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Abstract
NH2-UIO66 (NU) is a promising photocatalyst for the reduction of Cr(VI) to low-toxic Cr(III) driven by visible light under 
ambient conditions. However, the main limitation in this process is the inefficient ligand to metal charge transfer (LMCT) of 
photo-excited electrons, which is caused by inherent energy gap (ΔELMCT). This study synthesized the defective NU (NUX-
H, where X is the molar equivalent of the modulator) with reduced ΔELMCT through linkers removal via acid treatment. The 
electronic structure of NUX-H was systematically investigated, and the results indicated that the structural defects in NUX-H 
strongly altered the environment of the Zr atoms. Furthermore, they substantially lowered the energy of the unoccupied d 
orbitals (LUMO), which was beneficial to efficient LMCT, resulting in an improved photocatalytic activity of NUX-H toward 
high-concentration (100 mg/L) Cr(VI) reduction. Compared to NU with defect-free structure, the reducing rate of Cr(VI) 
was increased by 47 times. This work introduced an alternative strategy in terms of designing efficient photocatalysts for 
reducing Cr(VI) under ambient conditions.
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Introduction

Due to the negative impacts of such a practice on human 
health and the ecological environment, the discharge of 
heavy metals from various industrial processes into water 
has attracted increasing attention worldwide [1–3]. As one 
of the most environmentally hazardous heavy metals, the 
widely used hexavalent chromium [Cr(VI)] can be com-
monly found in the wastewater originating from various 
industrial processes, such as electroplating, metal finishing, 
and leather tanning [4–6]. Cr(VI) is difficult to degrade and 

easy to accumulate in organisms via the food chain, resulting 
in gene mutation and the canceration of humans and animals 
even under slight exposure due to its high carcinogenicity 
and solubility [7–9]. Various techniques have been adopted 
to remove Cr(VI) from wastewater, including chemical pre-
cipitation [10], electrochemical processing [11], adsorption 
[12], and membrane filtration [13]. Among these techniques, 
the photocatalytic reduction of Cr(VI) into low-toxic Cr(III) 
is one of the most promising technologies because of its 
energy efficiency, high efficiency, and environmental friend-
liness [14, 15]. However, most photocatalysts, such as TiO2 
[16], ZnO [17], C3N4 [18] and WO3 [19], exhibit limited 
abilities to reduce Cr(VI) due to their narrow visible light 
adsorption, poor Cr(VI) adsorption uptake, and low charge 
carrier separation efficiency [20]. To achieve high Cr(VI) 
reduction efficiency under visible light, a strategy of design-
ing and synthesizing of efficient and economical photocata-
lysts is highly desired.

Metal–organic frameworks (MOFs), which represent 
an emerging class of versatile porous material, are con-
structed through the coordination bonds between organic 
linkers and inorganic metal nodes (metal ions or clusters) 
[21, 22]. Organic linkers in MOFs can generally serve 
as antennas, and harvest light could make them behave 
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as semiconductors via the ligand to metal charge trans-
fer (LMCT) process, thus proving that MOFs can be an 
interesting platform for a broader range of photocatalytic 
applications [23–25]. In terms of the photocatalytic pro-
cess, the inherent energy gap (ΔELMCT) of pristine MOFs 
is involved in the usage of energy to induce photo-excited 
electrons to transfer from the linker to a metal node’s 
unoccupied d orbital (LUMO), and thus serves as the 
main influencing factor that ensures the efficiency of 
electronic transfers in the LMCT process [26]. Hence, 
reduced ΔELMCT is required to achieve efficient LMCT 
and enhance photocatalytic activity. Actually, only lim-
ited kinds of pristine MOFs have been used to perform 
photocatalytic Cr(VI) reduction with undesirable activity. 
This is because high energy is required to overcome the 
positive potential of ΔELMCT, which in turn, efficiently 
transfers photo-excited electrons to the metal nodes from 
the organic linker.

One of the strategies to decrease ΔELMCT and facilitate 
photocatalytic activity is through the use of mixed organic 
linkers or through the addition of another transition metal. 
However, the metal atoms/clusters are fully coordinated 
and insufficiently exposed as active sites, which can 
compromise the process [27, 28]. Defect engineering by 
removing a number of linkers is the alternative way to 
optimize the electronic structure of MOFs and improve 
the photocatalytic Cr(VI) reduction activity, but remain 
rarely unexplored [29].

In the current study, NH2-UIO66 was chosen as a rep-
resentative type of MOFs due to its remarkable tunability, 
extraordinary visible light response, and excellent thermal 
stability. To obtain effective LMCT and enhance pho-
tocatalytic activity, defective NH2-UIO66-X–H (NUX-
H) with missing linkers through removing a number of 
2-aminoterephthalic acid (HATA) linkers from the pris-
tine NH2-UIO66 and combining modulated synthesis 
using benzoic acid (HBC) as the modulator with acid 
treatment (Fig. 1a). In comparison to the pristine NU, 
higher surface area and larger pore volume of NUX-H 
were obtained with more linkers when per Zr node was 
removed. The loss of ligands led to the unsaturated coor-
dination of Zr metal, which in turn, increased the expo-
sure of the Zr atoms and acted as the active adsorption 
sites in photocatalytic Cr(VI) reduction. Furthermore, the 
change in electronic environment of the Zr atoms sub-
stantially lowered the energy of the d orbitals, resulting 
in an efficient LMCT. Therefore, the optimal defective 
NU12-H exhibited outstanding stability and activity in 
Cr(VI) reduction. This was characterized by the synergis-
tic effects of adsorption and photocatalysis under visible 
light, by which the Cr(VI) reduction efficiency was about 
47 times higher than that of pristine NU.

Experimental

Preparation of Defective NH2‑UIO66‑X‑H

ZrCl4 (1.0  mmol), 2-aminoterephthalic acid (HATA, 
1.0 mmol), and different equivalents of benzoic acid HBC 
(6, 12, 18, and 24 mmol) were dissolved in DMF (60 mL). 
This mixture was transferred to a 100 mL Teflon-lined 
stainless steel autoclave and heated in an oven at 110 °C for 
24 h. The obtained solids were purified by DMF and ethanol 
and then dried. The resulting solids were acid treated with 
1 mol/L HCl for 30 min, after which they were centrifuged, 
washed with water, and then dried under vacuum at 110 °C 
to obtain defective NH2-UIO66-X-H powders. These were 
denoted as NUX-H.

Photocatalytic Reduction of Cr(VI)

In brief, 50 mg catalyst was added to a home-made reactor 
with 50 mL mixture chromium solution (100 mg/L Cr2O7

2−, 
pH ~ 3 controlled by HCl). After reaching the adsorp-
tion–desorption equilibrium, the photocatalytic reaction 
was initiated by a Xe light with a 420 nm cut-off filter. The 
Cr(VI) concentration was analyzed at given time intervals by 
a UV spectrophotometer (UV 7502/PC) at the characteristic 
wavelength, from which the reduction yield was calculated.

Characterization

The crystal structure of the as-made samples was stud-
ied by X-ray diffraction (XRD, D/MAX-2000 with Cu 
Kα radiation), and the morphology analysis was per-
formed by field emission scanning electron micros-
copy (FESEM, HITACHI S4800). The UV–Vis diffuse 
reflectance spectra (DRS) were measured by a UV–Vis 
spectrophotometer (UV–Vis DRS, Shimadzu UV-2450). 
The Barrett–Joyner–Halenda (BJH) model was used to 
calculate pore volume (Vp) and pore diameter (dp), and 
the Brunauer–Emmett–Teller (BET) method was used to 
calculate the specific surface area (SBET). X-ray photo-
electron spectroscopy (XPS, PHI 5000 Versaprobe II) was 
employed to determine the surface electronic states. The 
Fourier transform infrared spectra (FT-IR) were obtained 
on an AVATAR 370 FT-IR spectrometer. The solid state 
C NMR analysis was conducted using Bruker AVANCEIII 
400 MHz. The photoelectrochemical measurements were 
carried out in a conventional three-electrode, single-
compartment quartz cell on an electrochemical station 
(CHI 660D). A bias voltage of 0.5 V was used to drive 
the transfer of photogenerated electrons from the working 
electrode to the platinum electrode. A Na2SO4 aqueous 
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solution (0.50 mol/L) was used as the electrolyte. A 300 W 
Xe lamp with a UV filter (λ > 420 nm) was used as the 
visible light source; this was positioned 10 cm away from 
the photoelectrochemical cell. Electrochemical Imped-
ance Spectroscopy (EIS) tests were carried out at the bias 
voltage of 0.3 V and recorded over a frequency range of 
0.01–1 × 105 Hz with the amplitude of 5 mV.

Results and Discussion

The crystal structures of both defective NUX-H and pris-
tine NU were studied by XRD, as shown in Fig. 1b. No 
obvious adding peaks were observed, and all NUX-H 
showed similar XRD patterns with NU, thus indicating 
that their crystallinity well-remained after the linkers were 
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removed by acid treatment. The scanning electron micros-
copy (SEM) image (Fig. 1f–h) showed that NUX-H pos-
sessed regularly octahedral crystal with an average length 
of 100 nm, confirming that the crystal structure is main-
tained even after acid treatment.

Thermogravimetric analysis (TGA) was adopted to inves-
tigate the degree of structural defects in NUX-H (Fig. 1c). All 
NUX-H samples exhibited two remarkable weight loss steps 
with the same tendency as that of NU. The weight loss within 
30–320 °C can be mainly attributed to the evaporation of DMF 
and H2O, both of which were adsorbed in NU. The second 
weight loss step at the range of 400–500 °C corresponded to 
the loss of HATA with the collapse of the NU as well as the 
residual Zr metal nodes as the form of ZrO2 in the frameworks. 
The rate of weight loss gradually decreased with the increasing 
value X, indicating that the incremental defects were created 
in NUX-H with the removal of more coordinated HBC during 
the acid treatment.

To further demonstrate the successful removal of HBC in 
NUX, the amounts of HBC in NU12 before and after acid 
treatment by C NMR spectra (Fig. S1). Results revealed that, 
compared with NU12, the peaks corresponding to HBC were 
absent in NU12-H, suggesting that the HBC serving as the 
modulator in NUX can be completely removed by acid treat-
ment. The SBET of the NUX increased from 409 to 712 m2/g, 
whereas the pore volume did not change significantly (Fig. 
S2a). Upon the removal of HBC, the SBET of NUX-H further 
increased to 1106 m2/g, and the pore volume increased from 
0.49 to 0.72 cm3/g (Fig. 1d, Table 1), suggesting that the miss-
ing links in the pore space led to high SBET and increased 
defects in the NU [30]. Furthermore, the presence of defects 
had a significant influence on the light absorption capability 
of NU. As shown in Fig. S2b and Fig. 1e, all NUX exhibited 
inferior visible light response due to the limited visible absorp-
tion of HBC (Fig. S3), which served as the shielding of visible 
light, thus reducing visible light transmission. Two absorption 
bands at around 280 and 380 nm, respectively, with enhanced 
intensity were observed in NUX upon the removal of HBC. 
These indicated the slight improvement in the light harvest-
ing ability of NUX-H due to the larger pore volume and the 
elimination of the shield effect.

In order to estimate the influence of defects on photocata-
lytic performance of NUX-H, the photocatalytic reduction 
Cr(VI) experiments were conducted in aqueous solution with 
the initial concentration of 100 mg/L under visible light irra-
diation. The adsorption abilities of Cr(VI) in different samples 

were first studied before the photocatalytic experiments 
(Fig. 2a). As expected, all the defective NUX-H showed higher 
adsorption capacities than NU, with the adsorption efficiency 
gradually improving with the increased defect amount. Com-
pared with NUX-H, all NUX with high surface areas showed 
poor adsorption activities (Fig. S4). This finding indicated that 
the high-adsorption property of NUX-H was not only related to 
their surface area, but also attributed to the formation of bared 
Zr nodes in the HBC removal process, which in turn, acted as 
the adsorption sites, thus enhancing Cr(VI) adsorption in an 
acidic solution. On the contrary, there was a negligible change 
in the Cr(VI) concentration for NU, indicating that NU had 
slight adsorption behavior due to the smaller surface area and 
the lack of adsorption sites. The Cr(VI) adsorption ability of 
photocatalysts plays a vital role in their photoreduction. There-
fore, the outstanding adsorption capacity of NUX-H demon-
strates its potential use in photocatalytic Cr(VI) reduction.

Our previous studies demonstrated that the Cr(VI) reduc-
tion rate could be enhanced in acid solution due to the low 
reduction potential energy of Cr(VI)/Cr(Ш) [31–34]. Thus, 
the photocatalytic performance test of Cr(VI) reduction 
over NUX-H was conducted at pH = 3. This was evaluated 
by monitoring the UV–Vis spectra toward the Cr(VI) char-
acteristic absorption peak at 350 nm after achieving the 
adsorption equilibrium [35]. Apparently, both NU and NUX 
exhibited limited photocatalytic performance of Cr(VI) 
reduction (Fig. S4). In comparison, Cr(VI) removal with 
higher efficiency was achieved under the same condition 
with the HBC removed by acid treatment, indicating that 
the introduction of defects could enhance the photocatalytic 
activity of NUX-H. In particular, the photocatalytic activ-
ity of NUX-H improved first and then slightly decreased 
with the increase in the amount of defects, thus presenting 
a volcano-type trend with increasing structural defects. A 
similar phenomenon was also observed in photocatalytic H2 
production by Ma [36], in which the defective NH2-UIO66 
modulated by HOAc was used. The result suggested that the 
amount of defects served as an important factor affecting 
the photocatalytic performance of NUX-H. Furthermore, an 
appropriate amount of defect proved to be critical in achiev-
ing optimal photocatalytic Cr(VI) removal efficiency.

The linear kinetic curves of Cr(VI) reduction were fitted 
according to the quasi second-order dynamic equation. As 
shown in Fig. 2d, the NU12-H exhibited the highest Cr(VI) 
reduction rate, and the rate constant was calculated to be 
0.83961 min−1, which corresponded to 47 times higher than 
that of pristine NU (Fig. 2e). These suggest that the photo-
excited electrons of NU12-H could transfer more easily from 
linker (HATA) to Zr nodes than those of pristine NU, thus 
resulting in enhanced activity.

The optimal photocatalyst NU12-H was further applied to 
reduce Cr(VI) with different Cr(VI) concentrations at a pH 
value of 3. The results (Fig. 2c) showed that almost 100% 

Table 1   Structural parameters of different samples

Item NU NU6-H NU12-H NU24-H

SBET (m2/g) 490 980 1090 1106
Vp (cm3/g) 0.49 0.59 0.64 0.72
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Cr(VI) was removed within 10 min due to the excellent 
adsorption capacity of NU12-H when the concentration of 
Cr(VI) was 50 mg/L. More importantly, NU12-H still dis-
played high photocatalytic Cr(VI) reduction efficiency even 
when Cr(VI) concentration was as high as 150 mg/L. The 
photocatalytic stability of NU12-H was investigated by suc-
cessively working without special treatment, except washing 
and drying after each worked. As described in Fig. 2f, the 
higher removal efficiency of Cr(VI) was maintained after 
repeating five times; no obvious decay of catalytic activity 
and light absorption was observed, and the structure was 
also preserved (Fig. S5), suggesting that NU12-H possessed 
excellent recyclability. The above results suggested that 
NU12-H had good photocatalytic activity and outstanding 
stability, indicating their positive application prospects in 
the treatment of industrial wastewater with high concentra-
tion of Cr(VI).

In this study, Mott–Schottky plots were employed to 
further study the band structure of NU at the frequency of 
1000 Hz, with the aim of deeply understanding the photocat-
alytic mechanism of defective MOFs. As shown in Fig. 3a, 
both NU and NU12-H exhibited positive slopes according 
to the characteristic of n-type semiconductors [37, 38]. The 
values of the flat band potential of both NU and NU12-H 
based on the curves of the Mott–Schottky plots were esti-
mated to be − 0.45 V and − 0.5 V, respectively, versus those 
of Ag/AgCl, which corresponded to − 0.41 V and − 0.46 V 

versus NHE, respectively. The LUMO of NU12-H was more 
negative than that of NU, indicating that the missing link-
ers altered the environment of the Zr atoms (as determined 
by FT-IR in Fig. S6) and substantially lowered the energy 
of the unoccupied d orbitals (LUMO). These are consistent 
with the findings of Arthur using time-dependent density-
functional theory calculations [39]. Importantly, the negative 
LUMO can strongly decrease the ΔELMCT, thus facilitating 
an efficient LMCT process. Furthermore, the photogen-
erated electrons more easily migrated to the adsorbed 
Cr(VI), which was proved to be more favorable for Cr(VI) 
photoreduction.

Photocurrent and EIS measurements were also conducted 
to investigate the charge transfer and separation behaviors of 
defective NUX-H. As shown in Fig. 3b,c, defective NUX-H 
exhibited higher photocurrent density and smaller arc radius 
than those of NU under the same conditions. Moreover, the 
Photoluminescence (PL) spectral intensities of defective 
NUX-H were lower than those of NU (Fig. 3d), implying 
that the defective structure reduced the ΔELMCT and led 
to efficient LMCT. In turn, this resulted in higher separa-
tion efficiency and lowered recombination rate. Among all 
defective NUX-H, NU12-H presented the highest charge 
separation efficiency. This indicates that the optimal level 
of defective structure is critical to the efficient transfer of 
photo-excited charge.
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Conclusion

In this work, an efficient photocatalyst with outstanding 
stability, the defective NH2-UIO66 (NUX-H) with miss-
ing linkers was synthesized via post-synthetic acid treat-
ment. The defective structures were verified by N2 adsorp-
tion–desorption isotherm, TGA, and solid state C NMR. The 
results showed that defective NUX-H possessed both higher 
SBET and larger pore volume than NU with a defect-free 
structure. In addition, NUX-H with the optimized level of 
defects exhibited the highest photocatalytic activity in high-
concentration Cr(VI) reduction. Due to the efficient LMCT 
caused by the creation of defects, the reduction rate as high 
as 0.83961 min−1 was 47 times higher than that of NU.

Moreover, the mechanism of the significant enhanced 
efficiency of charge transfer was systematically investigated 
via Mott–Schottky plots, transient photocurrent response, 
and EIS Nyquist plots. The results showed that the intro-
duction of defects by missing linkers can lead to an efficient 
LMCT process due to the reduced ΔELMCT, which improved 
the photocatalytic performance of Cr(VI) reduction. This 
work introduced an alternative strategy to designing effi-
cient photocatalysts, which is expected to offer a sustainable 
application in both Cr(VI) reduction and Cr(III) removal 

from the aqueous phase when combined with adsorption, 
photo-electrocatalysis, and membrane separation.
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