) w(ξ1)w(ξ2)dξ,

T2( f, g)(x) =
∫∫

R2
φ(|ξ1|/|ξ2|)|ξ1 + ξ2|2s D( f )(ξ1)D(g)(ξ2)

E(iξ1, x)E(iξ2, x) w(ξ1)w(ξ2)dξ

and using Lemma 4.4 with ϕ ≡ 1, we rewrite

(−�κ)s( f g) = T1( f, g) + T2( f, g).

From now on, the proof resembles that of Corollary 3.2 (in fact it is even easier). We
need to prove, for f, g ∈ A, the estimate

‖T1( f, g)‖p ≤ C‖(−�κ)s f ‖p1‖g‖p2 , ‖T2( f, g)‖p ≤ C‖ f ‖p1‖(−�κ)s g‖p2 .

We focus only on the first inequality, as the proof of the second is analogous. For
Re(z) ≥ 0, we set

mz(ξ1, ξ2) = |ξ1 + ξ2|2z

|ξ1|2z
φ(|ξ2|/|ξ1|), ξ ∈ R

2,

so that T1( f, g) = Bms ((−�κ)s f, g). SinceA is preserved under (−�κ)s , our task is
reduced to showing that, for s > 0 it holds

‖Bms ( f, g)‖p ≤ C‖ f ‖p1‖g‖p2 , f, g ∈ A. (4.18)

As in Sect. 3, we are going to apply Stein’s complex interpolation theorem. To do
this, we need to extend Bmz ( f, g) outside of A × A, by allowing g to be a simple
function. This may be achieved by a limiting process. Namely, instead of mz , we
consider mz

ε = mze−ε|ξ |2 . Then,

Bms
ε
( f, g)(x)

:=
∫
Rd

∫
Rd

e−ε|ξ |2φ(|ξ2|/|ξ1|) |ξ1 + ξ2|2z

|ξ1|2z
D( f )(ξ1)D(g)(ξ2)

E(iξ1, x)E(iξ2, x) w(ξ1)w(ξ2)dξ

(4.19)
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converges pointwise to Bms ( f, g) as ε → 0+, whenever f, g ∈ A. Therefore, by
Fatou’s Lemma, to prove (4.18) for Bms it is enough to prove it for each Bms

ε
, ε > 0,

as long as

‖Bms
ε
( f, g)‖p ≤ C‖ f ‖p1‖g‖p2 ,

where C is independent of ε. The gain is that now (4.19) is well defined for g ∈ L2,

in particular it is valid for simple functions.
Let n > 2λκ +6.Then themultipliersmn+iv

ε , j = 1, 2, v ∈ R, satisfyHörmander’s
condition (4.12) of order 2λκ + 6. Thus, using Corollary 4.2 (with d = 1), we obtain

‖Bmn+iv
ε

( f, g)‖p ≤ Cn(1 + |v|)2λκ+2‖ f ‖p1‖g‖p2 , v ∈ R.

Now, Lemma 4.4 applied to ϕ(ξ) = φ(|ξ2|/|ξ1|)e−ε(|ξ |2) implies

Bmiv
ε
( f, g) = (−�κ)iv[Bϕ((−�κ)−iv f, g)

]
.

Thus, using [10, Theorem 4.1] followed by Corollary 4.2 (for the multiplier
φ(|ξ2|/|ξ1|)e−ε(|ξ |2)), we obtain

‖Bmiv ( f, g)‖p ≤ C(1 + |v|)2λκ+2‖ f ‖p1‖g‖p2 , v ∈ R.

By definition

Bmz
ε
( f, g)

=
∫∫

R2

|ξ1 + ξ2|z
|ξ1|z φ(|ξ2|/|ξ1|)e−ε|ξ |2 D( f )(ξ1)D(g)(ξ2)

E(iξ1, x)E(iξ2, x) w(ξ1)w(ξ2)dξ1dξ2.

Hence, for fixed f ∈ A, the family {Bmz ( f, g)}Re(z)>0 consists of analytic operators.
This family has admissible growth, more precisely; for each simple function h, we
have

∣∣〈Bmz ((−�κ)z f, g), h〉L2

∣∣ ≤ C f,g,h,s, |Re(z)| ≤ s.

Consequently, using Stein’s complex interpolation theorem is permitted and leads to
(4.18). The proof of the corollary is thus finished. ��

5 Bilinear Multipliers for Jacobi Trigonometric Polynomials

In this section, we give a bilinear multiplier theorem for expansions in terms of Jacobi
trigonometric polynomials. Contrary to the previous sections, we do not prove a frac-
tional Leibniz rule here. The reason for this is that there is no natural first-order operator
in the Jacobi setting that satisfies a Leibniz-type rule of integer order.
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Let α, β > −1/2 be fixed, and let Pα,β
n be the one-dimensional Jacobi polynomials

of type α, β. For n ∈ N and −1 < x < 1, these are given by the Rodrigues formula

Pα,β
n (x) = (−1)k

2nn! (1 − x)−α(1 + x)−β dn

dxn

[
(1 − x)α+k(1 + x)β+k

]
.

We now substitute x = cos θ, θ ∈ [0, π ], and consider the trigonometric Jacobi
polynomials Pα,β

n (cos θ). This is an orthogonal and complete system in L2(dμα,β),
where

dμα,β(θ) =
(
sin

θ

2

)2α+1(
cos

θ

2

)2β+1
dθ.

Throughout this chapter, we abbreviate L p := L p([0, π ], μα,β) and ‖ · ‖p := ‖ · ‖L p .

Now, settingPn(θ) = Pα,β
n (θ) = cα,β

n Pα,β
k (cos θ),where ‖Pα,β

n (cos ·)‖2 = (cα,β
n )−1

we obtain a complete orthonormal system in L2. Each Pα,β
n is an eigenfunction of the

differential operator

J = J α,β = − d2

dθ2
− α − β + (α + β + 1) cos θ

sin θ

d

dθ
+

(α + β + 1

2

)2;

with the corresponding eigenvalue being (n + α+β+1
2 )2. In what follows we set γ =

(α + β + 1)/2; observe that γ > 0.
In this setting, the spectral multipliers of J 1/2 are given by

μ(J 1/2) f =
∑
n∈N

μ
(
n + γ

) 〈 f,Pk〉L2 Pk .

Ifμ : R+ → C is bounded, thenμ(J 1/2) is a bounded operator on L2. In this section,
the formula (2.6) defining bilinear multipliers becomes

Bm( f1, f2)(θ) = m(J 1/2 ⊗ I, I ⊗ J 1/2)(x, x)

=
∑

n1∈N,n2∈N
m

(
n1 + γ, n2 + γ

) 〈
f1,Pn1

〉 〈
f2,Pn2

〉 Pn1(θ)Pn2(θ). (5.1)

The space A from (2.5) coincides with the linear span of {Pn}n∈N. We prove the
following Coifman–Meyer type multiplier theorem.

Theorem 5.1 Assume that m satisfies Hörmander’s condition (2.2) of order s >

4(α + β) + 15. Then the bilinear multiplier operator given by (5.1) is bounded from
L p1 × L p2 to L p, where 1/p1 + 1/p2 = 1/p, and p1, p2, p > 1. Moreover, the
bound (2.7) is valid.

Remark The theorem implies a Coifman–Meyer type multiplier result for bilinear
multipliers associated with the modified Hankel transform. This follows from a trans-
ference result of Sato [23].
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Proof Once again the proof hinges on Theorem 2.3. We need to verify that L = J 1/2

satisfies its assumptions. The injectivity condition is clear since 0 is not an eigenvalue
of J 1/2. The contractivity assumption (CT) can be inferred from the formula

e−tJ ( f ◦ cos)(θ) = e−t (α+β+1)2/4T α,β
t f (cos θ)

relating the semigroup e−tJ with the semigroup T α,β
t from the Jacobi polynomial set-

ting, as T α,β
t is well known to be Markovian. The condition (WD) is straightforward,

since A is the linear span of Jacobi trigonometric polynomials. The Mikhlin–
Hörmander functional calculus (MH) for J 1/2 (with ρ = 2α + 2β + 13/2) was
obtained in [29, Corollary4.3].

It remains to show (PF). Here we need the following identity

Pn1(θ)Pn2(θ) =
j=n1+n2∑

j=|n1−n2|
cn1,n2( j)P j (θ). (5.2)

The above is well known to hold for general orthogonal polynomials on an interval
contained in R, hence also for P j as they are merely a reparametrization of the Jacobi
polynomials.

We prove that (PF) holds with b = 3. Take f, g ∈ A. Then

f1 =
∑
n1∈N

c1n1Pn1, f2 =
∑
n2∈N

c2n2Pn2 ,

where all but a finite number of c1n, c2n vanish. Denote

Ra,b = {n ∈ N : 2a − γ ≤ n ≤ 2b − γ }.

Since ϕk and ψk are supported in [0, 2k−3] and [2k−1, 2k+1], respectively, we have

ϕk(L)( f1) =
∑

n1∈N : n1+γ≤2k−3

c1n1 ϕk(n1 + γ )Pn1,

whereas

ψk(L)( f2) =
∑

n2∈Rk−1,k+1

c2n2 ψk(n2 + γ )Pn2 .

Now, if n1 + γ ≤ 2k−3 and 2k−1 ≤ n2 + γ ≤ 2k+1, then we must also have

|n1 − n2| ≥ 2k−1 − 2k−3 ≥ 2k−2 and n1 + n2

≤ 2k−3 − γ + 2k+1 − γ ≤ 2k+2 − 2γ.
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Since γ > 0, we see that if |n1 − n2| ≤ n ≤ n1 + n2, then 2k−2 ≤ n + γ ≤ 2k+2.

Consequently, in view of (5.2), the operator ψ̃k(L) leaves invariant each product
Pn1 ·Pn2 , hence, also ϕk(L)( f1) · ψk(L)( f2). The proof of (PF) is thus completed. ��
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