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Abstract
Most inverse reservoir modeling techniques require many forward simulations, and the posterior models cannot preserve

geological features of prior models. This study proposes an iterative static modeling approach that utilizes dynamic data for

rejecting an unsuitable training image (TI) among a set of TI candidates and for synthesizing history-matched pseudo-soft

data. The proposed method is applied to two cases of channelized reservoirs, which have uncertainty in channel geometry

such as direction, amplitude, and width. Distance-based clustering is applied to the initial models in total to select the

qualified models efficiently. The mean of the qualified models is employed as a history-matched facies probability map in

the next iteration of static models. Also, the most plausible TI is determined among TI candidates by rejecting other TIs

during the iteration. The posterior models of the proposed method outperform updated models of ensemble Kalman filter

(EnKF) and ensemble smoother (ES) because they describe the true facies connectivity with bimodal distribution and

predict oil and water production with a reasonable range of uncertainty. In terms of simulation time, it requires 30 times of

forward simulation in history matching, while the EnKF and ES need 9000 times and 200 times, respectively.

Keywords History-matched facies probability map � Training image rejection � Iterative static modeling �
Channelized reservoirs � Multiple-point statistics � History matching

1 Introduction

For reliable decision-making in the petroleum industry,

reservoir characterization is implemented to estimate the

distribution of reservoir parameters of interest. Conventional

reservoir characterization uses static and dynamic data in

consecutive order. After initial reservoir models are gener-

ated from static data, they are simulated to predict reservoir

performance, which should be compared with observed data.

Dynamic data are used to modify initial models to minimize

the difference in reservoir performance. Here, static data

such as core data and well logs have a constant value with

time, while dynamic data vary with time such as 4D seismic

data and well oil production rate (WOPR).

In the case of static data, they represent reservoir

parameters at certain location (hard data) or are closely

related to them (soft data). These types of data are applied to

build prior reservoir models via geostatistical methods. On

the other hand, dynamic data are assimilated by inverse

algorithms because dynamic data are indirectly related to

reservoir parameters. In the case of channelized reservoirs, it

is hard to generate reliable reservoir models by geostatistics
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and inverse modeling due to the following issues (Wang and

Li 2011; Hou et al.2015; Kim et al. 2016a; Jo et al. 2017;

Jung et al. 2017; Kang et al. 2017; Lee et al. 2017a): First,

reservoir performances are complicated by a unique pattern

of sand facies. Second, a histogram of reservoir properties

has a bimodal distribution, not Gaussian distribution,

because there is a stark contrast in the properties between

sand and background facies.

To replicate the spatial connectivity of channelized sand

facies, multiple-point statistics (MPS) are more appropriate

than two-point statistics (TPS) (Strebelle 2002). The two

statistics need spatial information, hard data, and soft data

as input data. Here, hard data mean direct information

about the reservoir parameters such as core and well log

data, whereas soft data are indirect information such as

facies probability and vertical proportion. The main dif-

ference between the two statistics is how spatial relation

can be represented. Training image (TI) and variogram are

used for MPS and TPS, respectively. TI contains a geo-

logical concept from the interpretation of the depositional

environment, while variogram is based on mathematical

calculations of spatial correlation (Journel 2002).

One of the advantages in MPS over TPS is that condi-

tional probability from TI is easily coupled with soft data

through the tau model (Kashib and Srinivasan 2006). TI

gives an approximate pattern of facies distribution, while

soft data provide constraint for each grid. However, if there

are no available seismic data and sufficient geological

interpretation, it is difficult to determine channel geometry

for TI. This is why the previous studies used several TIs to

consider uncertainty in a geological concept (Jafarpour and

McLaughlin 2009; Scheidt and Caers 2009a, b; Lorentzen

et al. 2012; Lee et al. 2013b, 2016). Therefore, character-

ization of TI and soft data is crucial, since the reliability of

MPS highly depends on their quality.

Recently, a new paradigm has arisen where geostatistical

input parameters are obtained by dynamic data (Agbalaka

and Oliver 2011; Jafarpour and Khodabakhshi 2011; Astra-

kova and Oliver 2014; Tavakoli et al. 2014; Sebacher et al.

2015; Chang et al. 2016; Lee et al. 2017b; Kim et al. 2017).

Conventional history matching is to characterize model

parameters of interest, but updated models cannot preserve

static information because inverse algorithms may ignore

given hard data, soft data, and geological concept (Jafarpour

and Khodabakhshi 2011; Hu et al. 2013; Hou et al. 2015;

Satija et al. 2017). To solve this problem, updated models

from inverse modeling are used to generate pseudo-static

data which are coupled with static data given to rebuild

reservoir models. This procedure has the same effect as

history matching because regenerated models are based on

both static data given and history-matched static data.

This novel approach still depends on the results of

inverse algorithms to generate pseudo-static data. In other

words, this iterative static modeling can give a meaningful

result only if the inversion results are reliable. However, it

is difficult with channelized reservoirs to ensure the relia-

bility of the inversion results (Kim et al. 2016b; Lee et al.

2014). Furthermore, it causes a heavy burden on simulation

time during inverse algorithms and extensive iterations

(Queipo et al. 2002; Kang et al. 2016; Kim et al. 2016c).

In this research, we propose a novel iterative static

modeling scheme for channelized reservoirs, which have

uncertainty in channel geometry. For each iteration, global

facies probability from TI is managed by TI rejection and

local facies probability is updated by history-matched soft

data. According to TI rejection and the soft data, three

strategies are tested in two channelized reservoir cases to

optimize the iterative static modeling.

2 Methodology

2.1 Procedure of the proposed method

A conventional workflow of reservoir characterization is

shown in Fig. 1. After initial reservoir models are built

from static data by geostatistics, they are simulated by the

reservoir simulator. Observed dynamic data are compared

with simulated dynamic performance, and the difference is

minimized by an inverse algorithm until the convergence

criteria is satisfied. Finally, all updated models are simu-

lated again to predict future reservoir performance.

In the case of the proposed method, after initial models

are generated, geostatistics is implemented iteratively

instead of an inverse modeling (Fig. 2). During iterative

static modeling, history-matched facies probability data are

generated and some unsuitable TIs are discarded for further

iterations. In detail, initial reservoir models are generated

using given hard data and all TIs, but regenerated reservoir

models are built using hard data given, chosen TI(s), and

pseudo-soft data.

To reject TI and generate pseudo-soft data, we adapt the

concept of clustering and simulation procedure in Lee et al.

(2017b) (Fig. 2). This concept can select facies models,

which have similar production with observed data, among

hundreds of facies models with the minimum number of

forward simulations. Briefly, initial or regenerated facies

models are grouped into similar models by a distance-

based method (Fig. 3c). In this research, the Hausdorff

distance, multi-dimensional scaling (MDS), and k-means

clustering are used and verified the suitability in Sect. 2.4.

After the clustering, a representative model for each cluster

is implemented for reservoir simulation instead of all the

models. The best representative model, which has the

lowest root mean square (RMS) error between simulated

and observed dynamic data, is determined (Fig. 3d).
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Finally, the facies models surrounding the best model in

the metric space are selected (Fig. 3e), and the mean of

them becomes pseudo-soft data or final models (Fig. 2).

To combine facies probability data with a probability

from TI, the tau model is used as follows Eq. (1) (Journel

2002):

P FjTI; SDð Þ ¼ 1

1þ x
ð1Þ

x

a
¼
�
b

a

�s1�c
a

�s2

;

x ¼ 1� P FjTI; SDð Þ
P FjTI; SDð Þ ; a ¼ 1� P Fð Þ

P Fð Þ ;

b ¼ 1� P FjTIð Þ
P FjTIð Þ ; c ¼ 1� P FjSDð Þ

P FjSDð Þ

where F represents the event of occurrence of a certain

facies. TI stands for the probability from the TI for given

well data, while SD means pseudo-soft data. s is a

weighting on the information from the TI and facies

probability map. If s2 is greater than s1, the probability

from TI has less influence than pseudo-soft data.

In Lee et al. (2017b), there is no uncertainty in TI (one

TI) and iteration concept. In this research, various TIs are

utilized to consider uncertainty in channel geometry.

Whenever facies models are regenerated, TIs are rejected

according to the proportion of TIs, which is used to build

the selected facies models. Furthermore, a proper practice

to generate pseudo-soft data is proposed in this research.

Forward simulation

Static modeling (MPS)

Input data:
TIs, well data

Static modeling
(geostatistics)

Forward simulation:
all models

Estimate uncertainty
quantification of future

productions

Updating static models:
integration of production

data
(inverse modeling)

Converge?

Forward simulation:
all updated

reservoir models

Yes

No

Fig. 1 The workflow of a conventional reservoir characterization.

Green and blue colors stand for static modeling and reservoir

simulation, respectively. A conventional reservoir characterization

requires inverse modeling with forward simulation for all possible

reservoir models

Input data:
TIs, well data

Static modeling
(geostatistics)

Clustering with
distance-based method

Estimate uncertainty
quantification of future

productions

Selection of models
nearby the best

representative model

The best representative:
the lowest RMS with

true production

Forward simulation:
only the selected

(qualified) reservoir
models

(final models)

Converge?

Facies probability map:
mean of the selected

(qualified) models

Yes

No

TI rejection

Forward simulation

Static modeling (MPS)

Clustering and
simulation

Forward simulation:
only representative 

models

Static modeling
(geostatistics):

Three strategies
(1) No TI rejection
& unified soft data
(2) TI rejection &

separated soft data
(3) TI rejection &
unified soft data

Fig. 2 The flowchart of the proposed method. Green and blue colors

stand for static modeling and reservoir simulation, respectively. A

gray-dashed rectangle means iterative clustering and simulation. The

proposed method does not use an inverse algorithm and requires few

reservoir simulations. Three strategies are tested to find the best

implementation for integration of the following two concepts: TI

rejection and pseudo-facies probability map
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2.2 Three strategies for iterative static modeling

We test three strategies for iterative static modeling, which

are distinguished by the usage of TI rejection and the form

of pseudo-soft data (Table 1). The strategy 1 does not

adopt a TI rejection scheme, which means that all TIs are

used during iteration of geostatistics. In other words, the

identical number of facies models is generated from each

TI. The same approach was used by Park et al. (2013).

The strategies 2 and 3 use a TI rejection scheme, which

means that facies models are generated in proportion to the

number of the qualified models for each TI. For example,

200 initial models are generated, which consist of 100 from

TI 1 and 100 from TI 2. After the clustering and simulation

(a)  MPS (b)  Hausdorff distance & MDS (c)  k-means clustering
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Fig. 3 The procedure for the selection of models in metric space

using the distance-based clustering. a Hundreds of initial models are

generated by multi-point geostatistics. b Each model can be assigned

coordinates by distance (Hausdorff equation) and dimension reduc-

tion (multi-dimensional scaling). c Initial models are grouped by a

clustering algorithm (k-means clustering), and models belonging to

the same group appear in the same color. d Production from centroid

models (gray lines) is compared with observed data (red line), and the

best-fit model (black line) can be chosen. e Qualified models (red

dots) are selected nearby the best centroid model

Table 1 Three strategies for iterative static modeling

Strategy Ensemble ratio for TIs History-matched pseudo-soft data

1 The same ratio for all TIs (no TI rejection) Average of all qualified models for all TIs (unified soft data)

2 Proportion of TI used for generating qualified models (TI

rejection)

Average of qualified models derived from the same TI (separated soft

data)

3 Proportion of TI used for generating qualified models (TI

rejection)

Average of all qualified models for all TIs (unified soft data)
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procedure, 10 qualified models originate by 6 from the TI 1

and 4 from the TI 2 (Fig. 4a). When making 200 new facies

models for next iteration, 120 and 80 models are generated

from the TI 1 and TI2, respectively (same proportion to TI

ratio in qualified models). If all qualified models are chosen

from only the TI 1, 200 new facies models are generated

from the TI 1 only, which means that the TI 2 is excluded.

Strategies 2 and 3 differ in the way of generating

pseudo-soft data. Strategy 2 distinguishes the qualified

models based on TI and generates the separated soft data

for each TI. For example, the mean of the 6 models from

the TI 1 becomes pseudo-soft data for the TI 1 and the

mean of the 4 models from the TI 2 is utilized as the soft

data for the TI 2 (Fig. 4c). However, strategy 3 makes the

unified soft data using all 10 qualified models regardless of

the TIs (Fig. 4b). Strategy 1 also follows the same practice

with strategy 3 for the soft data.

Iteration of static modeling ends when one of the fol-

lowing convergence criteria is satisfied. First, only one TI

is left and all facies models are generated by the TI. Sec-

ond, the RMS error of the previous and the current pseudo-

soft data becomes less than a certain value, a. The RMS is

calculated from the following equation [Eq. (2)]:

RMSPf
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ngrid

XNgrid

i¼1

Pc
f;i � P

p
f;i

n o2

vuut ð2Þ

where Pf;i means facies probability at the ith grid and Ngrid

is the number of grids. The superscripts c and p represent

current and previous, respectively. In this research, a of 3.5

is set empirically because RMS values in Tables 6 and 10

are about 3.5 when the strategies 2 and 3 are converged by

the first convergence criterion. The convergence of the

strategy 1, which does not use the TI rejection concept, can

be judged based on the RMS value even though the con-

vergence of the strategies 2 and 3 is determined by both

criteria.

Strategies 1 & 3

Qualified (selected) models from the initial models
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Fig. 4 Definition of pseudo-soft data from the qualified models for

the three strategies. a Analyzing TI used to create the qualified

models. (The six models in the red box and the four models in the

blue box are generated by TIs 1 and 2, respectively.) b A unified soft

data (mean of all qualified models) in strategies 1 and 3. c Separated

soft data for each TI (mean of the six models for TI 1 and mean of the

four models for TI2) in strategy 2
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2.3 Synthetic channelized reservoir cases

In this research, the proposed method is applied to two

synthetic cases. Examples A and B have the same geo-

logical parameters except for channel geometry for TIs

(Table 2). The channelized reservoirs have a 25 9 25 9 1

grid system with an inverted nine-spot waterflooding.

These settings for the synthetic cases have been similarly

used in previous studies (Jafarpour and McLaughlin 2009;

Scheidt and Caers 2009a; Wang and Li 2011; Lee et al.

2013a).

Both examples assume that the geological concept is not

confirmed due to the lack of geological information and

there is uncertainty in TI. Example A has uncertainty in the

orientation of the channel pattern and Example B contains

uncertainty in width and amplitude of channels as shown in

Tables 3 and 4, respectively. For Example A, there are 4

TIs, which consist of vertical (TI 1), 45� (TI 2), horizontal
(TI 3), and 135� (TI 4) (Fig. 5a). Fifty initial facies models

are generated using each TI with well data in Table 2. At

this stage, the channel pattern of each ensemble is set in the

direction of Table 3. Figure 5b shows one model from each

TI, and it maintains the direction of TI used. Note that

facies probability map is not available for initial models.

In the case of Example B, 4 TIs have the same vertical

channel pattern but the channel width and amplitude are set

differently as shown in Table 4. The TIs 2 and 3 have

larger amplitude and wider width than the TI 1, respec-

tively (Fig. 6a). In the worst case, the TI 4 has both larger

amplitude and wider width than the TI 1. Fifty initial

models are built by each TI and one model from each TI

follows the features of its TI (Fig. 6b). For both examples,

the total number of initial and regenerated models is 200.

The reference field in Fig. 7a is built by the parameters

in Table 2 with the default TI in Figs. 5a and 6a. The true

field has three vertical channel streams and has the con-

nection between the production well P6 and the injection

well I9. This field is assumed as the reference field for both

examples. In the case of observed dynamic data, WOPRs

from the eight production wells are obtained with the

parameters in Table 5 by a commercial reservoir simulator,

ECLIPSE 100. In the case of permeability, isotropy is

Table 2 Geological parameters

for the static data integration by

geostatistics

Parameters Values

TI Grid system 250 9 250 9 1

Grid size, ft Dx= Dy= Dz= 10

Pattern Orientation, � Uniform (-10, 10)

Amplitude, ft Triangular (50, 80, 100)

Width, ft Constant (50)

Wavelength, ft Triangular (500, 800, 1000)

SNESim Grid system 25 9 25 9 1

Grid size, ft Dx= Dy= Dz= 30

Hard data Sand facies for all wells

Search template Nodes 60

Ranges (min, max) = (300, 300)

Facies ratio (sand, shale) = (0.6, 0.4)

Table 3 Uncertainty for orientation of channel geometry in Example A

Parameters TI 1 (default) TI 2 TI 3 TI 4

Orientation of pattern, � Triangular (-10, 10) Triangular (35, 55) Triangular (80, 100) Triangular (125, 145)

Table 4 Uncertainty for width and amplitude of channel geometry in Example B

Parameters TI 1 (default) TI 2 TI 3 TI 4

Width, ft Constant (30) Constant (30) Constant (50) Constant (50)

Amplitude, ft Triangular (50, 80, 100) Triangular (80, 100, 120) Triangular (50, 80, 100) Triangular (80, 100, 120)

Bold indicates the different values from the default case (TI 1)
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assumed in the x and y directions. It is assumed that WOPR

data are observed every 20 days up to the current time of

900 days (Fig. 7b). There are 360 observation data: mul-

tiplying the 8 production wells and the 45 observation time

steps. The standard deviation for the observation data is set

to 0.01 STB/day. The production wells P2, P6, and P7

show a sharp decrease in WOPR about 200 days because of

fast water breakthrough due to the connectivity between

the water injection well and the production wells. Channel

characterization is very important for the prediction of

reservoir performances because fluid movement is domi-

nant in channelized sandstone rather than background

shale.

For the proposed method, the three strategies in

Sect. 2.2 are tested in Example A and the best strategy is

examined in Example B. Also, the standard ensemble-

based methods, ensemble Kalman filter (EnKF) and

ensemble smoother (ES), are applied to both examples for

comparison. We verify the result of the proposed method in

view of facies distribution, permeability histogram, pro-

duction predictions on the existing production wells and a

newly drilled production well, and simulation time.

2.4 Verification of the distance-based method

The proposed technique assumes that the facies models,

which are classified in the same group in Fig. 3c, are

similar to each other. Figure 8 shows the validity of the

Hausdorff distance and verification of the clustering

method for facies models. When the distance-based clus-

tering is applied to the 200 initial facies models in Example

A, similar facies distribution is found among the nearby

facies models in the metric space (Fig. 8a). Therefore, the

center (representative) model can represent the models in

the same group, and the closest models from the best center

model can be selected for low RMS models (qualified

models) with the reference model (Fig. 3e).

The Hausdorff distance has been verified as a proper

concept of a similarity measure for channelized reservoirs

in the previous research (Suzuki and Caers 2008; Suzuki

et al. 2008; Lee et al. 2013a, 2016, 2017b). After simu-

lating the initial models to obtain production data such as

WOPR and well water cut (WWCT), the variogram of the

production data can be calculated as a function of the

Hausdorff distance. If the variogram has a clear structure

model rather than a pure nugget model, it stands for spatial

TI 4 (135°)TI 1 (default) TI 3 (180°)

Sand facies Background faciesNorth = 0 degree, East = 90 degrees

TIs (uncertainty in channel orientation)

TI 2 (45°)

TI 1 TI 2 TI 3 TI 4

Example of model for each TI
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Fig. 5 Training images and corresponding model in Example A. a Four TIs have a different channel orientation. b One model among fifty initial

models from each TI (total 200 models)
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correlation between the production data and the distance

concept (Suzuki and Caers 2008). In this research, the

Hausdorff distance is a proper distance concept because the

variogram of WOPR and WWCT has a certain structure

(Fig. 8b, c). The x- and y-axes are calculated as follows

Eq. (3):

Experimental variogram; y-axis

¼ 1

2Nm

XNm

m¼1

XNd

k¼1

qk Mið Þ � qk Mj

� �� �2 !
ð3Þ

TI 1 (default) TI 2 (amplitude) TI 3 (width) TI 4 (amplitude & width)

Sand facies Background facies

TIs (uncertainty in channel amplitude and width)

Example of model for each TI
TI 1 TI 2 TI 3 TI 4
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Fig. 6 Training images and corresponding model in Example B. a Four TIs have a different channel orientation. b One model among fifty initial

models from each TI (total 200 models)
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Fig. 7 The reference field and observed dynamic data for Examples A and B. a Facies distribution of the reference field with eight production

wells and a single injection well at the center. b Oil production rates from the production wells until 900 days (observed data used)
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Average of the Hausdorff distance; x-axis ¼ 1

Nm

XNm

m¼1

Hm

The Hausdorff distance; Hm Mi;Mj

� �
¼ max d Mi;Mj

� �
; d Mj;Mi

� �� �
;

d A;Bð Þ ¼ max
a2A

min
b2B

ka� bk

where Nm means the number of pairs of facies model,

which satisfy given lag distance. Hm is the Hausdorff dis-

tance of the pairs. q(Mi) stands for production data from the

ith facies model Mi, and Nd indicates the number of

observed production data. For example, in Fig. 8b, the

second point from the left has 68.08 ft and

399,820 STB2/day as the Hausdorff distance and experi-

mental variogram of WOPR, respectively. It is calculated

from 33 pairs of facies models, which have a Hausdorff

distance from 65 to 70 ft.

3 Example A

3.1 Characterization of channel connectivity

The mean of the initial log-permeability models does not

have a distinct connectivity in Fig. 9b because the initial

facies models are generated from the 4 TIs in Fig. 5a. In

the case of the ensemble-based methods in Fig. 9c, d, the

red and blue colors are clearly distinguished but the mean

fields are quite different from the reference field in Fig. 9a.

Above all, they lose connectivity of sand facies and have

high permeability values only near the wells.

When the histogram of the mean fields is examined in

Figs. 10c and d, the ensemble-based methods have over-

and undershooting values. Although the ES significantly

reduces the number of forward simulations over the EnKF

due to the global update of dynamic data, it deepens the

problem. For example, the largest permeability value of the

result from the ES is greater than 7.78 9 1011 mD, while

the smallest value is less than 1.74 9 10-7 mD: both

values are physically unrealistic. Also, the histograms

follow a Gaussian distribution, not the bimodal distribution

in the reference field (Fig. 10a) due to the inherent

assumption in the ensemble-based methods. These results

clarify the problem of conventional inverse algorithms

mentioned in Sect. 1 because they do not consider the

geological meaning of reservoir parameters. It has been

reported that this problem can be solved by techniques such

as localization in many studies (Watanabe and Datta-Gupta

2012; Luo et al. 2018; Jung et al. 2018). Since this research

is not a study to improve the ensemble-based method, only

the standard ensemble-based methods are used as a com-

parison of the proposed method.

The three strategies for the proposed method, iterative

static modeling with pseudo-soft data and TI rejection, give

the results in Figs. 9e–g and 10e–g. At first, Tables 6 and 7

show the termination of the iteration for the three strate-

gies. RMSPf
value is steadily decreased for all strategies in

Table 6. The RMSPf
value at the first iteration from

strategies 2 and 3 is higher than the value from strategy 1

because the new models from the two strategies are quite

different from the initial models. However, the value

decreases sharply at the second iteration. The iteration of

strategies 1 and 3 ends at the third iteration because RMSPf

is less than 3.5, the convergence criterion. In the case of the

strategy 2, it stops iterative static modeling at the second

iteration, although it has RMSPf
of 3.61, since TI has

converged as shown in Table 7.

Regardless of the strategies in the proposed method,

initial models are built from all TIs equally. As mentioned

above, the strategy 1 generates 50 new models from each

TI during iteration, but the other two strategies construct

new facies models according to a certain ratio. The number

of models from each TI is proportional to the qualified

models in the previous step as explained in Sect. 2.2.

These differences result in final models in Fig. 9. The

result of the strategy 1 has three vertical connectivities and

shows the connection between the production well P6 and

Table 5 Petrophysical parameters for the reservoir simulation

Parameters Values

Initial conditions Pressure, psi 2000 at 2700 ft

Oil–water contact depth,

ft

3000

Initial porosity, fraction 0.3

Water saturation, fraction 0.1

Permeability, mD Sand facies 2000

Background facies 20

Oil formation volume factor, rb/STB 1.012 at 0 psig

1.011 at 1000 psig

1.01 at 2000 psig

Water formation volume factor, rb/STB 1 at 2000 psig

Water compressibility, 1/psi 5.00E-07

Viscosity of fluid,

cP

Oil 3

Water 1

Density of fluid,

lb/ft3
Oil 48.623

Water 62.313

Rock compressibility, 1/psi 3.00E-05 at

2000 psig

Well constraint Injection well: rate,

STB/day

400

Production well: BHP,

psi

500
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the injection well (Fig. 9e). Its histogram has a bimodal-

like distribution in Fig. 10e. However, there is a huge

uncertainty in the left area in the mean field, which indi-

cates the variety of facies distribution in the final models. It

results from usage of all TIs during iterative static mod-

eling. It demonstrates the importance of a proper TI for

MPS algorithms even though soft data can guide a local

facies probability.

The final models from the strategies 2 and 3 have similar

facies distribution with the reference field (Fig. 9f, g), and

their histograms overcome the Gaussian problem in the

ensemble-based methods (Fig. 10f, g). Technically, the

results from the strategy 3 show better performance

because the connection between the production well 6 and

the injection well is clear, and the facies ratio in the his-

togram is similar to the reference field.

Insufficient results in the strategy 2 are caused by biased

soft data for iterative static modeling in the early stage. The

first-qualified models in Fig. 4a, which are chosen from the

initial models, have much uncertainty because the initial

models are generated with the 4 TIs and without integration

of dynamic data. The reference field in Fig. 9a has mainly

vertical channel streams (TI 1 in Fig. 5a) and 45� con-

nection between the production well P6 and the injection

well (TI 2 in Fig. 5a). Therefore, the first-qualified models

consist of six models from the TI 1 and four models from

the TI 2 (Fig. 4a). If pseudo-soft data are generated for the

TIs 1 and 2 separately, the vertical TI is coupled with the

vertical trend soft data and the 45� TI is used with the 45�
trend soft data (Fig. 4c). This strategy 2 intensifies biased

trends during iterative static modeling, and regenerated

models can have improper facies distribution if the geo-

logical information is incorrect or has high uncertainty.

The strategy 3 uses unified soft data in Fig. 4b, and it

mitigates the robust tendency of the separated soft data in

Fig. 4c.
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a Three models in the same cluster have similar facies distribution by

the distance-based clustering. b Hausdorff distance has a relationship

with WOPR in variogram. c Hausdorff distance has a relationship

with WWCT in the variogram
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When we make a close investigation to the final models

from the strategies 2 and 3 in Fig. 11, the effect of soft data

can be detected. In the case of the strategy 3, the final

models have vertical connections with the 45� connection

and there is a triangular background facies on the lower left

(Fig. 11b). However, some of the final models from the

strategy 2 give discontinued facies connections at the

bottom left (Fig. 11a). The breaks are found between the
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Fig. 9 Log-permeability of the reference field and the mean of log-

permeability models in Example A. a Permeability distribution in the

reference field. b Mean of 200 initial models (no channel trend).

c Mean of updated models by ES. d Mean of updated models by

EnKF. e Mean of updated models by strategy 1 in the proposed

method. f Mean of updated models by strategy 2 in the proposed

method. g Mean of updated models by strategy 3 in the proposed

method

The reference field Initial models Ensemble smoother

Fr
eq

ue
nc

y

Ensemble Kalman filter

Strategy 1 Strategy 2 Strategy 3

400

300

200

100

0
-6 -3 0 3 6 9 12

150

100

50

0
-6 -3 0 3 6 9 12

200

150

100

50

0
-6 -3 0 3 6 9 12

250

200

150

100

50

0
-6 -3 0 3 6 9 12

250

200

150

100

50

0
-6 -3 0 3 6 9 12

300

200

100

0
-6 -3 0 3 6 9 12

150

100

50

0
-6 -3 0 3 6 9 12

Permeability, log-mD

Fr
eq

ue
nc

y

Permeability, log-mD

Fr
eq

ue
nc

y

Permeability, log-mD

Permeability, log-mD

Fr
eq

ue
nc

y

Permeability, log-mD

Fr
eq

ue
nc

y

Permeability, log-mD

Fr
eq

ue
nc

y

Permeability, log-mD

Fr
eq

ue
nc

y

(a) (b) (c)

(e) (f) (g)

(d)

Fig. 10 Histogram of the mean of log-permeability models in

Example A. a Bimodal distribution of permeability in the reference

field. b Mean of initial models. c Mean of updated models by ES.

d Mean of updated models by EnKF. e Mean of updated models by

strategy 1 in the proposed method. f Mean of updated models by

strategy 2 in the proposed method. g Mean of updated models by

strategy 3 in the proposed method
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production well P6 and the injection well and between well

P7 and the injection well in the biased soft data (Fig. 4c).

Therefore, the unified soft data can guide the local channel

distribution properly rather than the separated soft data.

That means the strategy 3 is a best-fit practice for the

iterative static modeling.

Table 7 The number of facies

models per TI for total 200

models in Example A

Strategy TI Initial Iteration 1 Iteration 2 Iteration 3

1 Ratio 1:1:1:1 1:1:1:1 1:1:1:1 1:1:1:1

Number of models 50:50:50:50 50:50:50:50 50:50:50:50 50:50:50:50

2 Ratio 1:1:1:1 6:4:0:0 10:0:0:0 –

Number of models 50:50:50:50 120:80:0:0 200:0:0:0 –

3 Ratio 1:1:1:1 6:4:0:0 9:1:0:0 10:0:0:0

Number of models 50:50:50:50 120:80:0:0 180:20:0:0 200:0:0:0

Table 6 RMS between the mean of the qualified models in Example

A

Strategy Initial Iteration 1 Iteration 2 Iteration 3

1 – 5.02 4.08 3.35

2 – 6.17 3.61 –

3 – 6.15 3.70 3.36

Sand facies Background facies

Sand facies Background facies

Strategy 2 (total 2 iterations)
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Fig. 11 The final models selected from the strategies 2 and 3 in Example A. Yellow and blue color mean sand and background facies,

respectively. a The final updated models by strategy 2 in the proposed method. b The final updated models by strategy 3 in the proposed method
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3.2 Uncertainty quantification in production
forecasts

The final models in the previous section are implemented

using ECLIPSE 100 to predict the reservoir productions up

to 1800 days. Even though only WOPR up to 900 days is

utilized for history matching, we compare both WOPR and

WWCT in Fig. 12. The red line for each figure indicates

the true production from the reference field. The gray lines

are the prediction of each model, such as initial and final

models, and the average of the gray lines is marked in the

blue line. The band of the gray lines at a certain time stands

for the uncertainty range. Here, the production wells P4

and P6 are investigated because there is a complex facies

distribution near the wells in the reference field.

The predictions from the initial models have a wide

uncertainty range (Fig. 12a) because they are not integrated

with observed dynamic data. Also, the average (the blue

line) deviates from the true production trend due to

uncertainty in the channel direction of the TIs. Especially,

there are wide uncertainty ranges for WWCTs. In the case

of the ES and EnKF, although the uncertainty ranges are

reduced by the integration of dynamic data, the predictions

are quite unreliable, such as WCT for both P4 and P6 wells

(Fig. 12b, c), even worse than the result of the initial

models. It results from the wrong updated models in Figs. 9

and 10. Example A is a very challenging inverse problem

for the ensemble-based method because of the bimodal

distribution and uncertainty in the TIs, which cause initial

ensemble design issues (Jafarpour and McLaughlin 2009;

Lee et al. 2013b, 2016).

All strategies for the proposed method demonstrate

better predictions than both the initial models and ensem-

ble-based methods (Fig. 12d–f). In the case of WWCT, the

strategies 1 and 2 still have wide uncertainty ranges, even

though the average can predict water breakthrough time

and overall tendency properly. However, the predictions of

the final models from the strategy 3 converged to the true

productions with narrow bands. Also, they form a band of

predictions without ensemble collapse problem, which all

models become almost same after history matching. It is a

natural result because the final models of the strategy 3 in

Fig. 11b look similar to the reference field.

In the case of the proposed method and initial models,

WWCTs increase sharply in the early stages because the

injected water prefers to flow through high-permeability

channel facies. However, water breakthrough time from

both the ES and EnKF is delayed due to the Gaussian

distribution (Fig. 12c). They fail to describe the fluid

behavior of channel reservoirs with a bimodal distribution.

This is why many previous studies have used transform

techniques for the ensemble-based methods for channel-

ized reservoir characterization.

If the integration of dynamic data is successful, the

updated or final models can be utilized for making a

decision on future development of the reservoir. Therefore,

they are tested for the prediction of a newly drilled pro-

duction well P9 in Fig. 13a, which starts production after

900 days, at the end of history matching. The well P9 is set

at the location of (18, 22), and the operational constraint is

the lowest bottom-hole pressure (BHP) of 500 psi.

Figure 13a shows the distribution of water saturation of

the reference field at 900 days. The distribution is similar

to the connectivity of sand facies because the injected

water mainly moves through high-permeability sand facies.

Therefore, understanding the channel distribution is critical

to predict the performance of the new well P9. In the case

of the initial models without any calibration, they have

very diverse predictions and most of them start to produce

water immediately at 900 days (Fig. 13b). It results from

an overestimation of the channel connection between the

injection well and the lower right of the field. The EnKF

and ES cannot give a reliable prediction (Fig. 13c, d),

which may lead to wrong decisions, because of the over-

and undershooting problems and Gaussian distribution of

the updated models.

The proposed method represents the movement of the

injection water of the new well properly because it main-

tains the bimodal distribution with reasonable facies dis-

tribution. The strategy 1 makes meaningful WWCT

predictions with significantly reduced uncertainty range

compared to the initial models and the ensemble-based

techniques (Fig. 13e). In the case of the strategies 2 and 3,

water breakthrough time is predicted with a very high

reliability (Fig. 13f, g). Also, its uncertainty is appropriate

to provide a rational basis for decision-makings. For

example, we can decide the location of an infill well based

on these credible results. The outstanding success of the

proposed method is proven through the facies distribution,

its histogram, the preexisting production wells, and the

infill well.

In addition to the reliability of static and dynamic data

integration, the proposed method can reduce the number of

dynamic simulations drastically compared to the ensemble-

based methods (Table 8). The ES requires simulated

WOPR for each initial model to compare with the true

WOPR during history matching. After that, dynamic sim-

ulation for each updated model is needed to predict future

productions. Therefore, the number of forward simulations

from the ES is 400 in total. The EnKF demands many more

forward simulations for history matching because it

assimilates model parameters every dynamic data acqui-

sition time. In this case, the EnKF requires 9000 ECLIPSE

runs for history matching, which is the product of total
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models (200) and the number of dynamic data acquisitions

(45).

However, the proposed method needs less than 30 for-

ward simulations for history matching (Table 8). Only the

center models are required to predict WOPRs for each

iteration due to the distance-based clustering (see Fig. 2).

The simulation number for history matching in the strategy

2 is less than the number in the strategies 1 and 3 because it

stops iteration at the early stage due to the biased soft data

(Table 7). The proposed method requires only 20 simula-

tions in the prediction step (Table 8) as the below reasons.

Instead of simulating all 200 regenerated models at the last

iteration, 10 simulations for the center models are needed

to find the final models. Then, future reservoir perfor-

mances are predicted by only the final 10 models.

bFig. 12 Predictions of WOPR and WWCT on the production wells P4

and P6 up to 800 days in Example A. Gray and blue lines indicate

results of individual ensembles and mean of them, respectively. The

red line means the true production from the reference field, and the

vertical black line stands for the end of assimilation time. a Initial

ensembles with wide uncertainty. b ES with filter divergence

problem. c EnKF with improper uncertainty. d Strategy 1 in the

proposed method. e Strategy 2 in the proposed method. f Strategy 3 in

the proposed method
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Fig. 13 Water saturation of the reference field and prediction of the

newly drilled well P9’s WWCT in Example A. a Distribution of water
saturation in the reference field at 900 days and location of the new

well P9 which is located between the production wells P7 and P8.

b Initial ensembles with wide uncertainty, c ES with filter divergence

problem. d EnKF with wide uncertainty. e Strategy 1 in the proposed

method. f Strategy 2 in the proposed method. g Strategy 3 in the

proposed method

Table 8 The number of forward simulations for the ensemble-based

methods and the proposed method in Example A

Procedure ES EnKF Strategies 1 and 3 Strategy 2

History matching 200 9000 30 20

Prediction 200 200 20 20

Total 400 9200 50 40
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Therefore, the proposed method is a very efficient

methodology to integrate static and dynamic data and to

estimate uncertainty ranges over the conventional methods.

4 Example B

4.1 Characterization of channel connectivity

Example B deals with the uncertainty in width and

amplitude of channels (Fig. 6). The direction is fixed as

vertical, which is an uncertainty parameter in Example A

(Fig. 5). The mean of the initial log-permeability models in

Fig. 14b has a more clear facies distribution of high per-

meability than the mean of the initials in Fig. 9b. It shows

that the channel direction in TI has a more critical effect on

the reservoir models than width and amplitude.

In this example, the two ensemble-based methods are

used again for comparison with the proposed method. In

the case of the ES, the mean field has scattered facies

distribution and is quite different from the true model

(Fig. 14c). Especially, histogram of the result has extreme

permeability values (max: 6.9211 9 1021 mD, min:

5.381 9 10-18 mD) in Fig. 15c. The mean of the updated

models from the EnKF (Fig. 14d) has distinct vertical

connections. It is a much better result than the result in

Fig. 9d because both the uncertainty in TIs and initial

ensemble design issue are relieved. Even though the ES is

much faster than the EnKF (Table 8), EnKF shows much

better performances than ES from the standpoint of an

inverse stability. However, the result of the EnKF still

cannot detect a detailed facies distribution such as the

connection on the lower left area (Fig. 14d). Also, its his-

togram fails to preserve a bimodal distribution even if the

over- and undershooting problems in the ES is settled down

(Fig. 15d).

In the case of the proposed method, the strategy 3 is

applied to this example because it shows the best perfor-

mance in the previous example. Figure 16 shows the mean

of the qualified models for each iteration. When the con-

cept of the clustering and simulation in Fig. 2 is applied to

the initial models, the qualified models are listed in

Fig. 16e. They consist of five models from the TI 1, two

models from the TI 2, and three models from the TI 3.

Therefore, 200 new models for iteration 1 are constructed

with unified soft data with 100 models, 40 models, and 60

models from the TI 1, TI 2, and TI 3, respectively

(Table 9). It can be seen that the amplitude has a slightly
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Fig. 14 Log-permeability of the reference field and the mean of log-

permeability models in Example B. a Permeability distribution in the

reference field. b Mean of 200 initial models (vertical channel trend).

c Mean of updated models by ES. d Mean of updated models by

EnKF. e Mean of updated models by strategy 3 in the proposed

method
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greater effect on TI of channelized reservoirs than the

width. The TI 4 is rejected at the initial stage because it is

the most different TI from the true TI. The TI 2 becomes

excluded at the first iteration, and the TI 3 also falls off at

the second iteration, sequentially (Table 9).

Finally, the TI 1 (the true TI) generates 200 new models

with the soft data from the second iteration (Fig. 16c) for

the third iteration. The qualified models at the third itera-

tion in Fig. 16f originated from the TI 1, of course. As TI

converges, the iteration can be stopped and the qualified

models become the final models. When the final models in

Fig. 16f are compared with the qualified models from the

initial stage in Fig. 16e, facies distribution has converged

to have a specific tendency. It is a natural result because the

soft data are assimilated by dynamic data and are inte-

grated with static data given. Therefore, the mean of the

final log-permeability models is quite similar to the true

field (Fig. 14e), and its histogram can preserve a bimodal

distribution of the channelized reservoirs (Fig. 15e).

Figure 16a stands for the mean of the qualified models

in Fig. 16e from the initial models. This unified soft data is

integrated for iterative static modeling to generate 200 new

models for the first iteration. The mean of the qualified

models is changed from Figs. 16a–d, which becomes more

and more converged and similar to the facies distribution of

the reference field. RMSPf
, the difference between the

current and previous mean fields, is gradually decreased

during the iteration (Table 10) as facies distribution is

determined. Finally, RMSPf
becomes less than the thresh-

old value, 3.5, at the third iteration.

4.2 Uncertainty quantification in production
forecasts

The final models in Fig. 16f are implemented through the

reservoir simulator to predict WWCT up to 1800 days.

WWCTs are compared with the results in Example A,

which are the existing production wells P4 and P6 in

Fig. 12 and the new production well P9 in Fig. 13. The y-

axis in Fig. 17 is the ratio of simulated WWCT to the true

WWCT at the end of the prediction time (1800 days). The

black horizontal dotted line indicates the true WWCT. The

x-axis consists of the initial models, the ensemble-based

methods, and the three strategies in both examples. For

example, the box plots of the Example A’s initial models

(Ex.A_Initial) are further from the black line than the ones

of the Example B’s initial models (Ex.B_Initial) due to the

higher uncertainty of channel geometry (Fig. 17).

In terms of the existing production wells, WWCTs of

the production well P6 have larger uncertainties than those
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Fig. 15 Histogram of the mean of log-permeability models in

Example B. a Bimodal distribution of permeability in the reference

field. b Mean of initial models. c Mean of updated models by ES

(Gaussian distribution). d Mean of updated models by EnKF

(Gaussian distribution). e Mean of updated models by strategy 3 in

the proposed method (bimodal distribution)
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of the production well P4 (Fig. 17a, b) because the con-

nectivity between P6 and the injection well is a critical

feature in the reference field. If the connection is not

considered, the WWCT of P6 must be underestimated

compared to the true WWCT at 1800 days. Therefore,

most cases in Fig. 17b predict lower than 1, which means

smaller simulated WWCTs than the true values. In the case

Table 9 The number of facies

models per TI for total 200

models in Example B

TI Initial Iteration 1 Iteration 2 Iteration 3

Ratio 1:1:1:1 5:2:3:0 8:0:2:0 10:0:0:0

Number of models 50:50:50:50 100:40:60:0 160:0:40:0 200:0:0:0

Table 10 RMS between the mean of the qualified models in Example

B

Parameters Initial Iteration 1 Iteration 2 Iteration 3

RMS – 6.17 3.62 3.40

Initial models Iteration 1 Iteration 2 Iteration 3

3

Sand facies

Background facies

Generated from TI 1

Generated from TI 2

Generated from TI 3

Qualified (selected) models in the initial models

Final models (selected models in the third Iteration)
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Fig. 16 Changes in the qualified models and soft data from the

strategy 3 in Example B. a Mean of the qualified models among all

initial models. b Mean of the qualified models among the first

regenerated models, c Mean of the qualified models among the

second-regenerated models. d Mean of the qualified models among

the third-regenerated models. e The qualified models among all initial

models [used for (a)]. f The qualified models among the third-

regenerated models [used for (d)]
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Fig. 17 The box plots of WWCT at 1800 days for the existing wells

(P4 and P6) and newly drilled well (P9) in Examples A and B. The

horizontal black line stands for the true value, and production from

eight cases are compared with the true production. a WWCT of

production well P4. b WWCT of production well P6. c WWCT of

production well P9

Petroleum Science (2019) 16:127–147 145

123



of the ES and EnKF, the results give completely wrong

WWCTs for both existing wells even though it takes much

more time to integrate dynamic data than the proposed

method.

For the proposed method, the importance of the TI

rejection scheme can be seen from the box plots of the

strategy 1. They show better performance than the

ensemble-based methods but still have too wide an

uncertainty because the strategy 1 uses all TIs during the

iteration. However, the strategies 2 and 3 in Example A and

the strategy 3 in Example B reduce the uncertainty range

significantly, and they can reflect the true WWCT. Also,

uncertainty ranges for the new well are wider than ones of

the existing wells because the new well is not included for

determining soft data. Nevertheless, the proposed method

can provide a trustworthy WWCT for decision-making.

5 Conclusions

In this research, a novel idea, iterative static modeling

using history-matched soft data, is proposed and success-

fully applied to synthetic channelized reservoirs. The three

strategies are tested to optimize the iteration procedure for

the following two issues: usage of a TI rejection

scheme and the unified or separated soft data. The iteration

can be terminated according to the convergence of the TI

or soft data. The distance-based clustering, which consists

of the Hausdorff distance, MDS, and k-means clustering, is

utilized to reduce the number of forward simulations.

We use several TIs to reflect the uncertainty in channel

geometry. Example A deals with the effect of channel

direction, and Example B considers the effect of channel

amplitude and width. Among the parameters for channel

geometry, the facies distribution and reservoir perfor-

mances are influenced by the order of direction, amplitude,

and width. In Example A, the unified soft data with TI

rejection, the strategy 3, shows the best performance

compared to the strategies 1 and 2. The concept of TI

rejection can manage global trend of channel streams such

as main channel direction. The unified soft data can miti-

gate the effect of biased information in the separated soft

data at the early iteration.

The proposed method solves the problems in the con-

ventional inverse algorithms. The strategy 3 for both

examples can make a reliable facies distribution and con-

serve static data given such as bimodal distribution, facies

ratio, hard data, and geological concepts in TI. The stan-

dard ensemble-based methods, ES and EnKF, fail to

characterize channel fields and show over- and under-

shooting problems. From the standpoint of simulation time,

the proposed method has an advantage over the ES and

EnKF. In the case of the strategy 3, it requires only 30

times of forward simulation for history matching, while the

EnKF and ES need 9000 times and 200 times, respectively.

The performances of the production wells are predicted

from the updated models using the ensemble-based meth-

ods and the final models using the proposed method.

WWCTs of the updated models from the ES and EnKF

cannot mimic a sharp increase after water breakthrough

due to a Gaussian distribution. Even if the ensemble-based

methods take a long time for history matching, the pre-

dictions may lead to erroneous decisions because they give

even worse predictions than the ones from initial models,

which use static data only. However, the final models from

the proposed method can provide reliable predictions with

reduced uncertainty for both the existing production wells

and the newly drilled production well.

From the result of the strategy 1, the significance of TI

in MPS is confirmed once again because soft data such as a

facies probability map can provide information about the

guideline level only. If the quality of TI is very low, setting

tau1 to be less than tau2 may increase the effect of pseudo-

soft data over TI on facies modeling.
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