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Abstract
Solar activity affects the heliosphere in different ways. Variations in particles and radiation that impact the Earth’s atmos-
phere, climate, and human activities often in disruptive ways. Consequently, the ability to forecast solar activity across dif-
ferent temporal scales is gaining increasing significance. In this study, we present predictions for solar cycle 25 of three solar 
activity indicators: the core-to-wing ratio of Mg II at 280 nm, the solar radio flux at 10.7 cm—widely recognized proxies 
for solar UV emission—and the total solar irradiance, a natural driver of Earth’s climate. Our predictions show a very good 
agreement with measurements of these activity indicators acquired during the ascending phase of solar cycle 25, represent-
ing the most recent data available at the time of writing.
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1  Introduction

Solar variability refers to variations of solar radiations and 
particles emitted by the Sun. Solar variability occurs across 
all spatial, temporal, and wavelength scales, and it is con-
stantly monitored because it has a significant impact on the 

near-Earth space environment, as well as on the upper and 
lower terrestrial atmosphere (e.g., Bordi et al. 2015; Mat-
thes et al. 2017; Bigazzi et al. 2020; Lockwood and Ball 
2020; Usoskin et al. 2002; Berrilli et al. 2014; Fiandrini 
et al. 2021). The primary driver of solar variability is the 
solar magnetic field, so particular attention is payed to stud-
ying the characteristics of the 11-year cycle, which is the 
most prominent modulation of the magnetic field. During 
this cycle, the Sun’s magnetic activity increases and weak-
ens, leading to a reversal of the dominant polarities in the 
polar regions. As a result, the appearance of the solar sur-
face changes, with an increasing fraction of area covered 
by bright (plages) and dark (sunspots) structures. These 
changes, in turn, modulate the solar irradiance, the radiative 
power per unit area received at the top of the Earth’s atmos-
phere (Petrie et al. 2021). Variations in total solar irradiance 
(TSI—the irradiance integrated over the whole energy spec-
trum) due to magnetic activity result in an overall change of 
approximately 0.1% (e.g., Wilson 1978; Hudson 1988; Kopp 
et al. 2016). However, these changes are not uniform across 
all wavelengths (e.g., Marchenko et al. (2021); Thuillier 
et al. (2022); Criscuoli et al. (2021)), and in some spectral 
bands, such as ultraviolet (e.g., Lovric et al. 2017; Criscuoli 
et al. 2023; Berrilli et al. 2020) or radio flux (e.g., Dudok 
de Wit et al. 2014), they can be much larger. Understand-
ing spectral solar irradiance (SSI—hereafter) variations in 
different spectral bands is essential as SSI variability pro-
duces distinct impacts on our environment. For instance, the 
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extreme-UV (EUV—hereafter) creates disturbances in the 
thermosphere (e.g., Briand et al. 2021) and ionosphere (e.g., 
Floyd et al. 2002) thus affecting satellite orbits and radio-
communications; ultraviolet light affects the production 
of ozone in the Earth’s stratosphere and mesosphere (e.g., 
Haigh 1994; Matthes et al. 2006) while longer wavelengths 
reach the Earth’s surface, heating oceans and thus affecting 
global circulation patterns (Gray et al. 2010). Solar irradi-
ance is among the most prominent natural forcing of the 
Earth’s climate (e.g., Jungclaus et al. 2017; Jing et al. 2021).

Solar activity also modulates the occurrence and fre-
quency of violent and explosive solar phenomena, such as 
flares and coronal mass ejections, which are of great con-
cern to human activities and artificial satellites orbiting the 
Earth. The cycles of solar activity are different from each 
other, with modulations at secular time scales, including 
the existence of Grand Minima (e.g., Vecchio et al. 2019), 
such as the Maunder minimum during the years 1645–1715 
Hathaway (2015), and Grand Maxima periods Usoskin 
et al. (2007). Given the significant impact of solar activ-
ity on human activities and artificial satellites, there is a 
considerable amount of studies concerning the prediction of 
solar behavior. A comprehensive review of various methods 
for predicting solar cycles can be found in Petrovay (2020), 
while Jiang et al. (2023) offers a comparison of several fore-
casts for solar cycle 25th (SC25 from here on).

Typically, forecasting models are used to predict solar 
activity indicators such as SunSpot Number (e.g., McIntosh 
et al. 2020; Singh et al. 2021a), magnetic flux (e.g., Cameron 
et al. 2016; Bhowmik and Nandy 2018; Upton and Hathaway 
2018; Labonville et al. 2019), or geomagnetic indices (e.g., 
Singh et al. 2021a). Recently, Penza et al. (2021) proposed 
a new approach that allows to predict the area coverage of 
sunspots and plages. This approach offers an advantage, 
as these quantities can be used to forecast a range of other 
important activity indices for space weather and climate, 
including spectral and total solar irradiance variability. In 
this paper, we employ precisely such coverages to predict 
the variability during SC25 of three fundamental proxies of 
the solar magnetic activity: the Mg II index at 280 nm (e.g., 
Viereck et al. 2004; Criscuoli et al. 2023; Snow et al. 2019; 
Berrilli et al. 2020), which is a proxy for solar UV radiation, 
the solar radio flux at 10.7 cm (Tapping 2013; Dudok de Wit 
et al. 2014; Selhorst et al. 2014), which is a proxy for solar 
EUV radiation, and the TSI, which, as explained above, is a 
natural forcing of the Earth’s climate (e.g., Mendoza 2005; 
Engels and van Geel 2012; Schmutz 2021).

2 � Prediction of active region coverage 
over cycle 25

The procedure adopted in Penza et al. (2021) to predict 
SC25 activity consists mainly in two steps, here briefly 
summarized: 

1.	 We describe each cycle through a parametric form 
(Volobuev 2009), initially depending on two parameters 
Tdk , related to the duration of the cycle, and Tsk , related 
to its intensity: 

 where T0k represents the start time of the kth cycle. The 
values of these parameters are obtained by fitting sun-
spot and plage composite data published in Mandal et al. 
(2020) and Chatzistergos et al. (2019), respectively, as 
available at the Max Plank Institute site1 at the date of 
December 2021. Both datasets cover a time period from 
the end of the nineteenth century approximately to 2019.

	   It is possible to reduce the number of parameters from 
two to one, as Tdk and Tsk are related to each other by the 
following: 

 The relations in Eq. 2 are consequence of a solar cycle 
behavior known in the literature as Waldmeier effect (e.g., 
Hathaway et al. 1994; Hazra et al. 2015): the stronger the 
cycle ( Tsk smaller), the shorter its duration ( Tdk).

	   The functional form that describes the shape of each 
cycle becomes monoparametric by replacing the Tdk val-
ues in Eq. 2 into Eq. 1.

2.	 We identify an odd–even relationship of the parameters 
Ts2k+1 versus Ts2k for sunspot and plage coverage rela-
tions: 

 where the subscripts o and e denote odd and even, 
respectively. Equation 3 provides the two Ts parameters 
(one for plage, one for sunspots) that can be used to 
predict plage and sunspot area coverages during SC25. 
Both predictions are shown in Fig.  1, together with their 
uncertainties, whose derivation is explained in Penza 
et al. (2021).
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1  http://​www2.​mps.​mpg.​de/​proje​cts/​sun-​clima​te/​data.​html.

http://www2.mps.mpg.de/projects/sun-climate/data.html
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3 � Prediction of activity indices: Mg II 
and radio flux

We use the sunspot and plage area coverage predictions 
described above to predict two magnetic activity indicators: 
the core-to-wing ratio Mg II index at 280 nm and the Radio 
Flux at 10.7 cm.

The Mg II core-to-wing index is computed by using the 
definition given in Yeo et al. (2014):

where E(�, t) is the spectral irradiance at the time t. Assum-
ing that variations of the Mg II index are modulated only by 
bright structures (Lean et al. 1997), we can rewrite Eq. 4 as:

where �f  indicates the coverage fraction of faculae, I the 
integral of intensity, while the subscripts (f) and (q) indicate 
facular and quiet contributions, respectively. If we factor out 
the Iq terms, we obtain

where �core and �wing are the relative contrasts of the intensity 
at the core and in the wings, respectively, between facular 
and quiet regions, and Mg IIq is the value of the index during 
a period of minimum. Following Penza et al. (2022), we treat 
�
core and �wing as free parameters and derive them by fitting 

the Mg II(t)

Mg IIq
 expression with the Bremen Mg II composite 

(4)Mg II(t) = 2
∫ 281

279
E(�, t)d�

∫ 277

276
E(�, t)d� + ∫ 283

284
E(�, t)d�

,

(5)Mg II(t) = 2
�f (t)I

(core)

f
+ [1 − �f (t)]I

(core)
q

�f (t)I
(cont)

f
+ [1 − �f (t)]I
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q

,

(6)
Mg II(t)

Mg IIq
=

�f (t)�
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�f (t)�
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,
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Fig. 1   Prediction of plage coverage (top panel) and sunspot coverage 
(bottom panel). The shadow green area defines the lower and upper 
limits

Fig. 2   Comparison between 
Mg II index reconstruction and 
Bremen data composite
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data.2 By choosing Mg IIq = 0.1499, which is the Mg II 
index value at the minimum between the 21st and the 22nd 
c y c l e s ,  w e  f i n d  �

(core) = 3.708 ± 0.007  a n d 
�
(wing) = 1.312 ± 0.006 . These values are in a reasonable 

agreement with wing and core contrast values obtained with 
spectral syntheses (Fontenla et al. 2011; Criscuoli et al. 
2023). The contrast value found for faculae is actually 
slightly higher, as a result of our model not distinguishing 
between facular and network contributions.

The Mg II index reconstructed using the fit in Eq. 6 is 
shown in Fig. 2, while the prediction, obtained combining 
the fitted contrast values with the predicted area coverage of 
faculae, is shown in Fig. 3. The prediction is also compared 
with the Bremen Mg II index measured during the ascending 
phase of SC25. The shaded area represents uncertainties in 
the prediction obtained by propagating the error relative to 
the alone coverage �f  , the error of the contrast coefficients 
being much smaller. This is the case also for the following 

reconstructions. The plot shows a very good agreement 
between our forecast and the measurements.

Using a similar approach, we can reconstruct and predict 
the solar radio flux at 10.7 cm F10.7 . In this case, the para-
metric expression is:

where F(10.7)
q

 is the radio flux measured at a period of mini-
mum. Unlike in the case of the Mg II index, for the radio 
emission we have taken into account the contribution of both 
faculae and sunspots (whose area coverages are represented 
by �f  and �s , respectively), and their contrast is modeled 
using a single parameter �10.7 as both features contribute 
positively. That is because the emission at 10.7 cm arises 
mainly from strong magnetic field regions in the chromo-
sphere and transition region, morphologically associated 
with the plage, but also from sunspots (e.g., Foukal 1998; 

(7)
F(10.7)(t)

F
(10.7)
q

= [�f (t) + �s(t)]�
(10.7) + 1,

Fig. 3   Prediction of the Mg II 
index for SC25 and Bremen 
data composite, smoothed using 
a gaussian kernel of one month. 
The shaded area represents 
uncertainties in the prediction
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Fig. 4   Comparison between 
radio flux reconstruction and 
CLS time series at 10.7 cm, 
smoothed using a gaussian 
kernel of one month
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2  Available at https://​lasp.​color​ado.​edu/​lisird/​data/​bremen_​compo​
site_​MgII/.

https://lasp.colorado.edu/lisird/data/bremen_composite_MgII/
https://lasp.colorado.edu/lisird/data/bremen_composite_MgII/
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Tapping 1987; Bastian et al. 1996; Schmahl and Kund 1995; 
Singh et al. 2021b).

The value of the �10.7 parameter is obtained by fitting 
Eq. 7 with the CLS Solar Radio Flux at 10.7 cm time series.3 
By using F(10.7)

q
 = 64.1 (solar flux unit), which is the value 

of the radio flux at the minimum between the 18th and 19th 

cycle, we find �(10.7 cm) = 36.37 ± 0.01 . The reconstructed 
and predicted F10.7 values are shown in Figs. 4 and 5, respec-
tively. Even for the radio flux we find that our prediction 
agrees with measurements obtained during the rising phase 
of SC25 within the uncertainties of the model.

Fig. 5   Prediction of the solar 
radio flux at 10.7 cm for solar 
cycle 25 and CLS time series 
at 10.7 cm, smoothed using a 
gaussian kernel of one month 
bandwidth
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Fig. 6   Comparison between 
TSI reconstruction and PMOD 
composite
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Fig. 7   Prediction of the TSI for 
solar cycle 25. The predicted 
irradiance values were increased 
by 1.07 W/m2 to reconcile them 
with TSIS/TIM measurements
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3  Available at https://​lasp.​color​ado.​edu/​lisird/​data/​cls_​radio_​flux_​
f107.

https://lasp.colorado.edu/lisird/data/cls_radio_flux_f107
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4 � Prediction of TSI

The TSI along the 25th cycle is predicted by using the equa-
tion and the parameters derived by Penza et al. (2022):

where Cn is a constant and represents the product between 
the network contrast and the network coverage when the 
facular coverage is zero, �(TSI)

fn
 is a linear combination of 

network and facular relative contrast, while �(TSI)
s

 is the sun-
spot relative contrast. The values for the three parameters 
found in Penza et al. (2022) by fitting Eq. 8 with the PMOD 
TSI  composi te 4 a re :  Cn = 1.31 × 10−3 ± 6 × 10−5 , 
�
(TSI)

fn
= 0.027 ± 0.004 and �(TSI)

s
= −0.17 ± 0.06 . The cor-

responding TSI reconstruction and prediction are reported 
in Figs. 6 and 7, respectively. The TSI prediction is com-
pared to TSIS/TIM observations.5 The agreement is rather 
good, after correcting the prediction by 1.07 W/m2 , as 
expected from the analysis presented in Montillet et al. 
(2022).

5 � Conclusions

In this work, we have presented a method to predict solar 
activity indices such as the Mg II core-to-wing ratio at 280 
nm, the radio Flux at 10.7, and total solar irradiance for 
SC25. The method is obtained from the forecast of sunspot 
and plage areas described in Penza et al. (2021). The adopted 
approach is parametric, which makes possible to reconstruct 
magnetic activity indicators and solar irradiance for past 
epochs as well as to make future predictions. The procedure 
is based on an empirically derived relation (Eq. 3) between 
the strength of odd and even cycles, which is in agreement 
with the Gnevyshev–Ohl rule (Gnevyshevl and Ohl 1948) 
stating that the strength of an even cycle is lower than the 
strength of the subsequent odd cycle.

We have compared our forecasts with observations 
acquired during the rising phase of SC25, which are the 
latest observations available at the time of the writing of 
this paper. We have found that our predictions present in 
general a very good agreement with the observations. The 
TSI is slightly underestimated. This could indicate that the 
sunspot prediction is slightly overestimated and/or that the 
different dataset used for comparison (TSIS/TIM instead 
PMOD composite) would have required a slightly different 
value of �s value.

(8)ΔF(t) = Cn + �f (t)�
(TSI)

fn
+ �s(t)�

(TSI)
s

,
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