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Abstract
Both prostate-specific membrane antigen (PSMA)- and somatostatin receptor (SSTR)-targeted positron emission tomography 
(PET)-based imaging agents for prostate carcinoma and neuroendocrine tumors, respectively, are seeing rapidly expanding 
use. In addition to diagnostic applications, both classes of radiotracers can be used to triage patients for theranostic endora-
diotherapy. While interpreting PSMA- or SSTR-targeted PET/computed tomography (CT) scans, the reader has to be aware 
of certain pitfalls. Adding to the complexity of the interpretation of those imaging agents, both normal biodistribution, and 
also false-positive and -negative findings differ between PSMA- and SSTR-targeted PET radiotracers. Herein summarized 
under the umbrella term molecular imaging reporting and data systems (MI-RADS), two novel RADS classifications for 
PSMA- and SSTR-targeted PET imaging are described (PSMA- and SSTR-RADS). Notably, PSMA- and SSTR-RADS are 
structured in a reciprocal fashion, i.e., if the reader is familiar with one system, the other system can readily be applied, as 
well. In the present review, we will discuss the most common pitfalls on PSMA- and SSTR-targeted PET/CT, briefly intro-
duce PSMA- and SSTR-RADS, and define a potential future role of the umbrella framework MI-RADS compared to other 
classification systems.
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Introduction

Radiotracers with potential theranostic implications are 
increasingly at the forefront of oncology [1–4]. Prostate-
specific membrane antigen (PSMA)-targeted positron 

emission tomography (PET) imaging agents, labeled with 
either 68Ga or 18F, for prostate cancer (PCa) or somatosta-
tin receptor (SSTR)-targeted probes for imaging neuroen-
docrine tumors (NETs) are already widely utilized and in a 
variety of clinical contexts [5–9]. While these radiotracers 
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have been relatively rapidly adopted, PSMA- or SSTR-tar-
geted PET/computed tomography (CT) scans must inter-
preted with caution owing to potential diagnostic pitfalls 
[10, 11]. However, based on the evaluation of those scans, 
the nuclear medicine physician or radiologist often has to 
recommend specific courses of action including whether 
PSMA-targeted- or peptide receptor radionuclide therapy/
radioligand therapy (PRRT/PRLT) would be appropriate 
for the patient. As such, an exact and precise interpretation 
of PSMA- and SSTR-PET/CTs is of utmost importance 
to maximize the full potential of the theranostic promise.

In this regard, several standardized framework sys-
tems for the interpretation of radiotracers with potential 
theranostic implications have been introduced, such as the 
PROstate cancer Molecular Imaging Standardization Eval-
uation (PROMISE), the European Association of Nuclear 
Medicine and Molecular Imaging and Society of Nuclear 
Medicine and Molecular Imaging joint procedure guide-
line for PSMA-targeted PET (EANM), and the NeuroEn-
docrine Tumor Positron Emission Tomography (NETPET) 
grading system for NETs [12–14]. However, these systems 
are highly specific and meant to be exclusively applied 
to one class of imaging agents, potentially requiring the 
interpreting imaging specialist to be familiar with multiple 
non-overlapping standardization frameworks. In analogy 
to the cross-system similarities inherent in different report-
ing and data systems (RADS) for specific organs such as 
TI-RADS for thyroid, BI-RADS for breast, or PI-RADS 
for prostate [15–17], our group has focused on creating 
RADS for molecular oncology imaging applications, 
namely PSMA-RADS and SSTR-RADS, that are based on 
the same fundamental framework [18–20]. Consolidated 
under an umbrella term, both systems are herein referred 
to as molecular imaging RADS (MI-RADS). Of note, MI-
RADS systems can be applied reciprocally, i.e., if a reader 
is familiar with one system, the other system can be read-
ily understood, as well. PSMA- and SSTR-RADS should 
increase the reader’s level of confidence, facilitate commu-
nication with other specialists like urologists or gastroen-
terologists, and may guide the reader as to whether PRRT/
PRLT should be considered. In addition, they should assist 
the observer in interpretation of equivocal findings and 
guide the clinician in performing appropriate workup of 
incidental findings. In the present review, we will provide 
a brief overview of common pitfalls while reading PSMA- 
and SSTR-PET scans, introduce both RADS systems for 
molecular oncology imaging, demonstrate how those sys-
tems may navigate the reader through indeterminate find-
ings, and, finally, discuss potential future applications.

Pitfalls on PSMA‑ and SSTR‑targeted PET/CT

Pitfalls on PSMA‑targeted PET/CT

The normal biodistribution of PSMA radiotracers includes 
the lacrimal glands, salivary glands, liver, spleen, kidneys, 
and small bowel. Moreovoer, many PSMA-targeted imaging 
agents are excreted via the urinary tract and can be visible 
in the ureters and urinary bladder (Fig. 1a) [19]. Further-
more, PSMA expression is not limited to PCa, but is also 
expressed in a variety of benign and malignant conditions 
[10]. Of note, in nervous tissue, PSMA is referred to as glu-
tamate carboxypeptidase II or N-acetylated-alpha-linked 
acidic dipeptidase (NAALADase), and thus, PSMA has been 
considered a potential therapeutic target in neurology [21]. 
Not surprisingly, PSMA-targeted radiotracers have been 
described to accumulate in ganglia, with the most frequent 

Fig. 1  Whole-body maximum intensity projection images with 
normal biodistribution of a prostate-specific membrane antigen 
(PSMA)-targeted positron emission tomography (PET) (using 
[18F]-DCFPyL) and b somatostatin receptor (SSTR)-targeted PET 
(using [68Ga]-labeled 1,4,7,10-tetraazacyclododecane-N,N′,N′′,N′′′-
tetraacetic acid-d-Phe(1)-Tyr(3)-octreotide ([68Ga]DOTATOC)). 
No abnormal radiotracer uptake can be appreciated. In both RADS 
systems (PSMA- and SSTR-RADS), these would be classified as 
RADS-1A [18–20]. For a PSMA-targeted PET, the normal biodis-
tribution includes radiotracer uptake in the lacrimal glands, salivary 
glands, liver, spleen, kidneys, and small bowel. In addition, radi-
otracer is seen being excreted within the urinary tract. Modified from 
Rowe et al. [19], © by the Society of Nuclear Medicine and Molecu-
lar Imaging, Inc. For b SSTR-targeted PET, the normal biodistribu-
tion includes radiotracer uptake in the pituitary gland, major salivary 
glands, thyroid, adrenal glands, liver, and spleen. Similar to PSMA-
targeted PET, radiotracer excretion via the urinary tract can be appre-
ciated. The arrow indicates physiological normal variant uptake in 
the uncinate. Modified from Werner et al. [20], © by the Society of 
Nuclear Medicine and Molecular Imaging, Inc.
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sites in lumbar ganglia, followed by cervical, stellate, celiac, 
and sacral ganglia [22, 23].

Benign pathologies mimicking PCa include, but are not 
limited to granulomatous diseases, such as the systemic 
inflammatory disorder sarcoidosis, Wegner’s granuloma-
tous, and even tuberculosis [24–27]. Benign bone diseases 
(fibrous dysplasia, healing fractures, and Paget’s disease) 
[28–30] are often visualized on PSMA-targeted PET scans. 
Benign tumors of neurogenic origin, such as schwannomas, 
peripheral nerve sheath tumors, and meningiomas, can 
also demonstrate discernible radiotracer uptake [31–33]. 
Nonprostatic PSMA-targeted ligand uptake has also been 
documented in hemangiomas and benign soft-tissue patholo-
gies, such as desmoid tumors, intramuscular myxomas, and 
pseudo-angiomatous stromal hyperplasia [34–37].

PSMA-avid tumor other than PCa includes multiple mye-
loma, papillary or follicular thyroid carcinoma, pancreatic 
NET, or renal cell carcinoma [38–43]. For further details 
regarding pitfalls with PSMA-targeted PET probes, please 
refer to [10].

Pitfalls on SSTR‑PET/CT

For SSTR-targeted PET imaging agents, the following nor-
mal organs are known to show radiotracer uptake: the pitui-
tary gland, major salivary glands, thyroid, adrenal glands, 
liver, spleen, and bowel. Similar to PSMA-targeted imaging 
agents, SSTR-based imaging probes are also excreted via the 
urinary tract (Fig. 1b) [20]. Of note, the pancreatic uncinate 
process can also be a part of the normal biodistribution, most 
likely as a result of pancreatic polypeptide-containing cells 
expressing SSTR on their cell surfaces [44]. Knowledge of 
this potential pitfall is of utmost importance, as such a find-
ing may lead to unnecessary invasive procedures [11]. In 
addition, splenosis may also demonstrate discernible radi-
otracer uptake splenules, even those located inside the pan-
creas, could be misinterpreted as NET uptake sites [45, 46].

In analogy to PSMA-targeted PET, SSTR-targeted PET 
also shows radiotracer accumulation in inflammatory dis-
eases, such as inflammation in large arteries, sarcoidosis, or 
in atherosclerotic plaques [47–49]. Moreover, SSTR-targeted 
radiotracer-avid structures in bone, which are degenerative 
in nature, may also lead to false-positive findings on SSTR-
targeted PET/CT [20]. An instructive case report noted 
 [68Ga]-labeled 1,4,7,10-tetraazacyclododecane-N,N′,N′′,N′′′-
tetraacetic acid-d-Phe(1)-Tyr(3)-octreotate  ([68Ga]DOTA-
TATE) uptake in a vertebral hemangioma [50]. Although 
NETs are usually located in the gastroenteropancreatic tract 
in the majority of the cases, there are also rare tumor entities, 
which are subsumed under NET; for example, medullary 
thyroid carcinoma or other malignancies that primarily arise 
from neural crest stem cells, such as pheochromocytomas 
or paragangliomas. Those tumor entities are also typically 

positive on SSTR-targeted PET scans [51–53]. Of note, there 
are a variety of non-NET tumors that also show discernible 
radiotracer uptake, and those include, but are not limited to: 
meningioma, primary central nervous system lymphoma, 
breast cancer, and papillary thyroid cancer [11, 51, 54–58].

Table  1 summarizes the normal biodistribution and 
important pitfalls on PSMA- and SSTR-targeted PET/CT.

Introduction of MI‑RADS: two reciprocal framework 
systems for PSMA‑ and SSTR‑PET/CT interpretation

MI-RADS

Given the multiple known pitfalls of each class of receptor-
targeted radiotracers, a framework system that increases the 
reader’s confidence in separating pathologic from physi-
ological findings and identifying non-PCa or NET sites of 
radiotracer uptake that may require further evaluation would 
be of significant value. This applies, once again, in particu-
lar to PSMA- and SSTR-targeted imaging probes, as those 
agents can potentially be applied in a theranostic setting. A 
false-positive or -negative interpretation may have an imme-
diate impact on succeeding endoradiotherapies with either 
177Lu or 90Y [3, 59]. Thus, summarized under the umbrella 
term MI-RADS, the two novel framework systems PSMA-
RADS and SSTR-RADS will be briefly introduced [18–20]. 
Both MI-RADS subsystems are based on a five-point scale 
(from 1 = no evidence of disease and definitively benign to 
5 = high certainty that either PCa or NET are present), and 
both systems refer to the site of disease and the intensity of 
radiotracer uptake.

PSMA-RADS

Spearheaded by Rowe and coworkers, the PSMA-RADS sys-
tem was introduced in 2018 [18, 19]. PSMA-RADS-1 refers 
to benign lesions and is separated into the subcategories 
of PSMA-RADS-1A lesions, which include benign lesions 
characterized by either biopsy or anatomic imaging without 
any abnormal uptake (Fig. 1a), and PSMA-RADS-1B which 
refers to similar sites with abnormal uptake. A common 
example would be a radiotracer-avid liver lesion, with mag-
netic resonance imaging (MRI) findings compatible with 
hemangioma. PSMA-RADS-2 lesions are likely benign and 
include those lesions, which have low-level uptake (i.e., ≤ 
bloodpool level) and which are atypical for PCa, e.g., uptake 
in a bone lesion strongly suggestive to be of degenerative 
nature. PSMA-RADS-2 differs from PSMA-RADS-1 in the 
certainty with which a malignant diagnosis can be excluded, 
with PSMA-RADS-2 representing those lesions where the 
possibility of a PCa lesion exists, although it is remote (e.g., 
overlying uptake from an otherwise benign process could 
mask malignant uptake).
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PSMA-RADS-3 is the most complex category and is 
separated into four different subcategories. PSMA-RADS-3 
includes indeterminate lesions, and thus, further workup 
(e.g., biopsy or follow-up imaging) is often needed. PSMA-
RADS-3A describes equivocal uptake (approximately the 
level of bloodpool) in a soft-tissue site typical for PCa, e.g., 
a pelvic lymph node. PSMA-RADS-3B lesions include 
equivocal uptake in bone lesions not specifically atypical 
for PCa on anatomic imaging (for example, an osteophyte 
would be atypical for PCa and any uptake in such a struc-
ture should be categorized as PSMA-RADS-2, whereas a 
bone lesion without anatomic correlate would not be atypi-
cal for PCa and might be categorized as PSMA-RADS-3B). 
Follow-up imaging may confirm disease. While the first two 
PSMA-RADS-3 classifications have rather low-level uptake, 
PSMA-RADS-3C sites of uptake are often intense, but in an 
atypical location for PCa, e.g., an avid lung nodule that is 
discordant to a patient’s low level of serum prostate-specific 
antigen. PSMA-RADS-3D lesions do not have radiotracer 
uptake, but anatomic imaging raises suspicion of malig-
nancy, e.g., a neuroendocrine PCa with obvious sites of 
metastatic disease on CT but no associated PSMA-targeted 
radiotracer uptake.

PSMA-RADS-4 describes those lesions with intense 
uptake in sites highly typical for PCa, but lacking defini-
tive evidence of disease on anatomic imaging. PCa is highly 

likely with PSMA-RADS-4. PSMA-RADS-4 and -5 differ in 
their findings on conventional imaging: the latter classifica-
tion also has intense radiotracer uptake, but corresponding 
findings can be appreciated on anatomic imaging modalities 
as well. PCa is almost certainly present [19]. In particu-
lar, PSMA-RADS-3A and -3B lesions are of indeterminate 
nature but suspicious for sites of PCa and, therefore, a work-
flow chart for those lesions is provided in Fig. 2. Figures 3 
and 4 apply PSMA-RADS to PSMA-targeted PET/CTs 
acquired using  [18F]-DCFPyL.

SSTR-RADS

Intentionally, SSTR-RADS was based on a similar struc-
ture to its predecessor, PSMA-RADS, but it takes NET and 
SSTR-specific details into account. In contrast to the RADS 
system for PCa molecular imaging, SSTR-RADS also intro-
duced a three-point qualitative assessment scoring, which 
refers to uptake in normal organs as internal references: 
uptake level 1 (focal uptake, but ≤ blood pool) through 
uptake level 2 (> blood pool, but ≤ physiologic liver uptake) 
to uptake level 3 (> physiologic liver uptake).

In brief, SSTR-RADS-1A refers to normal biodistribu-
tion (Fig. 1b), while SSTR-RADS-1B includes those lesions 
which are benign (characterized by biopsy or anatomical 
imaging) but with increased abnormal radiotracer uptake 

Table 1  Normal biodistribution of prostate-membrane-specific antigen (PSMA) and somatostatin receptor (SSTR)-targeting positron emission 
tomography imaging agents as well as important pitfalls, that may be seen with both imaging probes

The normal biodistribution of both imaging agents can also be appreciated in Fig. 1
PCa prostate cancer, NET neuroendocrine tumors

Imaging agents PSMA SSTR

Normal biodistribution Lacrimal glands
Salivary glands
Liver
Spleen
Kidneys
Small bowel
Ganglia
Radiotracer excretion via urinary tract [18, 19]

Pituitary gland
Major salivary glands
Thyroid
Adrenal glands
Liver
Spleen
Pancreatic uncinate process
Splenosis, splenunculi
Radiotracer excretion via urinary tract [20]

Important pitfalls Benign pathologies mimicking PCa
 Granulomatous diseases: sarcoidosis, Wegner’s granuloma-

tous, tuberculosis [24–27]
Benign bone diseases
 Fibrous dysplasia, healing fractures, Paget’s disease [28–30]
Benign tumors of neurogenic origins
 Schwannomas, peripheral nerve sheath tumors, or meningi-

omas [31–33]
Hemangiomas [34] and benign soft-tissue pathologies
 Desmoid tumors, intramuscular myxoma, and pseudo-angi-

omatous stromal hyperplasia [35–37]
PSMA-avid tumor entities other than PCa
 Follicular thyroid carcinoma, pancreatic NET, renal cell carci-

noma, radio-iodine refractory thyroid carcinoma [38–40, 42]

Inflammatory diseases
 Large arteries, sarcoidosis, arthero-sclerotic plaques 

[47–49]
Degenerative bone structures [20]
Vertebral hemangioma [50]
Rare NET tumors
 Medullary thyroid carcinoma [51]
 Paraganglioma and pheochromocytoma [52]
Non-NET tumors
 Meningioma, primary central nervous system 

lymphoma, breast cancer, papillary thyroid cancer 
[54–57]
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Fig. 2  Flowchart for prostate-specific membrane antigen reporting 
and data system (PSMA-RADS)-3A (a) and -3B (b) lesions. Appro-
priate next steps are indicated for such indeterminate lesions [soft-

tissue site, PSMA-RADS-3A (a) and bone, PSMA-RADS-3B (b)]. 
MRI magnetic resonance imaging

Fig. 3   Indeterminate findings on prostate-specific membrane antigen 
(PSMA)-targeted positron emission tomography (PET)/computed 
tomography (CT). A 62-year-old man with history of biochemical 
recurrence undergoing  [18F]-DCFPyL PET/CT. a Whole-body maxi-
mum intensity projection image demonstrates multiple foci of radi-
otracer uptake (red arrowhead and arrow). b Axial CT, c axial PET, 
and d axial PET/CT demonstrate intense radiotracer in a thyroid 
nodule (red arrowheads), which was classified as PSMA-RADS-3C 

and further workup (biopsy) was recommended. Subsequent biopsy 
yielded papillary thyroid carcinoma. e Axial CT, f axial PET, and g 
axial PET/CT show focal, intense radiotracer uptake in the spleen 
(red arrows). This was classified by an experienced reader as a likely 
inflammatory finding that was not suspicious for either prostate can-
cer or another malignancy and was labeled as PSMA-RADS-2. The 
overall scan score for this patient was, therefore, PSMA-RADS-3C
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(level 2–3). A common example would be prostatitis or 
benign prostatic hyperplasia. SSTR-RADS 2 lesions are 
likely benign and are described as soft-tissue sites or bone 
lesions atypical for NET with an uptake level of 1, e.g., 
SSTR-avid axillary lymph nodes or uptake in bone lesions 
suggestive to be of degenerative nature.

Analogous to PSMA-RADS-3 lesions, SSTR-RADS-3 
lesions require increased attention and further workup 
(e.g., biopsy and imaging follow-up). SSTR-RADS-3A 
and -3B lesions are suggestive of, but not definitive for, 
NET. For SSTR-RADS-3A, equivocal uptake (uptake 
level, 1–2) is seen in soft-tissue sites typical for NET 
metastases, such as low-level uptake of 1 in a mesenteric 
lymph node. This also applies to SSTR-RADS-3B lesions, 
but those include uptake in bone lesions not atypical for 
NET, e.g., uptake level 2 in a rib lesion that is not clearly 
a fracture. As mentioned earlier, follow-up imaging after 
3–6 months (with a shorter interval in terms of increased 
Ki67) is needed and a biopsy may make findings definitive. 
In contradistinction to SSTR-RADS-3A or -3B, SSTR-
RADS-3C lesions have an uptake level of 3, but in a site 
highly atypical for NET, i.e., those lesions are suggestive 
of an SSTR-expressing, non-NET benign tumor or malig-
nant process. SSTR-RADS-3D lesions are not SSTR-avid 
and can only be appreciated on conventional imaging. 
SSTR-RADS-3D classified lesions have a high likelihood 
for either a non-NET malignancy or dedifferentiation of 
NET lesions. The most common example would be single, 
dedifferentiated liver lesions, which are SSTR-negative, 
but highly 2-deoxy-2-[18F]-fluoro-d-glucose  ([18F]-FDG) 

positive [60]. Tissue confirmation should be considered, 
so that potential tumor escape can be ruled out.

SSTR-RADS-4 are those lesions which are highly SSTR-
avid in a site typical for NET, but lacking evidence corre-
sponding malignant finding on the conventional imaging. 
SSTR-RADS-5 also includes highly SSTR-avid lesions 
in a site typical for NET, but the conventional imaging 
demonstrates a corresponding finding. Both categories 
have an uptake level of 3, and while, for SSTR-RADS-4, 
NET is highly likely, it is almost certainly present for 
SSTR-RADS-5. Of note, PRRT is recommended for both 
SSTR-RADS-4 and -5 classifications, but common rec-
ommendations of practical guidelines still apply [61]. For 
SSTR-RADS-3B, PRRT may be an option for increased 
number of lesions, but single lesions should be treated by 
a locoregional procedure, e.g., selective internal radiother-
apy [20, 62, 63]. For SSTR-RADS-3D lesions, a combined 
treatment approach may be also applicable, e.g. treating 
a dedifferentiated lesion with a locoregional procedure, 
but an increased number of remaining SSTR-avid lesions 
may benefit from PRRT as well [20]. Figure  5 applies 
SSTR-RADS to an SSTR-PET/CT using  [68Ga]-labeled 
1,4,7,10-tetraazacyclododecane-N,N′,N′′,N′′′-tetraacetic 
acid-d-Phe(1)-Tyr(3)-octreotide  ([68Ga]DOTATOC).

Of note, both MI-RADS (PSMA- and SSTR-RADS) 
systems can define an overall RADS score. In addition, a 
reader may choose up to five target lesions (most intense in 
uptake and largest in size) to individually demarcate. The 
highest scored lesion takes priority over the other lesions to 
indicate an overall scan impression (e.g., if one target lesion 
has been classified as SSTR-RADS-3A and a second lesion 

Fig. 4  Indeterminate findings on prostate-specific membrane antigen 
(PSMA) positron emission tomography (PET)/computed tomog-
raphy (CT). A 58-year-old man with history of biochemical recur-
rence undergoing  [18F]-DCFPyL PET/CT. a Whole-body maximum 
intensity projection image demonstrates mild radiotracer uptake in 
a left-sided rib (arrowhead). b Axial CT, c axial PET, and d axial 
PET/CT also demonstrate the mild radiotracer uptake at this site (red 

arrowheads), which was classified as indeterminate for prostate can-
cer (PSMA-RADS-3B). e Axial CT, f axial PET, and g axial PET/
CT showing moderate radiotracer uptake in a right peri-rectal lymph 
node (red arrows). As this site of radiotracer uptake does not show a 
corresponding pathologically enlarged lymph node on e axial CT, this 
finding was classified as PSMA-RADS-4. The overall scan score was, 
therefore, also PSMA-RADS-4
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is rated as SSTR-RADS 5, the overall scan score would be 
SSTR-RADS-5). If the overall scan impression is designated 
as SSTR-RADS-4 or -5, endoradiotherapy may be highly 
recommended [20].

Table 2 provides a head-to-head comparison of both 
RADS systems in molecular oncology imaging, along with 
recommendations for workup or consideration for PRRT/
PRLT. Table 3 indicates the minimum required information 
(patient’s history and imaging data) in a PSMA- or SSTR-
targeted PET/CT report.

MI‑RADS: a flexible system that can accommodate 
new information and novel radiotracers

The MI-RADS frameworks require validated in prospective 
studies. For example, it is critical to establish whether dif-
ferent readers with different levels of experience in either 
reading PSMA- or SSTR-PET/CT scans arrive at the same 
conclusions, while, applying RADS for molecular imaging, 
interobserver agreement studies should be performed. Ide-
ally, multiple study sites should be included. Fendler et al. 
have conducted those studies in PSMA- and SSTR-targeted 
PET using 68Ga-labeled imaging agents, but a specific 
framework system has not been used. Nonetheless, a high 
interobserver agreement rate has been demonstrated and 
thus, one may expect comparable findings while applying 
structured reporting systems, such as MI-RADS [64, 65].

Another area of validation is the need to follow MI-
RADS-3A and -3B lesions to determine the rates at which 
those indeterminate findings are ultimately found to harbor 
PCa or NET. Accordingly, this would increase the reader’s 
level of confidence about appropriate recommendations to 
make. In addition, MI-RADS should be applied to outcome 
studies, and the herein proposed standardization for both 
PSMA- and SSTR-targeted PET may open avenues for multi-
center trials, e.g., to investigate which lesions are associated 
with poorer outcome (e.g., a high number of MI-RADS-5 
lesions may be linked to worse overall or progression-free 
survival). Moreover, the workup and treatment recommenda-
tions based on MI-RADS should be critically reviewed and 
further validated. We note that MI-RADS is a homonym for 
“My-RADS”, suggesting the potential role of a system such 
as this for personalized medicine and guiding individualized 
therapies.

Notably, SSTR-RADS is the first proposal for PRRT 
based on PET, as the commonly used Krenning Score had 
been initially invented for single-photon emission computed 
tomography using SSTR imaging agents (Octreoscan) [66]. 
While the Krenning Score takes planar images into account 
to define whether a patient is suitable for PRRT, SSTR-
RADS-based treatment recommendations refer to the far 
more complex evaluation of an entire SSTR-PET/CT scan. 
However, the Krenning Score is well established and SSTR-
RADS has to still prove its robustness in patient selection 
for PRRT [67]. Apart from that, the role of MI-RADS has 

Fig. 5  Indeterminate findings on somatostatin receptor (SSTR) 
positron emission tomography (PET)/computed tomography 
(CT). A 63-year-old man with history of a gastroenteropan-
creatic neuroendocrine tumor, who underwent  [68Ga]-labeled 
1,4,7,10-tetraazacyclododecane-N,N′,N′′,N′′′-tetraacetic acid-d-
Phe(1)-Tyr(3)-octreotide  ([68Ga]-DOTATOC) PET/CT for staging. a 
Whole-body maximum intensity projection image demonstrates sus-
picious radiotracer uptake (red arrowheads) in the liver. b Axial CT, 
c axial PET and d axial PET/CT show mild radiotracer uptake in the 

left breast (red arrows). This has been classified as SSTR-RADS-3C 
by an experienced reader. e Axial CT, f axial PET, and g axial PET/
CT demonstrate intense radiotracer uptake in multiple liver lesions 
(one of which is demarcated by the red arrows). As there is subtle 
hypoattenuation in the liver on e axial CT, this finding was classified 
as SSTR-RADS-5 and, therefore, the overall SSTR-RADS score was 
5. Based on this scoring, peptide receptor radionuclide therapy should 
be considered [20]



519Annals of Nuclear Medicine (2018) 32:512–522 

1 3

to be constantly refined and improved upon. There are other 
systems that address the need of standardization in receptor-
based PET imaging, such as PROMISE, the EANM Con-
sensus Paper, or the NETPET Grade [12–14]. While all of 
those systems include a huge variety of different parameters, 
MI-RADS is easy to memorize and readily applicable [19, 
20]. Thus, MI-RADS may serve as a robust tool in clini-
cal practice, while framework systems like PROMISE can 
provide details that are necessary to enrich data sets in a 
research setting [12]. Nonetheless, the concept of MI-RADS 
includes two systems, which are reciprocable, and thus, if 
one system has been understood, the reader may use the 
other framework system with only small adjustments as 
well. Apart from that, the concept of MI-RADS is a living 
framework system for molecular oncology imaging. There-
fore, it could potentially be expanded to other theranostic 
PET radiotracers, such as the theranostic twins for C–X–C 
chemokine receptor CXCR4-directed  [68Ga]-Pentixafor/
[177Lu]-Pentixather (“CXCR4-RADS”), the Fibroblast 
Activation Protein (FAP) inhibiting  [68Ga]-/[90Y]-FAPI04 
(“FAPI-RADS”), or 177Lu-labeled, gastrin releasing peptide 
receptor (GRPR) targeting bombesin peptides (“GRPR-
RADS”) [4, 68–70]. MI-RADS cannot replace the imaging 
specialist needing to possess disease-specific knowledge 
to appropriately categorize findings; however, the modu-
lar nature and significant overlap of the subsystems within 

Table 2  Head-to-head comparison of both reporting and data systems (RADS) in molecular imaging (MI-RADS), which are prostate-mem-
brane-specific antigen (PSMA)-RADS and somatostatin receptor (SSTR)-RADS

PRRT  peptide receptor radionuclide therapy, PRLT PSMA-targeted radioligand therapy, PCa prostate carcinoma, n/a not applicable, N no (endo-
radiotherapy not recommended), NET neuroendocrine tumors, B biopsy, F/U follow-up imaging (3–6 months, e.g., depending on Ki67 in NET), 
Y yes (endoradiotherapy recommended)
a Applies only to SSTR-RADS
b In terms of a single lesion, a locoregional procedure may be preferred, while, for increasing lesions, PRRT may be applicable

MI-
RADS 
clas-
sifica-
tion

PSMA- and SSTR-RADS [18, 20] Workup Uptake  levela PRRT/PRLT?

1 1A Benign lesion, characterized by biopsy or anatomic imaging without abnormal uptake n/a 1 N
1B Benign lesion, characterized by biopsy or anatomic imaging with abnormal uptake n/a 2–3 N

2 Soft-tissue site or bone lesion atypical for metastatic PCa or NET n/a N
3 3A Equivocal uptake in soft-tissue lesion typical of PCa or NET B, F/U 1–2 N

3B Equivocal uptake in bone lesion not atypical of PCa or NET B, F/U 1–2 Nb

3C Intense uptake in site highly atypical of all but advanced stages of PCa or NET (i.e., high likeli-
hood of nonprostatic/non-NET malignancy or other benign tumor)

B 3 N

3D Lesion suggestive of malignancy on anatomic imaging but lacking uptake. For SSTR-RADS: 
2-deoxy-2-[18F]-fluoro-D-glucose  [18F]-FDG is recommended to rule out potential dediffer-
entiation of a single lesion

B, F/U Not available Nb

4 Intense uptake in site typical of PCa or NET but lacking definitive findings on conventional 
imaging

n/a 3 Y

5 Intense uptake in site typical of PCa or NET but with definitive findings on conventional imag-
ing

n/a 3 Y

Table 3  Minimum required data in a clinical report for interpreting 
either a prostate-specific membrane antigen (PSMA) positron emis-
sion tomography (PET)/computed tomography (CT) or somatostatin 
receptor (SSTR) PET/CT [20]

PSA prostate-specific antigen,  [18F]-FDG 2-deoxy-2-[18F]-fluoro-d-
glucose, CgA chromogranin A, NSE neuron-specific enolase

PSMA-PET/CT SSTR-PET/CT

Patient’s history Date of tumor biopsy
Date of primary diagnosis
Previous therapies
Previous conventional or 

functional imaging
History and treatment of other 

malignancies
Laboratory test results (PSA)
Gleason score

Primary tumor 
origin

Laboratory test 
results (CgA, 
NSE)

Ki67/proliferation 
index

Previous 
 [18F]-FDG 
scans

Imaging data Injected amount/activity
Uptake time
Field of view
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MI-RADS still minimize the effort necessary to apply this 
over-arching framework.

Conclusions

The use of PSMA and SSTR-PET imaging agents is cur-
rently expanding outside of the confines of clinical stud-
ies [2, 5]. In the course of using these agents, a manifold 
of pitfalls has been discovered. Adding to the complexity 
of those potential false-positive or -negative discoveries, 
some of those pitfalls may apply to both imaging probes 
(e.g., sarcoidosis), but certain false findings may exist only 
for one of those PET agents (e.g., uptake in nervous tis-
sue for PSMA-PET) [10, 11, 22, 23, 71]. In this regard, a 
great deal in progress has been made by the introduction of 
several framework systems for theranostic PET radiotrac-
ers [12–14]. Notably, the proposed concept for standardiza-
tion in molecular imaging, entitled MI-RADS, represents 
a harmonization of the interpretation and reporting of the 
two most commonly used theranostic PET imaging probes, 
namely PSMA- and SSTR-RADS. As a major advantage 
to MI-RADS over other previously described classifica-
tion systems is that PSMA-RADS and SSTR-RADS, these 
are the only systems to date that can be applied recipro-
cally [18–20]. Of note, those systems take disease- and 
radiotracer-specific details into account and indeterminate 
findings are critically reviewed, along with treatment and 
workup recommendations. Thus, MI-RADS may help to 
increase the reader’s level of confidence in interpreting 
PSMA- or SSTR-PET/CTs, it may serve as a platform to 
communicate with referring clinicians and it gives practical 
advice of appropriate next steps, which may be critical in a 
busy clinical PCa and/or NET practice. Nonetheless, future 
studies should focus on the validation of these systems.
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