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Abstract
SARS-CoV-2 is a novel pathogen causing pneumonia named COVID-19 and leading to a severe pandemic since the end of 
2019. The genome of SARS-CoV-2 contains a macro domain that may play an important role in regulating ADP-ribosylation 
in host cells and initiating viral replication. Here, we report the 1H, 13C, and 15N resonance assignments of the SARS-CoV-2 
macro domain. This work provides the ground for further structural deciphering and biophysical investigation in protein 
function and antiviral agent design.
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Biological context

A novel virus, SARS-CoV-2 (Severe Acute Respiratory Syn-
drome Coronavirus 2, also called 2019-nCoV), was identi-
fied as the pathogen that caused the pandemic of emerged 
pneumonia-like disease, COVID-19, since the December 
of 2019. Based on the genome analysis of SARS-CoV-2, 
a macro domain was found in nonstructural protein 3 
(NSP3). Viral macro domains had been reported possessing 

multifunction, for instance, interactions with ADP-ribose 
(ADPR) (Cho et al. 2016; Egloff et al. 2006; Makrynitsa 
et al. 2019), poly-ADPR (Egloff et al. 2006) or adenine-rich 
RNAs (Tsika et al. 2019); ADPR-1″ phosphate dephospho-
rylation (Egloff et al. 2006; Saikatendu et al. 2005); and 
enzyme activity as an ADPR-protein hydrolase(Li et al. 
2016). Accumulated evidence about viral macro domains 
indicated a critical relevance to host cellular ADP-ribosyla-
tion, one of post-translational modification which correlated 
to DNA repair, transcription, and innate immune response 
(Alhammad and Fehr 2020; Fehr et al. 2020). Moreover, 
according to studies about viral macro domains from the 
mouse hepatitis virus (Eriksson et al. 2008) and Sindbis 
virus (Park and Griffin 2009), viral replications would be 
depressed while ADPR binding abilities being disrupted by 
introducing mutations into these viral macro domains.

SARS-CoV-2 harbored a macro domain in its NSP3, so 
that, SARS-CoV-2 macro domain might play important roles 
in modulating host ADP-ribosylation and in viral replication. 
Indeed, there remained many mysteries about the function 
of the viral macro domain. However, this viral protein obvi-
ously is a possible target of antiviral agents. Here, we pre-
sent the resonance assignment of the SARS-CoV-2 macro 
domain by a series of NMR experiments. This work would 
pave the way to the elucidation of the SARS-CoV-2 macro 
domain solution structure, which may be the base of the 
COVID-19 antiviral drug design targeting to SARS-CoV-2 
macro domain.
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Protein expression and purification

The protein production of the SARS-CoV-2 macro domain is 
similar to our previous work on MERS-CoV macro domain. 
Briefly speaking, the DNA fragment of the SARS-CoV-2 
macro domain was synthesized and cloned into the pET-28a 
(+) vector (Novagen) between the NdeI and XhoI sites. This 
resulting plasmid was then transformed into E. coli BL21 
(DE3), grown at 37 °C up to OD600 0.6, using medium M9 
with 1 g/l of NH4Cl and D-glucose. After inducing with 
1 mM isopropyl-β-D-thiogalactoside (IPTG) and incuba-
tion overnight at 16 °C, E. coli cells would be gathered by 
centrifugation at 6000 rpm 10 min and resuspended by lysis 
buffer (25 mM phosphate buffer, pH 7.0, 100 mM NaCl) 
followed by 20 min sonication. The supernatant was then 
separated from the pellet by centrifugation at 13,000 rpm 
and 4 °C for 20 min. The recombinant SARS-CoV-2 macro 
domain with N-terminal His-tag was purified by Ni2+-NTA 
column with 300 mM imidazole elution. The purified protein 
was dialyzed against lysis buffer with 0.5 mM dithiothreitol 
(DTT). The N-terminal His-tag was removed by thrombin 
cleavage incubating at 10 °C overnight. The protein product 
with four additional residues (GSHM) at the N-terminus was 
further purified by gel filtration chromatography with col-
umn Superdex 75 increase 16/60 (GE healthcare).

NMR experiments

NMR experiments were collected on Bruker Avance 600 
and 800 MHz spectrometers at 310K with 5 mm triple 
resonance cryoprobe and Z-gradient. The collected data 

were acquired and processed using the software Top-
spin2.1 (Bruker, Germany) and further analyzed using 
SPARKY(Lee et  al. 2015). 1H chemical shifts were 
externally referenced to 0  ppm using standard chemi-
cal 2,2-dimethyl-2-silapentane-5-sulfonate. 15N and 13C 
chemical shifts were indirectly referenced to IUPAC rec-
ommendations (Markley et al. 1998). Protein backbone 
assignments were based on triple resonance experiments: 
HNCACB, CBCA(CO)NH, HNCA, HNCO, and HN(CA)
CO. Side-chain assignments were based on 13C-HCCH-
TOCSY and 13C-(H)CCH-TOCSY.

NMR assignment and deposition

The recombinant macro domain of SARS-CoV-2 with a 
molecular weight of 18.8 kDa contains 171 amino acids 
and 4 additional N-terminal residues (to which the number 
− 3, − 2, − 1, 0 are assigned). The backbone assignments 
of the SARS-CoV-2 macro domain were almost completed 
under the experimental conditions (pH 6.0 at 298K). Com-
pleteness of the backbone and side-chain resonances assign-
ments, estimated by CYANA3.98 (Guntert 2004), is 91.6%. 
Except for five prolines (P30, P72, P96, P123, P134), 98.8% 
of backbone amides (168/170) were assigned while the unas-
signed residues were G-3and S-2. The 2D 1H-15N HSQC 
spectrum and amide resonance assignments are shown in 
Fig. 1. The side-chain assignments were also completed. 
98.5% of 1Hβ, 100% of 13Cβ, 83.3% of 1Hγ, and 66.6% of 
13Cγ were assigned. The methyl region of the 2D 1H-13C 
HSQC spectrum with the side-chains assignments of resi-
dues are shown in Fig. 2.

The secondary structural population of SARS-CoV-2 
macro domain was predicted by deviations between 
Cα and Cβ chemical shift (Δδ13Cα–Δδ13Cβ), and 
TALOS+(Shen et al. 2009). The results indicated that the 
SARS-CoV-2 macro domain consisted of seven β-strands 
and six α-helices (Fig. 3). The chemical shift assignments 

Fig. 1   1H-15N HSQC spectrum of SARS-CoV-2 macro domain 
recorded at 600 MHz with a cryogenic-probe with phosphate buffer 
pH 6.0  at 298K. Backbone amide 1H and 15N cross-peaks are pre-
sented. The horizontal lines connect pairs of the side-chain protons 
from amino acids Asn and Gln
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of the SARS-CoV-2 macro domain at 298K and pH 6.0 
were deposited in the Biological Magnetic Resonance 
Data Bank (http://www.bmrb.wisc.edu) under accession 
number 50422.

Fig. 2   1H-13C HSQC methyl correlation spectrum of SARS-CoV-2 
macro domain recorded at 600  MHz with a cryogenic-probe with 
phosphate buffer pH 6.0  at 298K. The assigned methyl cross peaks 
are labeled

◂

Fig. 3   The secondary structure of SARS-CoV-2 macro domain is 
predicted by CαCβ chemical shift difference, and TALOS+. Upper 
panel is the parameter ∆δCα − ∆δCβ shows the deviation of Cα and 
Cβ experimental values from the corresponding random coil values. 
Positive and negative values suggest α-helix and β-strand structure, 
respectively. Lower panel is TALOS + index showing the prediction 

of secondary structure distribution based on backbone N, H, Cα, 
Hα, C, and side-chain Cβ chemical shift values. Negative and posi-
tive values suggest α-helix (in pink) and β-strand (in green) structure, 
respectively. Chemical shift analysis resulting in secondary structure 
elements of the macro domain is represented

http://www.bmrb.wisc.edu
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