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Abstract
Strong external difference families (SEDFs) have applications to cryptography and are
rich combinatorial structures in their own right. We extend the definition of SEDF from
abelian groups to all finite groups, and introduce the concept of equivalence. We prove
new recursive constructions for SEDFs and generalized SEDFs (GSEDFs) in cyclic groups,
and present the first family of non-abelian SEDFs. We prove there exist at least two non-
equivalent (k2 + 1, 2, k, 1)-SEDFs for every k > 2, and begin the task of enumerating
SEDFs, via a computational approach which yields complete results for all groups up to
order 24.
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1 Introduction

There has been considerable recent interest in strong external difference families (SEDFs),
which have applications to cryptography and are rich combinatorial structures in their own
right (see [1, 4, 6, 10, 12, 13]). Up till now, all SEDFs have been in abelian groups.

We ask: what is the situation for SEDFs in general finite groups, not simply abelian
groups? For given parameters, which groups contain SEDFs with these parameters? How
many “different” SEDFs exist with the same parameters?

In this paper, we introduce the notion of equivalence for SEDFs, and characterise admis-
sible parameters. We present a recursive framework for constructing families of SEDFs with
λ = 1 (and related generalized SEDFs) in cyclic groups, which encompasses known results
on SEDFs and GSEDFs. We present the first non-abelian SEDFs, a construction for an infi-
nite family using dihedral groups, and establish the existence of at least two non-equivalent
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(k2 + 1, 2, k, 1)-SEDFs for every k > 2. Finally, we begin the task of enumerating SEDFs,
and present complete results for all groups up to order 24, underpinned by a computational
approach.

2 Strong external difference families

External difference families (EDFs) were introduced in [11] in relation to AMD codes,
while strong EDFs and generalized strong EDFs were introduced in [12]. They were defined
in finite abelian groups. We extend these concepts in the natural way to any group of order
n: the definitions correspond to the originals, with the removal of the word “abelian”. Since
the differences are defined in terms of ordered pairs, there is no ambiguity in this definition.
For abelian groups, additive notation is generally used; when we focus on the non-abelian
and general cases, we will adopt multiplicative notation.

Definition 2.1 Let G be a group of order n.

(i) An (n, m, k, λ)-external difference family (or (n, m, k, λ)-EDF) is a set of m ≥ 2
disjoint k-subsets of G, say A1, . . . , Am, such that the multiset M = {xy−1 : x ∈
Ai, y ∈ Aj , i �= j} comprises λ occurrences of each non-identity element of G.

(ii) An (n, m, k, λ)-strong external difference family (or (n, m, k, λ)-SEDF) is a set of
m ≥ 2 disjoint k-subsets of G, say A1, . . . , Am, such that, for every i, 1 ≤ i ≤ m,
the multiset Mi = {xy−1 : x ∈ Ai, y ∈ ∪j �=iAj } comprises λ occurrences of each
non-identity element of G.

(iii) An (n,m; k1, . . . , km; λ1, . . . , λm)-generalized strong external difference family
(or (n,m; k1, . . . , km; λ1, . . . , λm)-GSEDF) is a set of m ≥ 2 disjoint subsets of
G, say A1, . . . , Am, such that for every i, 1 ≤ i ≤ m, |Ai | = ki and the multiset
Mi = {xy−1 : x ∈ Ai, y ∈ ∪j �=iAj } comprises λi occurrences of each non-identity
element of G.

For every group G, there is at least one SEDF, consisting of the elements of G taken as
singleton sets. This has k = 1 and is often referred to as the trivial SEDF.

The literature contains no examples of non-trivial non-abelian SEDFs. The only explicit
construction for non-abelian EDFs is given in [5]; however these are not SEDFs. Recent
existence results [2] on disjoint difference families (DDFs) in non-abelian groups should
also guarantee non-abelian EDFs, but analysis of parameters shows that these will not be
strong.

To enumerate and compare EDFs and SEDFs, we require a notion of equivalence;
equivalence of EDFs has not been previously discussed in the literature.

Recall that the holomorph of a group G is the group Hol(G) of all permutations of G

of the form a → α(a)g with (α, g) ∈ Aut(G) × G. It can be verified that, for an EDF (or
SEDF) in a group G, its image under any element of the holomorph of G is still an EDF (or
SEDF) with the same parameters.

Definition 2.2 Two external difference families (respectively, strong external difference
families) A = {A1, . . . , Am} and A′ = {A′

1, . . . , A
′
m} are said to be equivalent if, up to

isomorphism, they are in the same group G and there exists an element of Hol(G) turning
one into the other.
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This definition can be naturally extended to GSEDFs (and other EDF-like structures).
Although established in the context of abelian groups [12], the following necessary

conditions remain valid in any finite group.

Proposition 2.3 Necessary conditions for the existence of an (n, m, k, λ)-SEDF in a group
G of order n are that m ≥ 2, n ≥ mk and λ(n−1) = k2(m−1). Parameter sets that satisfy
these conditions will be called admissible.

Analysis of these conditions can eliminate parameter sets for SEDFs (see [4, 6]); since
the analysis is purely number theoretical on the parameter equation, such results apply
equally to abelian and non-abelian groups. We characterise the admissible parameters:

Proposition 2.4 The set of all admissible parameters (n, m, k, λ) for an SEDF is given by

(n0k0
2k1 + 1, n0λ0 + 1, k0k1k2, λ0k1k2

2)

where k0, k1, k2, λ0, n0 ∈ N and n ≥ mk.

Proof Observe that m − 1 = λ(n−1)
k2

is an integer. Let A be the multiset of all prime factors
of λ, and let B be the multiset of all prime factors of n − 1. Let C be the multiset of all
prime factors of k; then C is contained in multiset A ∪ B. Let k0 be the product of all
elements of C \ A; so k0 = k

gcd(k,λ)
. These elements are all from B; moreover, k20 | n − 1.

Let k2 be the product of all elements of C \ B; so k2 = k
gcd(k,n−1) . These elements are

all from A; moreover, k22 | λ. So k = k0k2k1, where k1 is the product of the remaining
elements of C. All of these elements occur in both of A and B, so k1 | λ and k1 | n − 1. So
(m − 1)k20k

2
1k

2
2 = λ(n − 1); then λ = k1k

2
2λ0 for some λ0 ∈ N, and n − 1 = k20k1n0 for

some n0 ∈ N, with m − 1 = n0λ0.

Table 1 contains all admissible SEDF parameter sets for n up to 24.
An SEDF will not necessarily exist for all admissible parameters. Some parameter sets

can be ruled-out in certain classes of group using combinatorial or algebraic arguments.
Non-existence results for SEDFs in abelian groups can be found in [1, 4, 8] and [10]. It
is possible that SEDFs with some of these forbidden parameters may exist in non-abelian
groups.

The following is a summary of constructive existence results known for abelian groups.

Proposition 2.5 An (n, m, k, λ)-SEDF exists in the group G in the following cases:

(1) (n, m, k, λ) = (k2 + 1, 2, k, 1) and G = Zk2+1 [12]; sets given by {0, 1, . . . , k −
1}, {k, 2k, . . . , k2}.

(2) (n, m, k, λ) = (n, 2, n−1
2 , n−1

4 ), n ≡ 1 (mod 4), provided there exists an

(n, n−1
2 , n−5

4 , n−1
4 ) partial difference set in G [4]. When n is a prime power, we may

Table 1 All admissible SEDF parameters for n ≤ 24

n 5 9 10 13 17 19 21

m 2 2 3 2 3 2 4 2 2 3 4 5 2 3 3 5 2 6

k 2 4 2 3 3 6 2 4 8 4 4 2 6 3 6 3 10 2

λ 1 2 1 1 2 3 1 1 4 2 3 1 2 1 4 2 5 1
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take the non-zero squares and non-squares in the multiplicative group of the finite field
of order n.

(3) (n, m, k, λ) = (q, 2, q−1
4 ,

q−1
16 ), where q = 16t2+1 is a prime power and t an integer

[1]; the sets are cyclotomic classes in the finite field of order q.
(4) (n, m, k, λ) = (p, 2, p−1

6 ,
p−1
36 ), where p = 108t2 + 1 is a prime and t an integer [1]

the sets are cyclotomic classes in the finite field of order p.

For λ = 1, a parameter characterization for the abelian case is given in [12]:

Proposition 2.6 There exists an abelian (n,m, k, 1)-SEDF if and only if m = 2 and n =
k2 + 1 or k = 1 and m = n.

3 Abelian SEDFs with λ = 1: recursive constructions and equivalence

In this section, we consider the situation when λ = 1. By Proposition 2.6, all non-trivial
abelian (n, m, k, 1)-SEDFs are (k2 + 1, 2, k, 1)-SEDFs. We show that the construction of
Proposition 2.5(1) is one amongst numerous constructions for SEDFs with λ = 1 in cyclic
groups; we provide recursive techniques to obtain these (and related GSEDFs). We show
there exist at least two non-equivalent (k2+1, 2, k, 1)-SEDFs for any composite k (later we
extend this to any k > 2).

We write Zn additively; its elements will be {0, 1, . . . , n − 1} and we fix the natural
ordering 0 < · · · < n − 1. For a, b ∈ Zn with a < b, we will sometimes represent the
closed interval {x : x ∈ Zn, a ≤ x ≤ b} by [a, b]. For a set A, we denote by �A the set of
internal differences {x − y : x �= y ∈ A}.

Theorem 3.1 Let G = (Zk2+1,+), where k = 2a for some positive integer a ≥ 1. Let
S = ({0, 1, . . . , a − 1} ∪ {2a, 2a + 1, . . . 3a − 1},⋃a

i=1{(4i − 1)a, 4ia}). Then S is a
(k2 + 1, 2, k, 1)-SEDF in G and for k > 2, S is not equivalent to the SEDF in G from
Proposition 2.5 (1).

Proof For 0 ≤ h ≤ a − 1, let Ih be the closed interval [ha, (h + 1)a − 1] and let I+
h be

Ih + 1 = [ha + 1, (h + 1)a]. Then S = {B1, B2}, where B1 = I0 ∪ I2 and B2 = ∪a
i=1Ci

with Ci = {(4i − 1)a, 4ia} for 1 ≤ i ≤ a. It suffices to show that B2 − B1 comprises
each non-zero group element precisely once. We have that Ci − I0 = I+

4i−2 ∪ I+
4i−1 and

Ci − I2 = I+
4i−4 ∪ I+

4i−3. Thus Ci −B1 = I+
4i−4 ∪ I+

4i−3 ∪ I+
4i−2 ∪ I+

4i−1 is the closed interval
Ji = [(4i − 4)a + 1, 4ia]. It follows that B2 − B1 = ∪a

i=1Ji = Z4a2+1 \ {0}, i.e. {B1, B2}
is a (4a2 + 1, 2, 2a, 1)-SEDF.

Let A1 = [0, 2a − 1] and A2 = {2a, 4a, . . . , (4a − 2)a, 4a2} be the sets of the SEDF
from Proposition 2.5 (1). If {A1, A2} and {B1, B2}were equivalent, one ofA1 orA2 could be
mapped onto B1 via an appropriate mapping which would preserve the lists of multiplicities
of the internal differences. It can be verified, using the fact that each of A1 and A2 is an
arithmetic progression and |G| is odd, that the maximum multiplicity of the elements of G

in each of �A1 and �A2 is 2a − 1. Since B1 = I0 ∪ I2, �B1 comprises two copies of �I0,
one copy of 2a + �I0 and one copy of −2a + �I0. It can be verified, since I0 is an interval
and all three of these multisets are mutually disjoint, that the maximum multiplicity in �B1
is 2(a − 1). Hence the SEDFs are not equivalent.
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The following recursive result for SEDFs with λ = 1 in cyclic groups encompasses both
constructions mentioned in Theorem 3.1 and provides a means of generating new examples.

Theorem 3.2 Let S = {A1, A2} be a (k2 + 1, 2, k, 1)-SEDF in Zk2+1 with A1 =
{x1, . . . , xk} and A2 = {y1, . . . , yk}, such that xi < yj for all 1 ≤ i, j ≤ k. Let a ∈ N.
Then we can obtain from S an ((ak)2 + 1, 2, ak, 1)-SEDF S′ = {B1, B2} in Z(ak)2+1. The
blocks are given by

B1 =
k⋃

i=1

{axi + α : 0 ≤ α ≤ a − 1} and B2 =
k⋃

i=1

{a(yi + k2β) : 0 ≤ β ≤ a − 1}.

(Here xi, yi denote the elements of Z(ak)2+1 with these labels.)

Proof For any g ∈ Z(ak)2+1 with 0 ≤ g ≤ ak2 − 1, let Ig = [ag, a(g + 1) − 1] and
I+
g = Ig +1 = [ag+1, a(g+1)]; let Rg = {a(g+k2β) : 0 ≤ β ≤ a−1} and R+

g = Rg +1.

Then B1 = ∪k
i=1Ixi

and B2 = ∪k
i=1Ryi

. It suffices to show that B2 − B1 comprises each
non-zero group element precisely once. Now,B2−B1 = ∪k

i=1∪k
j=1(Ryi

−Ixj
). Observe that

Ryi
− Ixj

= ∪a−1
β=0I

+
yi−xj −1+βk2

. Hence B2 − B1 = ∪a−1
β=0 ∪k

i=1 ∪k
j=1I

+
yi−xj −1+βk2

. As (i, j)

runs through all possible pairs, (yi − xj ) takes each value 1, . . . , k2 precisely once, since S

is a (k2 + 1, 2, k, 1)-SEDF in Zk2+1 and all xi < yj . So B2 − B1 = ∪a−1
β=0 ∪k2−1

z=0 I+
z+βk2

=
∪a−1

β=0[aβk2 + 1, a(β + 1)k2] = [1, a2k2] = Z(ak)2+1 \ {0} as required.

Example 3.3 Using the construction of Theorem 3.2:

• If S is the trivial (2, 2, 1, 1)-SEDF A1 = {0}, A2 = {1} in Z2, then S′ is the (a2 +
1, 2, a, 1)-SEDF B1 = {0, 1, . . . , a −1}, B2 = {a, 2a, . . . , a2} in Za2+1 of Proposition
2.5 (1).

• If S is the (5, 2, 2, 1)-SEDF {0, 1}, {2, 4} in Z5, then S′ is the (4a2 + 1, 2, 2a, 1)-SEDF
in Z4a2+1 from Proposition 2.5 (1), whereas if S is {0, 2}, {3, 4} in Z5 then S′ is the
(4a2+1, 2, 2a, 1)-SEDF in Z4a2+1 from Theorem 3.1. This shows that, if the recursion
is performed using two equivalent SEDFs as S, the resulting S′’s need not be equivalent.

Theorem 3.4 For every Zk2+1 with k composite, there are at least two non-equivalent (k2+
1, 2, k, 1)-SEDFs.

Proof Since k is composite, k = ar for some a, r ≥ 2. Consider the (equivalent) (r2 +
1, 2, r, 1)-SEDFs in Zr2+1 given by S1 = {{0, 1, . . . , r − 1}, {r, 2r, . . . , r2}} and S2 =
rS1 = {{0, r, . . . , r2 − r}, {r2 − r + 1, . . . , r2 − 1, r2}}. Applying Theorem 3.2 to S1 yields
S′
1 = {A1, A2}, where A1 = {0, 1, . . . , ar − 1} and A2 = {ar, 2ar, . . . , (ar)2}. Applying

Theorem 3.2 to S2 yields S′
2 = {B1, B2}, where B1 = ∪r

i=1Ixi
with xi = (i − 1)r , and

B2 = ∪r
i=1Ryi

with yi = r2 − (r − i). We claim that the ((ar)2 + 1, 2, ar, 1)-SEDFs in
Zk2+1 given by S′

1 and S′
2 are non-equivalent.

If {A1, A2} and {B1, B2} were equivalent, one of A1 or A2 could be mapped onto B1
via an appropriate mapping which would preserve the lists of multiplicities of the internal
differences. It can be verified, using the structure of the arithmetic progressions A1 and
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A2, that the maximum multiplicity in each of �A1 and �A2 is ar − 1. However, since
B1 = ∪r−1

i=0 iar + I0, �B1 comprises r copies of �I0, r − 1 copies each of �I0 + ar and
�I0 −ar , and in general r − i copies each of �I0 + iar and �I0 − iar . Using the structure
of the interval I0 and the fact that all of these multisets are disjoint, it can be verified that the
maximummultiplicity in�B1 is (a−1)r = ar−r and so the SEDFs are not equivalent.

In fact, the recursive process of Theorem 3.2 can be performed for GSEDFs with m = 2
and λ1 = λ2 = 1, and by appropriate choice of parameters we can build new SEDFs using
GSEDFs which are not themselves SEDFs. A recursive construction for GSEDFs was given
in [9]; our result differs from this in that the value of λ remains unchanged, and the new
group is a larger cyclic group rather than a cross-product.

Theorem 3.5 Let S = {A1, A2} be a (st + 1, 2; s, t; 1, 1)-GSEDF in Zst+1 with A1 =
{x1, . . . , xs} and A2 = {y1, . . . , yt }, such that xi < yj for all 1 ≤ i ≤ s and 1 ≤ j ≤ t . Let
a, b ∈ N. Then we can obtain from S an (abst + 1, 2; as, bt; 1, 1)-GSEDF S′ = {B1, B2}
in Zabst+1. The blocks are given by

B1 = ∪s
i=1{axi + α : 0 ≤ α ≤ a − 1} and B2 = ∪t

i=1{a(yi + βst) : 0 ≤ β ≤ b − 1}.
(Here xi, yi denote the elements of Zabst+1 with these labels).

Proof The proof is precisely analogous to that of Theorem 3.2.

Corollary 3.6 Let k = as = bt for some a, b, s, t ∈ N, such that there exists an (st +
1, 2; s, t; 1, 1)-GSEDF {A1, A2} in Zst+1 with x < y for all x ∈ A1 and y ∈ A2. Then an
(k2 + 1, 2; k, 1)-SEDF can be obtained from S.

An example of a GSEDF construction which can be used in the recursion is given by
S = ({0, 1 . . . , s − 1}, {s, 2s, . . . , ts}), of Theorem 4.4 of [9]. The equivalent GSEDF T =
({0, t, . . . (s − 1)t}, {(s − 1)t + 1, (s − 1)t + 2, . . . , st} may also be used.

Example 3.7 Taking s = 2 and t = 3 with T = ({0, 3}, {4, 5, 6}) in Z7, Theorem 3.5
may be applied to obtain the following general construction in Zk2+1 for any k such that
k = 2a = 3b for some a, b ∈ N, i.e. for any k which is a multiple of 6: S′ = (B1, B2) where

• B1 = {0, 1, . . . , a − 1} ∪ {3a, 3a + 1, . . . , 4a};
• B2 = {4a, 5a, 6a} ∪ {10a, 11a, 12a} ∪ · · · ∪ {(6b − 2)a, (6b − 1)a, 6ab}.

4 Non-abelian SEDFs with λ = 1

In the non-abelian setting, it is not known whether every (n,m, k, 1)-SEDF must be a
(k2 + 1, 2, k, 1)-SEDF. The forward direction of Proposition 2.6 does not apply here, so it
is possible that there may exist non-abelian (k2(m − 1) + 1, m, k, 1)-SEDFs with m > 2,
although no examples are currently known. However, (k2 + 1, 2, k, 1) is an admissible
parameter set. Unlike in the abelian case, there does not exist a non-abelian group of order
k2 + 1 for every value of k - for example there exists no non-abelian group of order k2 + 1
for k ∈ {2, 4, 6, 8, 10}.

In this section, we exhibit an infinite family of non-abelian (k2 + 1, 2, k, 1)-SEDFs for
k odd.
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We will consider the dihedral group Dn of order n as being generated by the elements s

(reflection) and r (rotation by 4π
n
), so that Dn = {sirj : 0 ≤ i ≤ 1, 0 ≤ j < n

2 } and the

generators satisfy s2 = 1, r
n
2 = 1 and sr = r−1s.

First, we present two examples, which illustrate the general construction to follow.

Example 4.1 (i) Let k = 3 and G = D10; take A1 = {e, s, r} and A2 = {sr, r3, sr4}.
(ii) Let k = 5 and G = D26; take A1 = {e, s, r, sr, r2} and A2 = {sr2, r5, sr7, r10, sr12}.

Theorem 4.2 Let k > 1 be odd. Let G = Dk2+1, the dihedral group of order n = k2 + 1.
There exists a (k2 +1, 2, k, 1)-SEDF in G. Specifically,A = {A1, A2} is a (k2 +1, 2, k, 1)-
SEDF where

• A1 = {e, s, r, sr, r2, sr2, . . . , r k−1
2 }, i.e. {ri : 0 ≤ i ≤ k−1

2 } ∪ {srj : 0 ≤ j ≤ k−3
2 }.

• A2 = {sr k−1
2 , rk, sr

k−1
2 rk, r2k, sr

k−1
2 r2k, . . . , r

k(k−1)
2 , sr

k−1
2 r

k(k−1)
2 },

i.e. {rik : 1 ≤ i ≤ k−1
2 } ∪ {srjk+ k−1

2 : 0 ≤ j ≤ k−1
2 }.

Proof For disjoint subsets X, Y of a group G, let XY−1 denote the multiset {xy−1 : x ∈
X, y ∈ Y } (or X − Y its additive equivalent). It suffices to show that A1A2

−1 comprises
each non-identity group element precisely once. For x, y ∈ G, xy−1 equals ri−j if x = ri

and y = rj ; sri−j if x = sri and y = rj ; rj−i if x = sri and y = srj ; and srj−i

if x = ri and y = srj . Note that r( k2+1
2 ) = e. Showing that the elements ri (1 ≤ i ≤

k2−1
2 ) occur once each is equivalent to verifying that in the additive group (Z k2+1

2
,+), the

multiset {0, 1, . . . , k−1
2 } − {k, 2k, . . . ,

k(k−1)
2 } and the multiset { k−1

2 , 3k−1
2 , . . . , k2−1

2 } −
{0, 1, . . . , k−3

2 } together comprise each non-zero element of Z k2+1
2

once each:

• (jk + k−1
2 ) − {0, 1, . . . , k−3

2 } = {jk + 1, jk + 2, . . . , jk + k−1
2 } where 0 ≤ j ≤ k−1

2 ;
• {0, 1, . . . , k−1

2 }−k( k−1
2 −j) = {jk+ k+1

2 , jk+ k+3
2 , . . . , jk+k} where 0 ≤ j ≤ k−3

2 .

Similarly, showing that the elements sri (0 ≤ i ≤ k2−1
2 ) occur once each cor-

responds to verifying that the multiset {0, 1, . . . , k−3
2 } − {k, 2k, . . . ,

k(k−1)
2 } and the

multiset{ k−1
2 , 3k−1

2 , . . . , k2−1
2 } − {0, 1, . . . , k−1

2 } together comprise all the elements of
Z k2+1

2
once each:

• (jk + k−1
2 ) − {0, 1, . . . , k−1

2 } = {jk, jk + 1, . . . , jk + k−1
2 } where 0 ≤ j ≤ k−1

2 ;
• {0, 1, . . . , k−3

2 } − k( k−1
2 − j) = {jk + k+1

2 , jk + k+3
2 , . . . , jk + (k − 1)} where 0 ≤

j ≤ k−3
2 .

We are now able to prove the following result.

Corollary 4.3 For every k > 2, there exist at least two non-equivalent (k2 + 1, 2, k, 1)-
SEDFs.

Proof For k odd, use Proposition 2.5(1) in Zk2+1 and Theorem 4.2 in Dk2+1; these SEDFs
are non-equivalent as the groups are non-isomorphic. Otherwise, k = 2a for some a ≥ 2,
and so two non-equivalent constructions in Zk2+1 are guaranteed by Theorem 3.4.
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We end this section with a first step towards addressing the question: are the only non-
trivial SEDFs with λ = 1 those with m = 2?

Definition 4.4 Let G be a group of order n.

(i) LetA be a set of m ≥ 2 disjoint k-subsets of G, say A1, . . . , Am. We say thatA is an
(n, m, k, λ)-coEDF if the multiset N = {y−1x : x ∈ Ai, y ∈ Aj , i �= j} comprises λ

occurrences of each nonzero element of G.
(ii) Let A be a set of m ≥ 2 disjoint k-subsets of G, say A1, . . . , Am. We say that A is

an (n, m, k, λ)-coSEDF if, for every i, 1 ≤ i ≤ m, the multiset Ni = {y−1x : x ∈
Ai, y ∈ ∪j �=iAj } comprises λ occurrences of each nonzero element of G.

Clearly if G is an abelian group, coEDFs and coSEDFs coincide precisely with EDFs
and SEDFs. An (n, m, k, λ)-coSEDF must satisfy precisely the same parameter conditions
as an (n, m, k, λ)-SEDF.

For a set X in a group G, we denote X−1 = {x−1 : x ∈ X}. For a collection A of sets
{A1, . . . , Am} in a group G, we denoteA−1 = {A−1

1 , . . . , A−1
m }.

Lemma 4.5 A = {A1, . . . , Am} is an (n, m, k, λ)-EDF (respectively, SEDF) if and only if
A−1 = {A−1

1 , . . . , A−1
m } is an (n, m, k, λ)-coEDF (respectively, coSEDF).

Proposition 4.6 Let G be a group of order n. Suppose that A = {A1, . . . , Am} is an
(n, m, k, 1)-SEDF and an (n,m, k, 1)-coSEDF (equivalently, that A and A−1 are both
(n, m, k, 1)-SEDFs). Then either m = 2 or k = 1.

Proof Suppose that m > 2 and k > 1. Let N ′
ij = {y−1x : x ∈ Ai, y ∈ Aj }. The multiset

union
⋃

1≤i≤m, 1≤j≤n N ′
ij comprises every non-identity element ofG preciselym times. The

multiset union
⋃

i �=1, j �=1 N ′
ij comprises m − 2 copies of each non-identity element of G,

since
⋃

j �=1 N ′
1j (= N1) comprises each non-identity element once, as does

⋃
i �=1 N ′

i1 (the

set of inverses of N1). Let x �= y ∈ A1 (this is possible since k > 1). Set α = y−1x. Since
α is a non-identity element of G and A is an (n,m, k, 1)-coSEDF in G, there exist u ∈ Ai

and v ∈ Aj for some i, j ∈ {2, . . . , m} with i �= j such that v−1u = α (from above, this is
possible since m > 2). Then v−1u = α = y−1x, which rearranges to v−1 = y−1xu−1, i.e.
yv−1 = xu−1. However, A is an (n,m, k, 1)-SEDF, and this equality corresponds to two
equal distinct external differences arising out of A1 - a contradiction.

This result generalizes the forward direction of Proposition 2.6. It indicates that, if a non-
trivial non-abelian (n,m, k, 1)-SEDF exists withm > 2, it cannot be a (n,m, k, 1)-coSEDF.

5 Computational approach and results

In this section, we describe how we have found and classified all SEDFs in groups up to
order 24, using a computational approach. Computational search results were obtained via
a constraint-style backtrack search. Preprocessing of the group information was performed
using GAP [3], in particular its SmallGroups library, while the search for SEDFs was imple-
mented in Java, using a recursive depth-first search algorithm. The algorithm returns all
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(n, m, k, λ)-SEDFs in a group G; a final list of non-equivalent SEDFs is then produced
using the Images package [7] in GAP.

5.1 Summary of results

Table 1 of Section 2 listed all admissible parameters sets for groups of order at most 24.
For abelian groups, results from the literature rule-out the following parameter sets:

(9, 3, 2, 1), (10, 3, 3, 2), (13, 4, 2, 1), (17, 3, 4, 2), (17, 4, 4, 3), (17, 5, 2, 1), (19, 3, 3, 1),
(19, 3, 6, 4), (19, 5, 3, 2) [10]; (21, 6, 2, 1) (Proposition 2.6); (19, 2, 6, 2), (21, 2, 10, 5)
[6]. This leaves sets: (5, 2, 2, 1), (9, 2, 4, 2), (10, 2, 3, 1), (13, 2, 6, 3), (17, 2, 4, 1),
(17, 2, 8, 4).

Table 2 summarizes all non-equivalent abelian SEDFs found by computer search in
groups of order up to 24. All found SEDFs can be classified in terms of constructions in the
literature: Case (a) corresponds to Proposition 2.5(1), Case (b) corresponds to Proposition
2.5(2), Case (c) corresponds to Proposition 2.5(3) and Case (d) corresponds to Theorem 3.1.

There is no (9, 2, 4, 2)-SEDF in the cyclic group of order 9; this is ruled-out by Theorem
4.2 of [6]. The two non-equivalent (17, 2, 4, 1)-SEDFs are those guaranteed by Theorem
3.4; here the SEDF from the cyclotomic construction of Proposition 2.5 (3) is equivalent to
that from Theorem 3.1.

For non-abelian groups of order n ≤ 24, we cannot rule-out any of the parameter sets
from Table 1 using results from the existing literature. However, there are no non-abelian
groups of orders 5, 9, 13, 17, or 19. Therefore non-trivial SEDFs in groups of order up to 24
are possible only for two orders, 10 and 21. In each case there is one non-abelian group: the
dihedral group D10 of order 10 and the semi-direct product Z7 � Z3 of order 21. The non-
trivial parameter sets for these are (10, 2, 3, 1), (21, 2, 10, 5) and (21, 6, 2, 1). The results
are shown in Table 3 - observe that this establishes computationally that there are no SEDFs
with parameters (21, 2, 10, 5) and (21, 6, 2, 1).

6 Concluding remarks and open problems

We have introduced the questions: for given parameters, which finite groups contain
SEDFs with these parameters? How many non-equivalent SEDFs exist with these param-
eters? Equivalence raises new questions about known SEDF results - e.g. how many
non-equivalent (243, 11, 22, 20)-SEDFs exist? Further constructions and theoretical non-
existence results for non-abelian SEDFs would be of interest. Does there exist a non-abelian
SEDF whose parameters cannot be realised for an abelian SEDF? This is particularly
relevant as the range of possible parameters for abelian SEDFs becomes increasingly con-
strained (in [8] it is conjectured that the known (243, 11, 22, 20)-SEDF is the only abelian
SEDF with m > 2). Do there exist non-abelian SEDFs with m > 2?

The case when λ = 1 possesses a richer structural landscape than previously realised,
with new SEDFs found, both abelian and non-abelian. For no other fixed value of λ are
explicit families of SEDFs known: can families be found for fixed values of λ > 1?

Based on the computational results, we may ask: is it the case that for p an odd
prime, no SEDF with m = 2 can exist in the cyclic group of order p2? The case when
m > 2 is resolved in [1]; however we know of no such result for m = 2. Does the
finite field construction using squares and non-squares yield a unique (up to equivalence)
(p2, 2, p−1

2 ,
p−1
4 )-SEDF?

339Cryptography and Communications (2021) 13:331–341



Ta
bl
e
2

N
on
-e
qu
iv
al
en
tS

E
D
Fs

in
ab
el
ia
n
gr
ou
ps

of
or
de
r
up

to
24

Pa
ra
m
et
er
s

A
be
lia
n
gr
ou
p

N
o
of

no
n-
eq
ui
v.
SE

D
Fs

E
xa
m
pl
e

C
as
e

(5
,
2,
2,
1)

Z
5

1
{0,

1},
{2,

4}
(a
),
(b
),
(d
)

(9
,
2,
4,
2)

Z
9

0
–

–

Z
3
×

Z
3

1
{(1

,
0)

,
(0

,
1,

)(
2,
0)

,
(0

,
2)

},
{(1

,
1)

,
(1

,
2)

,
(2

,
1)

,
(2

,
2)

}
(b
)

(1
0,
2,
3,
1)

Z
10

1
{0,

1,
2},

{3,
6,
9}

(a
)

(1
3,
2,
6,
3)

Z
13

1
{1,

3,
4,
9,
10

,
12

},
{2,

5,
6,
7,
8,
11

}
(b
)

(1
7,
2,
4,
1)

Z
17

2
{0,

1,
2,
3},

{4,
8,
12

,
16

}{
1,
4,
13

,
16

},{
2,
8,
9,
15

}
(a
)
(c
),
(d
)

(1
7,
2,
8,
4)

Z
17

1
{1,

2,
4,
8,
9,
13

,
15

,
16

},
{3,

5,
6,
7,
10

,
11

,
12

,
14

}
(b
)

340 Cryptography and Communications (2021) 13:331–341



Table 3 Non-equivalent SEDFs in non-abelian groups of order up to 24

Parameters Non-abelian group No of non-equiv. SEDFs Example Case

(10, 2, 3, 1) D10 1 {e, s, r}, {sr, r3, sr4} Theorem 4.2

(21, 2, 10, 5) Z7 � Z3 0 – –

(21, 6, 2, 1) Z7 � Z3 0 – –
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